1,654 research outputs found

    Stochastic Flips on Two-letter Words

    Get PDF
    This paper introduces a simple Markov process inspired by the problem of quasicrystal growth. It acts over two-letter words by randomly performing \emph{flips}, a local transformation which exchanges two consecutive different letters. More precisely, only the flips which do not increase the number of pairs of consecutive identical letters are allowed. Fixed-points of such a process thus perfectly alternate different letters. We show that the expected number of flips to converge towards a fixed-point is bounded by O(n3)O(n^3) in the worst-case and by O(n5/2lnn)O(n^{5/2}\ln{n}) in the average-case, where nn denotes the length of the initial word.Comment: ANALCO'1

    Distances on Rhombus Tilings

    Get PDF
    The rhombus tilings of a simply connected domain of the Euclidean plane are known to form a flip-connected space (a flip is the elementary operation on rhombus tilings which rotates 180{\deg} a hexagon made of three rhombi). Motivated by the study of a quasicrystal growth model, we are here interested in better understanding how "tight" rhombus tiling spaces are flip-connected. We introduce a lower bound (Hamming-distance) on the minimal number of flips to link two tilings (flip-distance), and we investigate whether it is sharp. The answer depends on the number n of different edge directions in the tiling: positive for n=3 (dimer tilings) or n=4 (octogonal tilings), but possibly negative for n=5 (decagonal tilings) or greater values of n. A standard proof is provided for the n=3 and n=4 cases, while the complexity of the n=5 case led to a computer-assisted proof (whose main result can however be easily checked by hand).Comment: 18 pages, 9 figures, submitted to Theoretical Computer Science (special issue of DGCI'09

    Glassy Phase of Optimal Quantum Control

    Full text link
    We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glass-like transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-SNE, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.Comment: Modified figures in appendix and main text (color schemes). Corrected references. Added figures in SI and pseudo-cod

    Markovian dynamics of concurrent systems

    Full text link
    Monoid actions of trace monoids over finite sets are powerful models of concurrent systems---for instance they encompass the class of 1-safe Petri nets. We characterise Markov measures attached to concurrent systems by finitely many parameters with suitable normalisation conditions. These conditions involve polynomials related to the combinatorics of the monoid and of the monoid action. These parameters generalise to concurrent systems the coefficients of the transition matrix of a Markov chain. A natural problem is the existence of the uniform measure for every concurrent system. We prove this existence under an irreducibility condition. The uniform measure of a concurrent system is characterised by a real number, the characteristic root of the action, and a function of pairs of states, the Parry cocyle. A new combinatorial inversion formula allows to identify a polynomial of which the characteristic root is the smallest positive root. Examples based on simple combinatorial tilings are studied.Comment: 35 pages, 6 figures, 33 reference

    On the problem of the relation between phason elasticity and phason dynamics in quasicrystals

    Full text link
    It has recently been claimed that the dynamics of long-wavelength phason fluctuations has been observed in i-AlPdMn quasicrystals. We will show that the data reported call for a more detailed development of the elasticity theory of Jaric and Nelsson in order to determine the nature of small phonon-like atomic displacements with a symmetry that follows the phason elastic constants. We also show that a simple model with a single diffusing tile is sufficient to produce a signal that (1) is situated at a "satellite position'' at a distance q from each Bragg peak, that (2) has an intensity that scales with the intensity of the corresponding Bragg peak, (3) falls off as 1/q-squared and (4) has a time decay constant that is proportional to 1/(D q-squared). It is thus superfluous to call for a picture of "phason waves'' in order to explain such data, especially as such "waves'' violate many physical principles.Comment: 36 pages, 0 figures, discussion about vacancies, fluctuating Fourier components, and difference between static and dynamical structure factors added, other addition

    Local energy approach to the dynamic glass transition

    Full text link
    We propose a new class of phenomenological models for dynamic glass transitions. The system consists of an ensemble of mesoscopic regions to which local energies are allocated. At each time step, a region is randomly chosen and a new local energy is drawn from a distribution that self-consistently depends on the global energy of the system. Then, the transition is accepted or not according to the Metropolis rule. Within this scheme, we model an energy threshold leading to a mode-coupling glass transition as in the p-spin model. The glassy dynamics is characterized by a two-step relaxation of the energy autocorrelation function. The aging scaling is fully determined by the evolution of the global energy and linear violations of the fluctuation dissipation relation are found for observables uncorrelated with the energies. Interestingly, our mean-field approach has a natural extension to finite dimension, that we briefly discuss.Comment: 4 pages, 5 figure

    Nonasymptotic noisy lossy source coding

    Get PDF
    This paper shows new general nonasymptotic achievability and converse bounds and performs their dispersion analysis for the lossy compression problem in which the compressor observes the source through a noisy channel. While this problem is asymptotically equivalent to a noiseless lossy source coding problem with a modified distortion function, nonasymptotically there is a noticeable gap in how fast their minimum achievable coding rates approach the common rate-distortion function, as evidenced both by the refined asymptotic analysis (dispersion) and the numerical results. The size of the gap between the dispersions of the noisy problem and the asymptotically equivalent noiseless problem depends on the stochastic variability of the channel through which the compressor observes the source.Comment: IEEE Transactions on Information Theory, 201
    corecore