6 research outputs found

    Empirical Bounds on Linear Regions of Deep Rectifier Networks

    Full text link
    We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, which reflect the number of pieces of the piecewise linear functions modeled by such networks. However, enumerating these regions is prohibitive and the known analytical bounds are identical for networks with same dimensions. In this work, we approximate the number of linear regions through empirical bounds based on features of the trained network and probabilistic inference. Our first contribution is a method to sample the activation patterns defined by ReLUs using universal hash functions. This method is based on a Mixed-Integer Linear Programming (MILP) formulation of the network and an algorithm for probabilistic lower bounds of MILP solution sets that we call MIPBound, which is considerably faster than exact counting and reaches values in similar orders of magnitude. Our second contribution is a tighter activation-based bound for the maximum number of linear regions, which is particularly stronger in networks with narrow layers. Combined, these bounds yield a fast proxy for the number of linear regions of a deep neural network.Comment: AAAI 202

    Closing the Gap Between Short and Long XORs for Model Counting

    Full text link
    Many recent algorithms for approximate model counting are based on a reduction to combinatorial searches over random subsets of the space defined by parity or XOR constraints. Long parity constraints (involving many variables) provide strong theoretical guarantees but are computationally difficult. Short parity constraints are easier to solve but have weaker statistical properties. It is currently not known how long these parity constraints need to be. We close the gap by providing matching necessary and sufficient conditions on the required asymptotic length of the parity constraints. Further, we provide a new family of lower bounds and the first non-trivial upper bounds on the model count that are valid for arbitrarily short XORs. We empirically demonstrate the effectiveness of these bounds on model counting benchmarks and in a Satisfiability Modulo Theory (SMT) application motivated by the analysis of contingency tables in statistics.Comment: The 30th Association for the Advancement of Artificial Intelligence (AAAI-16) Conferenc

    Approximating the Permanent with Deep Rejection Sampling

    Get PDF
    Peer reviewe
    corecore