70 research outputs found

    Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

    Full text link
    Imitation learning has traditionally been applied to learn a single task from demonstrations thereof. The requirement of structured and isolated demonstrations limits the scalability of imitation learning approaches as they are difficult to apply to real-world scenarios, where robots have to be able to execute a multitude of tasks. In this paper, we propose a multi-modal imitation learning framework that is able to segment and imitate skills from unlabelled and unstructured demonstrations by learning skill segmentation and imitation learning jointly. The extensive simulation results indicate that our method can efficiently separate the demonstrations into individual skills and learn to imitate them using a single multi-modal policy. The video of our experiments is available at http://sites.google.com/view/nips17intentionganComment: Paper accepted to NIPS 201

    MaMiC: Macro and Micro Curriculum for Robotic Reinforcement Learning

    Full text link
    Shaping in humans and animals has been shown to be a powerful tool for learning complex tasks as compared to learning in a randomized fashion. This makes the problem less complex and enables one to solve the easier sub task at hand first. Generating a curriculum for such guided learning involves subjecting the agent to easier goals first, and then gradually increasing their difficulty. This paper takes a similar direction and proposes a dual curriculum scheme for solving robotic manipulation tasks with sparse rewards, called MaMiC. It includes a macro curriculum scheme which divides the task into multiple sub-tasks followed by a micro curriculum scheme which enables the agent to learn between such discovered sub-tasks. We show how combining macro and micro curriculum strategies help in overcoming major exploratory constraints considered in robot manipulation tasks without having to engineer any complex rewards. We also illustrate the meaning of the individual curricula and how they can be used independently based on the task. The performance of such a dual curriculum scheme is analyzed on the Fetch environments.Comment: To appear in the Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019). (Extended Abstract

    Mega-Reward: Achieving Human-Level Play without Extrinsic Rewards

    Full text link
    Intrinsic rewards were introduced to simulate how human intelligence works; they are usually evaluated by intrinsically-motivated play, i.e., playing games without extrinsic rewards but evaluated with extrinsic rewards. However, none of the existing intrinsic reward approaches can achieve human-level performance under this very challenging setting of intrinsically-motivated play. In this work, we propose a novel megalomania-driven intrinsic reward (called mega-reward), which, to our knowledge, is the first approach that achieves human-level performance in intrinsically-motivated play. Intuitively, mega-reward comes from the observation that infants' intelligence develops when they try to gain more control on entities in an environment; therefore, mega-reward aims to maximize the control capabilities of agents on given entities in a given environment. To formalize mega-reward, a relational transition model is proposed to bridge the gaps between direct and latent control. Experimental studies show that mega-reward (i) can greatly outperform all state-of-the-art intrinsic reward approaches, (ii) generally achieves the same level of performance as Ex-PPO and professional human-level scores, and (iii) has also a superior performance when it is incorporated with extrinsic rewards
    • …
    corecore