34,643 research outputs found

    Container vehicle-truss bridge coupled vibration analysis and structural safety assessment under stochastic excitation

    Get PDF
    The container vehicle-truss bridge coupled vibration greatly affects the automated container terminals’ (ACT) structural safety and handling efficiency. Using free-interface component mode synthesis (CMS) method, the coupled vibration time-domain responses, under self-excitation including track irregularity and hunting movement as well as environmental excitations such as wind and seismic load, were obtained. Stochastic simulation of track irregularity and fluctuating wind time-history was generated based on the numerical simulation method of multidimensional homogeneous process. A scale model test was introduced to validate the CMS method’s effectiveness and vehicle speed’s influence on coupled vibration response. In this case, the vehicle-bridge vertical vibration is caused mainly by the vehicle moving load, and self-excitation is a major factor. Wind, seismic load will greatly enhance the lateral vibration. And the sensitivity of the response to the seismic load is greater than operational wind load. As vehicle velocity, fluctuating wind mean velocity or ground motion intensity increase, the responses increase. Then, the structural safety, running safety and stability were assessed by the indicators such as deflection-span ratio, acceleration response etc., under wind load only and under operational wind and ground motion excited simultaneously. It is proved by both prototype simulation and model test results that, lead rubber bearing (LRB) can effectively reduce the acceleration response of both the vehicle and the bridge; therefore, can raise vehicle speed limits for structural and running safety

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    Dynamical Models of Extreme Rolling of Vessels in Head Waves

    Get PDF
    Rolling of a ship is a swinging motion around its length axis. In particular vessels transporting containers may show large amplitude roll when sailing in seas with large head waves. The dynamics of the ship is such that rolling interacts with heave being the motion of the mass point of the ship in vertical direction. Due to the shape of the hull of the vessel its heave is influenced considerably by the phase of the wave as it passes the ship. The interaction of heave and roll can be modeled by a mass-spring-pendulum system. The effect of waves is then included in the system by a periodic forcing term. In first instance the damping of the spring can be taken infinitely large making the system a pendulum with an in vertical direction periodically moving suspension. For a small angular deflection the roll motion is then described by the Mathieu equation containing a periodic forcing. If the period of the solution of the equation without forcing is about twice the period of the forcing then the oscillation gets unstable and the amplitude starts to grow. After describing this model we turn to situation that the ship is not anymore statically fixed at the fluctuating water level. It may move up and down showing a motion modeled by a damped spring. One step further we also allow for pitch, a swinging motion around a horizontal axis perpendicular to the ship. It is recommended to investigate the way waves may directly drive this mode and to determine the amount of energy that flows along this path towards the roll mode. Since at sea waves are a superposition of waves with different wavelengths, we also pay attention to the properties of such a type of forcing containing stochastic elements. It is recommended that as a measure for the occurrence of large deflections of the roll angle one should take the expected time for which a given large deflection may occur instead of the mean amplitude of the deflection

    Dynamical mechanisms of DC current generation in driven Hamiltonian systems

    Full text link
    Recent symmetry considerations (Phys. Rev. Lett. {\bf 84} 2358 (2000)) have shown that dc currents may be generated in the stochastic layer of a system describing the motion of a particle in a one-dimensional potential in the presence of an ac time-periodic drive. In this paper we explain the dynamical origin of this current. We show that the dc current is induced by the presence and desymmetrization of ballistic channels inside the stochastic layer. The existence of these channels is due to resonance islands with non-zero winding numbers. The characterization of the flights dynamics inside ballistic channels is described by distribution functions. We obtain these distribution functions numerically and find very good agreement with simulation data.Comment: 4 pages, 3 figure

    Departure from Axisymmetry in Planetary Nebulae

    Get PDF
    Many planetary nebulae (PNe) exhibit distinctly non-axisymmetric structure in either (i) the shape of the nebula, or (ii) in the off-centered position of the illuminating star. By examining a large number of well resolved images of PNe we estimate that about 30-50 percents of all PNe exhibit distinctly non-axisymmetric structure. In this paper, we discuss how such departures from axisymmetry can arise from the binary nature of the progenitors of the PNe. The scenarios include (a) relatively close binaries with eccentric orbits, and (b) longer orbital period systems with either circular or eccentric orbits. In order to assess the fraction of PNe whose non-axisymmetric morphologies are expected to arise in binary systems, we have carried out a detailed population synthesis study. The expected deviations from axisymmetry are classified for each binary and the results tabulated. We find that about 25 percents of elliptical and 30-50 percents of bipolar PNe are expected to acquire non-axisymmetric structure from binary interactions.Comment: 15 pages + 4 tables; Submitted to Ap
    corecore