8 research outputs found

    Stochastic Battery Operations using Deep Neural Networks

    Get PDF
    International audienceIn this paper, we introduce a scenario-based optimal control framework to account for the forecast uncertainty in battery arbitrage problems. Due to the uncertainty of prices and variations of forecast errors, it is challenging for battery operators to design profitable strategies in electricity markets. Without any explicit assumption or model for electricity price forecasts' uncertainties, we generate future price scenarios via a data-driven, learning-based approach. By aiding the predictive control with such scenarios representing possible realizations of future markets, our proposed real-time controller seeks the optimal charge/discharge levels to maximize profits. Simulation results on a case-study of California-based batteries and prices show that our proposed method can bring higher profits for different battery parameters

    Arbitrage with Power Factor Correction using Energy Storage

    Full text link
    The importance of reactive power compensation for power factor (PF) correction will significantly increase with the large-scale integration of distributed generation interfaced via inverters producing only active power. In this work, we focus on co-optimizing energy storage for performing energy arbitrage as well as local power factor correction. The joint optimization problem is non-convex, but can be solved efficiently using a McCormick relaxation along with penalty-based schemes. Using numerical simulations on real data and realistic storage profiles, we show that energy storage can correct PF locally without reducing arbitrage profit. It is observed that active and reactive power control is largely decoupled in nature for performing arbitrage and PF correction (PFC). Furthermore, we consider a real-time implementation of the problem with uncertain load, renewable and pricing profiles. We develop a model predictive control based storage control policy using auto-regressive forecast for the uncertainty. We observe that PFC is primarily governed by the size of the converter and therefore, look-ahead in time in the online setting does not affect PFC noticeably. However, arbitrage profit are more sensitive to uncertainty for batteries with faster ramp rates compared to slow ramping batteries.Comment: 10 pages, 8 figure

    Co-Optimizing Battery Storage for Energy Arbitrage and Frequency Regulation in Real-Time Markets Using Deep Reinforcement Learning

    Get PDF
    Battery energy storage systems (BESSs) play a critical role in eliminating uncertainties associated with renewable energy generation, to maintain stability and improve flexibility of power networks. In this paper, a BESS is used to provide energy arbitrage (EA) and frequency regulation (FR) services simultaneously to maximize its total revenue within the physical constraints. The EA and FR actions are taken at different timescales. The multitimescale problem is formulated as two nested Markov decision process (MDP) submodels. The problem is a complex decision-making problem with enormous high-dimensional data and uncertainty (e.g., the price of the electricity). Therefore, a novel co-optimization scheme is proposed to handle the multitimescale problem, and also coordinate EA and FR services. A triplet deep deterministic policy gradient with exploration noise decay (TDD-ND) approach is used to obtain the optimal policy at each timescale. Simulations are conducted with real-time electricity prices and regulation signals data from the American PJM regulation market. The simulation results show that the proposed approach performs better than other studied policies in literature

    Storage Optimal Control under Net Metering Policies

    Full text link
    Electricity prices and the end user net load vary with time. Electricity consumers equipped with energy storage devices can perform energy arbitrage, i.e., buy when energy is cheap or when there is a deficit of energy, and sell it when it is expensive or in excess, taking into account future variations in price and net load. Net metering policies indicate that many of the utilities apply a {customer selling} rate lower than or equal to the retail {customer buying rate} in order to compensate excess energy generated by end users. In this paper, we formulate the optimal control problem for an end user energy storage device in presence of net metering. We propose a computationally efficient algorithm, with worst case run time complexity of quadratic in terms of number of samples in lookahead horizon, that computes the optimal energy ramping rates in a time horizon. The proposed algorithm exploits the problem's piecewise linear structure and convexity properties for the \textit{discretization} of optimal Lagrange multipliers. The solution has a \textit{threshold-based structure} in which optimal control decisions are independent of past or future price as well as of net load values beyond a certain time horizon, defined as a \textit{sub-horizon}. Numerical results show the effectiveness of the proposed model and algorithm. Furthermore, we investigate the impact of forecasting errors on the proposed technique. We consider an Auto-Regressive Moving Average (ARMA) based forecasting of net load together with the Model Predictive Control (MPC). We numerically show that adaptive forecasting and MPC significantly mitigate the effects of forecast error on energy arbitrage gains

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems

    Stochastic Battery Operations using Deep Neural Networks

    No full text
    International audienceIn this paper, we introduce a scenario-based optimal control framework to account for the forecast uncertainty in battery arbitrage problems. Due to the uncertainty of prices and variations of forecast errors, it is challenging for battery operators to design profitable strategies in electricity markets. Without any explicit assumption or model for electricity price forecasts' uncertainties, we generate future price scenarios via a data-driven, learning-based approach. By aiding the predictive control with such scenarios representing possible realizations of future markets, our proposed real-time controller seeks the optimal charge/discharge levels to maximize profits. Simulation results on a case-study of California-based batteries and prices show that our proposed method can bring higher profits for different battery parameters
    corecore