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Abstract

The analysis of practical queueing problems benefits if realistic distributions can be used as param-
eters. Phase type (PH) distributions can approximate many distributions arising in practice, but their
practical applicability has always been limited when they are described by a non-Markovian vector-matrix
pair. In this case it is hard to check whether the non-Markovian vector-matrix pair defines a non-negative
matrix-exponential function or not. In this paper we propose a numerical procedure for checking if the
matrix-exponential function defined by a non-Markovian vector-matrix pair can be represented by a
Markovian vector-matrix pair with potentially larger size. If so, then the matrix-exponential function is
non-negative.

The proposed procedure is based on O’Cinneide’s characterization result, which says that a non-
Markovian vector-matrix pair with strictly positive density on (0,∞) and with a real dominant eigenvalue
has a Markovian representation. Our method checks the existence of a potential Markovian representa-
tion in a computationally efficient way utilizing the structural properties of the applied representation
transformation procedure.

Keywords: Phase-type distribution, vector-matrix representation, randomization, uniformization.

1 Introduction

Phase-type (PH) distributions are defined as the time to absorption in a discrete-state Markov chain with
all but one transient states and one absorbing state [14]. In this paper we focus on continuous PH distri-
butions whose underlying stochastic process is a continuous-time Markov chain. This background Markov-
chain-based stochastic interpretation of PH distributions made their use quite efficient in applied stochastic
modeling. In the Markovian framework the PH distribution is defined by the initial probability distribution
of the Markov chain (given as a row vector of initial state probabilities – non-negative numbers whose sum is
one) and its generator matrix (whose off-diagonal elements hold non-negative transition rates and diagonal
elements are not greater than the sum of all transition rates out of the associated state times minus one).
The vector-matrix pair satisfying these structural restrictions is referred to as Markovian and allows the
application of the background Markov-chain-based stochastic interpretation of PH distributions. Unfortu-
nately, the vector-matrix based definition of PH distributions is not unique. Infinitely many vector-matrix
pairs can define a given PH distribution and infinitely many of them are non-Markovian [10].

The use of a non-Markovian vector-matrix pair for describing a PH distribution is rather limited in
applied stochastic modeling mainly due to the following two reasons:

1. it does not allow the application of the background Markov-chain-based stochastic interpretation of
PH distributions,

2. it is rather complex to check if the associated matrix-exponential function is non-negative.
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Recent results indicate that the lack of a stochastic interpretation is not that crucial. Following the
general results in [10] it has been shown [1, 4] that the numerical analysis of a stochastic model with non-
Markovian vector-matrix representation of PH distributions can be performed with the same procedures as
the ones used with Markovian representations.

The focus of this paper is on the second important disadvantage listed above. We present a numerical
procedure to decide if a matrix-exponential function defined by a non-Markovian vector-matrix pair defines
a PH distribution or not. The proposed procedure utilizes results about the properties of PH distributions,
Markov chains and randomization. In particular, we make use of the fact that any matrix-exponential
function with positive density on (0,∞) and with a unique dominant eigenvalue (whose multiplicity can
be greater than one) has a PH representation [16]. Furthermore, our approach is built on the monocyclic
representation of PH distributions [15, 6]. The monocyclic representation of PH distribution bridges several
Markov-chain-related results with the analysis of matrix-exponential functions.

A motivating application for this method is the problem of moment-matching with PH distributions.
There are numerical procedures [19, 18] to generate non-Markovian vector-matrix pairs whose associated
moments match a set of predefined values (for example, experimental moments). The applicability of this
non-Markovian vector-matrix pair in stochastic models depends on the fact weather it defines a valid PH
distribution or not. Therefore, for the use of this moments matching approach it is crucial to check if the
obtained non-Markovian vector-matrix pair defines a PH distribution. In this paper we propose an efficient
numerical method to decide this question which might eliminate the remaining technical difficulties from the
practical application of non-Markovian vector-matrix pair definition of PH distributions.

The rest of the paper is organized as follows: We first summarize the notation and important properties
of phase type distributions. We then describe the proposed method. In Section 3 we give an algorithm
for computing a positive representation, if one exists. We then discuss a refinement of the algorithm and
conclude the paper by giving some numerical examples.

2 Preliminaries

2.1 Basic definitions

Definition 1. A pair (α,A), where α is a vector of size 1× n and A is a matrix of size n× n is said to be
a vector-matrix pair of size n.

Definition 2. The vector-matrix pair of size n, (α,A), is said to be Markovian if α and A have the following
properties:

• αi ≥ 0,

• Aii < 0, Aij ≥ 0 for i 6= j, A1 ≤ 0,

• A is non-singular,

PH distributions can be defined as follows.

Definition 3. Let X be a random variable with cumulative distribution function (CDF) FX(x) = Pr(X ≤ x).
X is PH distributed if there is a finite size Markovian vector-matrix pair, (α,A), for which

FX(x) = Pr(X ≤ x) = 1−αeAx1, (1)

In this case we say that X is phase-type distributed with representation (α,A), PH(α,A) distributed, for
short.

In Definition 3, vector α is often referred to as initial row vector and matrix A as transient generator
matrix. In this paper we assume that α1 = 1, which means that there is no probability mass at t = 0 and
FX(0) = 0. The probability density function (PDF), the Laplace transform and the moments of X are

fX(x) = αeAx(−A)1, (2)

f∗
X(s) = E(e−sX) = α(sI−A)−1(−A)1, (3)

µn = E(Xn) = n!α(−A)−n1. (4)

(2) defines the matrix-exponential function associated with the vector-matrix pair (α,A), both for Marko-
vian and non-Markovian vector-matrix pairs.
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2.2 Different Representations of PH Distributions

The vector-matrix representation of fX(x) is not unique. There are different vector-matrix pairs, both with
identical size and different sizes, resulting in the same matrix-exponential function, as it is summarized in
the following theorems. The proofs are available in the original papers.

Theorem 1. [18] Let (α,A) and (γ,G) be two vector-matrix pairs of size n with associated matrix-
exponential function fX(x) and fY (x), respectively. Then fX(x) and fY (x) are identical iff there exists
a non-singular matrix B of size n× n, such that γ = αB, G = B−1AB and B1 = 1.
Theorem 2. [5] Let (α,A) be a vector-matrix pair of size n and (γ,G) be a vector-matrix pair of size m
(m > n) with associated matrix-exponential functions fX(x) and fY (x), respectively. If there exists a matrix
W of cardinality n×m, such that αW = γ, AW = WG, W1m = 1n then fX(x) ≡ fY (x).

Definition 4. X is PH distributed with density function fX(x). The (α,A) vector-matrix pair of size n is
said to be a minimal representation of X if there is no vector-matrix pair of smaller size whose associated
matrix-exponential function is fX(x).

If the (α,A) representation of fX(x) is not minimal then, for example, the STAIRCASE method from
[5] (implemented in [3]) can be applied to obtain a minimal representation. The minimal representation of
PH distributions has some easy-to-check necessary conditions [16]:

C1 The eigenvalues of A have negative real part (to avoid divergence of fX(x)).

C2 There is a real eigenvalue of A with maximal real part (to avoid asymptotic oscillations of fX(x)).

C3 α1 = 1 (normalizing condition without probability mass at zero).

C4 fX(0) is either positive or zero. If it is zero then the first non-zero derivative of fX(x) at x = 0 is
positive (to avoid negative fX(x) values close to x = 0).

If these necessary conditions are violated then the vector-matrix pair (α,A) does not define a valid PH
distribution. Further necessary conditions are available in [17, 8] and the references therein. Apart from
these necessary conditions there are some necessary and sufficient conditions for PH distributions whose
minimal vector-matrix representation is of size 3 [9, 2], but there are no easy-to-check necessary and sufficient
conditions for the general case.

The representation-transformation methods in Theorem 1 and 2 have important properties with respect
to the eigenvalues of the different representations. If (α,A) and (γ,G) are both minimal and the conditions
of Theorem 1 hold, then the eigenvalues of A and G are identical with the same multiplicities.

If (α,A) of size n is minimal, the size of (γ,G) is m (m > n) and the conditions of Theorem 2 hold,
then every eigenvalue of A is an eigenvalue of G at most with the same multiplicity.

2.3 The main elements of the proposed method

It is an important property of Definition 3 that the vector-matrix representation of a PH distribution is
not unique, that is, that different vector-matrix pairs can define the same distribution. In particular, it
might happen that a non-Markovian vector-matrix pair and another, Markovian, vector-matrix pair define
the same PH distribution.

Using these basic definitions it is easy to present the main idea of the proposed numerical procedure: given
a non-Markovian vector-matrix pair the procedure looks for a Markovian vector-matrix pair (of potentially
much larger, but finite, size) which defines the same matrix-exponential function. If there exists such a
Markovian vector-matrix pair then the non-Markovian vector-matrix pair defines a valid PH distribution.

The theoretical basis of our procedure is the seminal result of O’Cinneide [16], which states that any
matrix-exponential function with a unique dominant eigenvalue (of potentially higher multiplicity) and a
strictly positive density in (0,∞) has a Markovian vector-matrix representation. Based on this result Mocanu
and Commault [11] recommended a particular unique representation for PH distributions. Additionally,
Mocanu developed a tool [12], called MoMI tool, which implements the generation of such unique PH
representations based on the poles and the zeros of the rational Laplace transform. Indeed the MoMI tool
can also be used for deciding the validity of a non-Markovian vector-matrix pair, but our proposed procedure
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Figure 1: FE-diagonal block.
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Figure 2: FE-diagonal representation of a generator with a real eigenvalue (λ1) and a pair of complex ones.

makes an efficient use of additional properties (for example, Theorem 4) which are not considered in the
MoMI tool.

Employing the approach from [11] the following section presents a way for constructing a representation
with a Markovian matrix (and a potentially non-Markovian initial vector) for a non-Markovian vector-matrix
pair. The core of the approach is that every eigenvalue is represented separately with a small Markovian
matrix block.

2.4 Representation of PH distributions with Markovian matrix

The Laplace transform of a PH distributions may have complex poles which are identical with the non-
vanishing eigenvalues of the matrix of the associated vector-matrix pairs. [11] proposed the use of Feedback-
Erlang (FE) blocks to represent pairs of complex eigenvalues with proper Markovian generator blocks:

Definition 5. [11] A Feedback-Erlang (FE) block with parameters (b, λ, z) is a chain of b states with
transition rate λ and one transition from the bth state to the first state, with rate zλ (c.f. Figure 1). The
probability z ∈ [0, 1) is called the feedback probability.

Feedback-Erlang blocks with length b = 1 or feedback probability z = 0 are called degenerate FE blocks.
Note that an FE block (b, λ, z) with length b = 1 corresponds to an exponential distribution with rate λ,
while z = 0 gives the Erlang-b distribution with rate λ (the sum of b independent exponentially distributed
random variables with parameter λ). In both cases, the eigenvalue of the matrix block is −λ.

A non-degenerate FE block where b is odd has a real eigenvalue and (b−1)/2 complex conjugate eigenvalue
pairs. A non-degenerate FE block where b is even has 2 real eigenvalues and (b − 2)/2 complex conjugate
eigenvalue pairs. In both cases the eigenvalues are located on a circle in the complex plane. The dominant
eigenvalue (the one with the largest real part) of the FE block with parameters (b, λ, z) is always real and

given by r = −λ
(
1− z

1

b

)
[11]. Given the eigenvalues σ1, . . . , σn of a non-Markovian matrix whose dominant

eigenvalue (which is negative and real according to condition C1 and C2) is σ1, it is possible to compose FE
blocks for representing these eigenvalues as follows

• if σj is real, the corresponding FE block is a degenerate block; thus the parameters are:

λj = −σj , bj = 1, zj = 0, (5)
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• if σj = −aj ± icj is a complex conjugate pair, the parameters are:

bi =




2π

π − 2 arctan

(
ci

ai + σ1

)



, (6)

λi =
1

2

(
2ai − ci tan

π

bi
+ ci cot

π

bi

)
, (7)

zi =

(
1−

ai − ci tan
π
bi

λi

)bi

, (8)

where ⌈x⌉ denotes the smallest integer strictly greater than x.

This construction of the FE blocks ensures that σ1 remains the dominant eigenvalue, that is, the real
parts of all eigenvalues of the FE blocks are not greater than σ1. Based on these FE blocks it is possible to
construct a proper Markovian generator which possesses all eigenvalues of the non-Markovian representation
and some additional eigenvalues which are the additional eigenvalues of the FE blocks:

Definition 6. A monocyclic representation of a non-Markovian matrix with a unique negative real dominant
eigenvalue is a Markovian matrix which consists of h (the number of complex conjugate eigenvalue pairs
plus the number of real eigenvalues) Feedback-Erlang blocks (bi, λi, zi), i = 1, . . . , h, such that it exhibits all
eigenvalues of the non-Markovian matrix with at least the same multiplicity. The only non-zero entries of
the Markovian matrix are in the FE blocks along the diagonal and the transition rates from the last state
of a FE block to the first state of the next one ((1 − zi)λi). The size of the monocyclic representation

is m =
∑h

i=1 bi and the dominant eigenvalues of the FE blocks are ordered by increasing absolute value,
|ri| ≤ |rj |, for 1 ≤ i ≤ j ≤ h.

Figure 2 depicts an example of a Markovian generator which is the monocyclic representation of a
generator with a real eigenvalue (λ1) and a pair of complex conjugate ones in FE-diagonal form. In this
representation there are two FE blocks, one of length b1 = 1 with rate q1 = λ1, and one of length b2 = 3
with rate λ2 and feedback probability z2. The associated generator matrix is

G =




−λ1 λ1 0 0
0 −λ2 λ2 0
0 0 −λ2 λ2

0 zλ2 0 −λ2


 .

Let (α,A) be a non-Markovian vector-matrix pair with a dominant real eigenvalue. Then we can compute
the monocyclic representation of the matrix A, denoted as matrix G, by the eigenvalues of A and the
associated FE blocks. If we look for an equivalent representation of (α,A) with monocyclic matrix G,
then we need to compute a vector γ, for which the matrix-exponential function associated with (α,A) is
identical with the matrix-exponential function associated with (γ,G). There are different methods for this
computation, for example in [11], but here we present an approach based on the similarity transformations

of Theorems 1 - 2 [5]. Let n and m (n ≤ m) be the size of A and G, respectively. Compute matrix Ŵ of
size n×m as the unique solution to

AŴ = ŴG, W1 = 1, (9)

and based on Ŵ the initial vector is

γ = α · Ŵ. (10)

Since G is Markovian, the obtained (γ,G) representation is Markovian if γ is non-negative, but this is not
necessarily the case. The case when γ has negative elements is considered in the following subsection.
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2.5 Markovian representation of PH distributions

If the (γ,G) representation of the non-Markovian vector-matrix pair (α,A) with strictly positive density
on (0,∞) and with monocyclic matrix G is not Markovian (that is, γ has at least one negative element),
then the (γ,G) representation can be extended with an appropriate number of degenerate FE blocks with
appropriate parameter λ in the following way

B =




G −G1
−λ λ

. . .
. . .

−λ


 ,

such that the representation (β,B), where β = γW and W is the unique solution of GW = WB, W1 =1, is Markovian. The column vector −G1 is such that its only non-zero element is the last element which
is the exit rate from the last FE block, (1 − zh)λh. This result is from [11, 13, 12], which ensures the wide
applicability of the monocyclic representation according to the following theorem:

Theorem 3. Every non-Markovian vector-matrix pair (α,A) with a dominant real eigenvalue and with a
strictly positive associated matrix-exponential function on (0,∞) has a monocyclic representation in the form
of matrix B with a Markovian initial vector β.

We note that a Markovian monocyclic representation of a non-Markovian vector-matrix pair (α,A)
can also be computed using the MoMI tool of S. Mocanu. Unfortunately, we have experienced various
computational and operational problems with that tool, and its source code is not publicly available. The
individual steps of the representation-transformation procedure proposed above are available as part of the
Butools library [3].

2.6 Available steps of the procedure

We want to decide if a matrix-exponential function defined by a non-Markovian vector-matrix pair (α,A)
defines a proper PH distribution or not. To this end we propose to perform the following steps.

S1 Check if (α,A) satisfies conditions C1 - C4.

S2 Transform (α,A) to (γ,G) according to Section 2.4 such that each eigenvalue and complex eigenvalue
pair ofA is represented by an FE block in G. This transformation ensures that matrix G is Markovian.
If γ, the initial vector associated with matrix G, is non-negative then (α,A) defines a PH distribution
with strictly positive density. Otherwise step S3 needs to be applied.

S3 Transform (γ,G) to (β,B), with non-negative β according to Section 2.5 if possible.

Unfortunately, Theorem 3 is not supported with an efficient procedure to find the number of additional
degenerate FE blocks and parameter λ for composing matrix B. In the rest of the paper we essentially focus
on step S3 and present numerical methods for finding the number of additional blocks and λ if possible.

3 Positive realization

Let (γ,G) be a vector-matrix pair where γ is a row vector with at least one negative element and G is
a monocyclic generator composed of FE blocks (that is, matrix G is Markovian). The size of vector γ

and matrix G is u and the matrix-exponential function associated with (γ,G) is f(t) = −γeGtG1. We
transform the (γ,G) representation to another equivalent representation of larger size, by extending the
(γ,G) representation with additional n phases in the following way:

B(n, λ) =




G −G1
−λ λ

. . .
. . .

−λ


 ,
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where B(n, λ) is of size u + n (the size of the upper left block of B(n, λ) is u, the remaining n blocks are
of size one). −G1 is a non-negative column vector of size u due to the properties of G. Let vector β(n, λ)
of size u + n be β(n, λ) = γW, where matrix W (of size u × (u + n)) is such that GW = WB(n, λ),
W1u+n = 1n. (β(n, λ),B(n, λ)) is a different vector-matrix representation of the same matrix-exponential
function, because

−β(n, λ)eB(n,λ)tB(n, λ)1 = −γWeB(n,λ)tB(n, λ)1
= −γeGtWB(n, λ)1
= −γeGtGW1
= −γeGtG1
= f(t).

Our main goal is to find n ∈ N
+ and λ ∈ R

+ such that β(n, λ) is non-negative. The transformation
between different representations of a matrix-exponential function is rather complex in general. Fortu-
nately, due to the special structure of matrix B(n, λ) the transformation between representations (γ,G) and
(β(n, λ),B(n, λ)) is rather regular, as summarized in the following theorem.

Theorem 4. W has the form

W =
(
(I+G/λ)n (I+G/λ)n−1g(λ) (I+G/λ)n−2g(λ) . . . g(λ)

)
,

where the size of the first block is u × u, the size of the remaining blocks is u × 1 and g(λ) = −G1/λ is a
column vector of size u.

Proof. First we show that G W = W B(n, λ) and then we show that W1 = 1. On the one hand, using
that G and (I+G/λ) commute we have

G W =
(
(I+G/λ)nG (I+G/λ)n−1Gg(λ) (I+G/λ)n−2Gg(λ) . . . Gg(λ)

)
,

on the other hand,

W B(n, λ) =

=
(
(I+G/λ)n (I+G/λ)n−1g(λ) (I+G/λ)n−2g(λ) . . . g(λ)

)




G −G1
−λ λ

. . .
. . .

−λ




=
(
(I+G/λ)nG (I+G/λ)n−1Gg(λ) (I+G/λ)n−2Gg(λ) . . . Gg(λ)

)
.

Furthermore

W1 =
(
(I+G/λ)n (I+G/λ)n−1g(λ) (I+G/λ)n−2g(λ) . . . g(λ)

)1
= (I+G/λ)n1+

n−1∑

i=0

(I+G/λ)n−1g(λ)

= (I+G/λ)n1+ (I− (I+G/λ)n) (I− (I+G/λ))
−1

g(λ)

= (I+G/λ)n1+ (I− (I+G/λ)n) (−G/λ)
−1

(−G/λ)1
= (I+G/λ)n1+ (I− (I+G/λ)n)1
= 1.

This regular structure of the transformation matrix allows us to design efficient numerical computation
methods using the following stochastic interpretation.

3.1 Stochastic interpretation

G is a Markovian monocyclic generator. Let λ be greater than ||G|| (the absolute value of the element of
G with maximal absolute value). In this case the transformation from (γ,G) to (β(n, λ),B(n, λ)) gains
a nice stochastic interpretation through uniformization (randomization) [7]. Apart from efficient numerical
computation of transient probabilities of a CTMC, uniformization is a technique to interpret the behavior
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of a CTMC through a discrete time Markov chain and a Poisson process. We utilize this approach for
matrix-exponential functions below.

The matrix G is a transient generator matrix and consequently the matrix (I + G/λ) is the transient
transition probability matrix of the uniformized version of the same process, where the uniformization rate
is λ. The non-Markovian element of the (γ,G) representation is vector γ, which contains negative elements.
Our main question is if vector β(n, λ) = γW is non-negative. We have

γW =
(
γ(I+G/λ)n γ(I+G/λ)n−1g(λ) γ(I+G/λ)n−2g(λ) . . . γg(λ)

)
. (11)

The first block of this vector is of size u and the remaining n blocks are of size 1. The stochastic
interpretation of vector γW is as follows: The last n elements of the vector are the first n probabilities of a
discrete-time matrix-geometric distribution with initial vector γ and matrix I+G/λ. The first u elements
of the vector are the transient value of the initial vector of the same matrix-geometric distribution after n
steps.

The matrix-geometric series defined by the vector-matrix pair (γ, I + G/λ), −γ(I + G/λ)i−1G1/λ is
denoted by MG(γ, I+G/λ). To better approach the stochastic interpretation of γW > 0 we first we show
that γ(I+G/λ)ig(λ) > 0 for i = 0, 1, . . . , n−1 and γ(I+G/λ)n > 0 implies that MG(γ, I+G/λ) is positive
for all i ≥ 1.

The first condition ensures that the first n elements of the matrix-geometric series are positive. Since
the matrix G is a proper Markovian generator, the matrix (I + G/λ) is also a proper transient transition
probability matrix (with non-negative elements and all row sums less than or equal to 1). Due to the fact
that γ(I+G/λ)n is positive and (I+G/λ) is a transient transition probability matrix we have that the rest
of the elements of the probability mass function are also positive, since for i > n we have

γ(I+G/λ)ig(λ) = γ(I+G/λ)n︸ ︷︷ ︸
>0

(I+G/λ)i−ng(λ)︸ ︷︷ ︸
≥0 and 6=0

> 0.

In the second step we show that f(t) > 0 on (0,∞) if MG(γ, I + G/λ) is non-negative for all i ≥ 1.
According to the uniformization argument, for f(t) we can write

f(t) = −γeGtG1
= −γ

∞∑

i=1

ti−1

(i − 1)!
Gi−1G1

= −γ

∞∑

i=1

(λt)i−1

(i − 1)!
(G/λ)i−1G1

= −γ

∞∑

i=1

(λt)i−1

(i − 1)!
e−λt(I+G/λ)i−1G1

=

∞∑

i=1

λ(λt)i−1

(i− 1)!
e−λt

︸ ︷︷ ︸
Erlang(i, λ) PDF

γ(I+G/λ)i−1g(λ)︸ ︷︷ ︸
ith element of MG(γ, I+G/λ)

. (12)

Which means that f(t) is a convex combination of Erlang(i, λ) probability density functions which are strictly
positive in (0,∞) and the weights are the positive elements of the MG(γ, I+G/λ) series.

3.2 Basic algorithm

According to (11), in order to check if a non-Markovian vector-matrix pair (γ,G) with Markovian generator
G defines a PH distribution we need to find λ for which MG(γ, I + G/λ) series is positive for all i ≥ 1.
Furthermore, to check if the elements of the MG(γ, I+G/λ) series are positive for all i ≥ 1 it is not necessary
to check all elements of the series, but it is enough to check if the first elements of the series are positive up
to the point when the transient vector becomes strictly positive.

To implement a procedure based on this approach we still need to describe a method to find an appropri-
ate λ value. An intuitive interpretation of (12) might help in understanding the behavior of MG(γ, I+G/λ)
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1. POSITIVEMATRIXEXP(α, A)

2. {γ,G} = MONOCY CLICREPRESENTATION(α,A);

3. λ = MAX(REALPART (EIGENVALUES(−A)));

4. For(i = 1, i ≤ 20, i++, % doubles λ 20 times

5. vec = γ;

6. While(Min(vec) < 0,

7. vec = vec ∗ (I+G/λ);

8. out = −vec ∗G/λ ∗ 1;
9. If(out < 0, BreakWhile);

10. ) % ENDWHILE

11. If(MIN(vec) ≥ 0, Return(TRUE)); # otherwise out < 0

12. λ = 2 ∗ λ;

13. ) % ENDFOR

14. Return(UNDECIDED);

Figure 3: Pseudo-code of the basic algorithm

as a function of λ. If λ is large then I+G/λ is very close to the identity matrix and this way the product
of γ and I+G/λ remains close to γ and a lot of multiplication is needed to obtain a strictly positive vector
γ(I+G/λ)n. On the other hand if λ is small then I+G/λ is far from the identity matrix and the elements
of the γ(I+G/λ)ng(λ) series vary more. Consequently, the occurrence of a negative element is more likely.

Based on this behavior our proposed algorithm tries to check the positivity of the MG(γ, I+G/λ) series
with small λ values first, which is computationally cheaper, and in case of negative result it doubles λ. Here
the negative result means the occurrence of a negative γ(I+G/λ)ig(λ) value before the vector γ(I+G/λ)i

becomes positive. The pseudo-code of the algorithm which implements these steps is provided in Figure 3.
Note that the inner loop (lines 6–10) is guaranteed to terminate, as γ(I+G/λ)i converges to the dominant
eigenvector of (I+G/λ), which is non-negative.

To avoid an infinite search for an appropriate λ value, the basic algorithm doubles λ at most 20 times.
Therefore, the result of the algorithm has the following meaning: TRUE means that non-Markovian vector-
matrix pair (α,A) defines a PH distribution with strictly positive density in (0,∞). UNDECIDED means
that γ(I + G/λ)ig(λ) for i = 0, 1, . . . is not a strictly positive matrix-geometric series for the investigated
λ values, whose maximum is 220 times the absolute value of the dominant eigenvalue. In this case, (α,A)
might still define a valid PH distribution, but the algorithm cannot determine if this is the case.

3.2.1 Approximate PH distribution based on the basic method.

Theorem 4 allows to compute a (β(n, λ),B(n, λ)) representation of (γ,G) for a given (n, λ) pair. The size of
the (β(n, λ),B(n, λ)) representation (u+n) is increasing with n, and the potential nonzero elements of β(n, λ)
depend on both λ and n. The (β(n, λ),B(n, λ)) representation obtained with any (n, λ) pair can be used for
a PH approximation of the matrix-exponential function associated with (γ,G). If β̃(n, λ) is obtained from
β(n, λ) by setting the negative elements to zero and re-normalizing, then the obtained Markovian vector-
matrix representation, (β̃(n, λ),B(n, λ)), is going to approximate the original density closely everywhere
except around local minima.

The basic procedure searches for (n, λ) pairs which result in a non-negative vector β(n, λ). If we eliminate
line 9 of the POSITIVEMATRIXEXP procedure and store the out and vec values into vector β(n, λ) and
finally approximate β(n, λ) by β̃(n, λ) then (β̃(n, λ),B(n, λ)) is computed by a (n, λ) pair which is optimal
according to the POSITIVEMATRIXEXP procedure with the given computation limit.
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1. POSITIVEMATRIXEXPWITHSHIFTING(α, A)

2. f [x] = −α eAx A 1;
3. λ = MAX(REALPART (EIGENVALUES(−A)));

4. {γ,G} = MONOCY CLICGENERATOR(α,A);

5. iter = 0; shift = 0; ivec = γ;

6. For(i = 1, i ≤ 20, i++, % doubles λ 20 times

7. vec = ivec;

8. While(Min(vec) < 0,

9. iter ++;

10. vec = vec ∗ (I+G/λ);

11. out = −vec ∗G/λ ∗ 1;
12. If(out < 0, BreakWhile);

13. ) % ENDWHILE

14. If(MIN(vec) ≥ 0, Return(TRUE)); # otherwise out < 0

15. If(f [shift+ iter/λ] =< 0, Return(FALSE)); # otherwise f [shift+ iter/λ] > 0

16. shift + = iter/λ;

17. ivec = ivec eG iter/λ;

18. λ = 2 ∗ λ;

19. ) % ENDFOR

20. Return(UNDECIDED);

Figure 4: Pseudo-code of the algorithm with shifting

4 Shifting

The computational cost of checking the non-negativity of MG(γ, I +G/λ) is increasing with increasing λ.
It is a weak point of the basic algorithm that the expensive checking steps for large λ values need to be
completed when f(t) = αeAt(−A)1 is negative for some t. Practically it means that the basic method is
efficient when the result is TRUE, but it is inefficient otherwise. To enhance the efficiency of the procedure
by efficiently obtaining FALSE result we further need to investigate the meaning of (12).

The Erlang(i, λ) probability density is concentrated around i/λ with variance i/λ2. It means that the
contribution of the γ(I + G/λ)ig(λ) coefficient in f(t) is most dominant at t = 1/λ. This way if γ(I +
G/λ)ig(λ) is negative then f(t) might also be negative at t = 1/λ, which can be used for a cost-efficient
check for FALSE result.

Another way to improve the efficiency of the method is to exclude the part of the analysis of f(t) which
was found to be non-negative in the previous cycle of the procedure (with the previous value of λ). A
positive γ(I + G/λ)ig(λ) series for i = 0, 1, . . . , n − 1 indicates that the Erlang(i, λ) (i = 0, 1, . . . , n − 1)
density functions which are dominant over the (0, n/λ) interval are weighted with positive coefficients. This
way if f(t) is positive at t = n/λ then it is positive over the whole (0, n/λ) interval. We utilize this fact by
shifting the f(t) function by n/λ to the left. A consequence of the shifting is that the potentially negative
point of f(t) gets closer to the origin and the required number of iterations of our algorithm to identify
this negative value through the γ(I+G/λ)ig(λ) coefficients reduces accordingly. Another advantage of the
explicit check of negative f(t) values is that the outcome of the procedure can be better specified. The
shifting method returns TRUE or FALSE if a positive or a negative answer is obtained within the predefined
limit of precision (doubling λ 20 times in Figure 4) and returns UNDECIDED if the function cannot be
classified with the given precision limit. The pseudo-code of the algorithm with these enhancements is
provided in Figure 4.
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Figure 5: Matrix-exponential functions with a minimum close to zero.

5 Numerical examples

This section presents a number of numerical examples to illustrate the proposed method.

5.1 Densities close to zero

First we investigate the behavior of the algorithm with a series of vector-matrix pairs whose matrix-
exponential functions have a minimum in (0,∞) which is close to zero. The evaluated vector-matrix pairs
are (α1,A), . . ., (α4,A), where

αi = [1,−xi, xi], i = 1, 2, 3, 4, A =




−2 2 0
0 −5 5
0 0 −9


 ,

and
x1 = 0.7, x2 = 0.72, x3 = 0.74, x4 = 0.7244301.

The matrix-exponential functions are plotted in Figure 5 and the following table summarizes the main
parameters of the procedure.

Result Min. around 0.24 Iterations Final shift
outer loop inner loop

α1,A TRUE 0.0261394 5 22 0.208333
α2,A TRUE 0.00475063 6 29 0.229167
α3,A FALSE −0.0167315 4 17 0.138889
α4,A UNDECIDED 0 20 80 0.245182

Except for α4,A the procedure requires 3–6 iterations for λ values with these examples. The first two
examples indicate that the closer the minimum is to zero, the higher the computational cost of the procedure.
The third example indicates that the introduced error-checking method efficiently recognizes negative density
values. In spite of the lower absolute value of the minimum of (α3,A) with respect to (α1,A) (0.0167315
versus 0.0261394), the computational cost of obtaining the FALSE answer for (α3,A) is less than the one
for obtaining the TRUE answer for (α1,A). The last example indicate that the procedure does not decide
the positivity of the density if its local minimum is zero. In this case the procedure runs until the predefined
limit of the computations defined in Line 6 of Figure 4.

5.2 Multi-modal density

The proposed shifting method intends adopting the peculiarities of the matrix-exponential functions which
occur due to the coefficients with different signs associated with the elementary functions of the eigenvalues.
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Figure 6: Matrix-exponential function with two local minima.

For example, (α5,A5) with

α5 = [3.99334,−5.99002, 4.32612,−1.99667, 0.667221], A5 =




−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1




,

exhibits two local minima, as depicted in Figure 6. The main parameters in the table below indicate that
the procedure increases the λ value three times in order to determine that the minimum at 1 is not negative,
and after that it efficiently shifts the representation close to the next minimum (1.875).

Result Minimum Iterations Shift 1 Shift 2 Shift 3 Shift 4
outer loop inner loop

α5,A5 TRUE 0.000224626 6 66 0.25 0.5 0.75 1.875

5.3 Complex eigenvalues

In case of complex eigenvalues the matrix-exponential functions can have several minima. According to
our intuitive understanding the procedure needs to investigate the minima caused by the coefficients with
different signs associated with the elementary functions of the eigenvalues, but the infinitely alternating terms
associated with complex eigenvalues do not cause any extra problem. For example, the matrix-exponential
function defined by

α6 = [−3.07692, 2.30769, 1.76923], A6 =




−2 0.56 0
−0.56 −2 1

0 0 −1


 ,

and depicted in Figure 7 is identified with the following parameters.

Result Minimum Iterations Shift 1 Shift 2 Shift 3
outer loop inner loop

α6,A6 TRUE 0.00443014 5 25 0.25 0.625 0.9375

5.4 Qualitative properties

The proposed method is applicable up to a given numerical precision. The example in Section 5.1 demon-
strates this property. If the local minimum of the density decreases to zero the number of required iterations
increases to infinity. If the proposed computation is stopped at any finite limit, then there are positive
densities with very small positive value at the local minimum which cannot be decided by the algorithm
within that finite limit. In this case the shifting method returns with UNDECIDED.
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Figure 7: Matrix-exponential function with complex eigenvalues.

The two main conditions of Theorem 3 are that the dominant eigenvalue is real and that the density is
positive on (0,∞). Both of these conditions can be approached arbitrarily closely by a phase-type distribu-
tion. If the limit of the first condition is approached, i.e., there is a complex eigenvalue pair, whose real part
is smaller than, but very close to the dominant eigenvalue, then the size of the monocyclic representation
(matrix G) gets very large, because the size of the FE block associated with this eigenvalue (defined by (6))
gets very large. If the limit of the second condition is approached (i.e. the density is very close to zero at
some point), then the number of required iterations (steps to increase λ) tends to infinity.

5.5 Performance comparison

Based on the available literature and documentation we assume that non of the previously proposed pro-
cedures applies the proposed efficient computation of a feasible λ, n pair and the explicit transformation
presented in Theorem 4 in step S3. The only tool of similar purpose, the authors are aware of, is the MoMI
tool [12] which was developed for demonstrating the computability of the monocyclic representation and
not for efficient analysis of matrix exponential functions. The MoMI tool is partially documented in S. Mo-
canu’s Ph.D. [13], but unfortunately, the implementation of step S3 is not detailed there. We used the IDA
disassembler (https://www.hex-rays.com/products/ida/) to gain information on the related procedures of
MoMI. The obtained low level program code is rather hard to interpret. It seems that the MoMI tool checks
the time (t∗) at which γeGt is non-negative at fixed (0.1) time units and searches for feasible λ, n pair with
λ = n/t∗ and n incremented from 1 till 16. We evaluated the previous examples also with the direct method
of Figure 8. The POSITIVEMATRIXEXPDIRECT procedure returned UNDECIDED for all examples of
this section. In case of Example (α1,A) the largest x value for which the procedure returned TRUE is
x = 0.49 (i.e., ({1,−0.49, 0.49},A)) and the facts that procedure POSITIVEMATRIXEXPDIRECT obtains
β by a solution of a set of linear equation and generates the large {β,B} representation makes this direct
method slow and numerically sensitive.

6 Conclusions

Despite the characterization result of O’Cinneide [16] from 1990, the practical application of non-Markovian
vector-matrix pairs has always been limited by the lack of efficient methods for checking if a non-Markovian
vector-matrix pair defines a valid PH distribution. Our proposed checking method is also based on [16],
but the characterization result is combined with several tricks and model transformation steps to improve
its efficiency. The applied problem transformation steps include transformations from the general non-
Markovian generator matrix to the Markovian one proposed in [11] and from a continuous-time description
to a kind of uniformized one.

The Mathematica implementation of the presented methods is publicly available as part of the BuTools
package [3].
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1. POSITIVEMATRIXEXPDIRECT(α, A)

2. {γ,G} = MONOCY CLICREPRESENTATION(α,A);

3. If(MIN(γ) ≥ 0, Return(TRUE));

4. t = 0;

5. While(Min(γe0.1tG) < 0, t++);

6. For(n = 1, n ≤ 16, n++, % size of Erlang tail

7. λ = n/(0.1t);

8. {β,B} = EXTENDEDREPRESENTATION(γ,G, n, λ);

9. If(MIN(β) ≥ 0, Return(TRUE));

10. ) % ENDFOR

11. Return(UNDECIDED);

Figure 8: Pseudo-code of the direct algorithm
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