185 research outputs found

    Port-Hamiltonian modeling for soft-finger manipulation

    Get PDF
    In this paper, we present a port-Hamiltonian model of a multi-fingered robotic hand, with soft-pads, while grasping and manipulating an object. The algebraic constraints of the interconnected systems are represented by a geometric object, called Dirac structure. This provides a powerful way to describe the non-contact to contact transition and contact viscoelasticity, by using the concepts of energy flows and power preserving interconnections. Using the port based model, an Intrinsically Passive Controller (IPC) is used to control the internal forces. Simulation results validate the model and demonstrate the effectiveness of the port-based approach

    Interactional Modeling and Optimized PD Impedance Control Design for Robust Safe Fingertip Grasping

    Get PDF
    Dynamic and robust control of fingertip grasping is essential in robotic hand manipulation. This study introduces detailed kinematic and dynamic mathematical modeling of a two-fingered robotic hand, which can easily be extended to a multi-fingered robotic hand and its control. The Lagrangian technique is applied as a common procedure to obtain the complete nonlinear dynamic model. Fingertip grasping is considered in developing the detailed model. The computed torque controller of six proportional derivative (PD) controllers, which use the rotation angle of the joint variables, is proposed to linearize the hand model and to establish trajectory tracking. An impedance controller of optimized gains is suggested in the control loop to regulate the impedance of the robotic hand during the interaction with the grasped object in order to provide safe grasping. In this impedance controller, the gains are designed by applying a genetic algorithm to reach minimum contact position and velocity errors. The robustness against disturbances is achieved within the overall control loop. A computer program using MATLAB is used to simulate, monitor, and test the interactional model and the designed controllers

    Contact Force Analysis in Static Two-fingered Robot Grasping

    Get PDF
    [[abstract]]Static grasping of a spherical object by two robot fingers is studied in this paper. The fingers may be rigid bodies or elastic beams, they may grasp the body with various orientation angles, and the tightening displacements may be linear or angular. Closed-form solutions for normal and tangential contact forces due to tightening displacements are obtained by solving compatibility equations, force-displacement relations based on Hertz contact theory, and equations of equilibrium. Solutions show that relations between contact forces and tightening displacements depend upon the orientation of the fingers, the elastic constants of the materials, and area moments of inertia of the beams.[[sponsorship]]American Society of Mechanical Engineers[[notice]]補正完成[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20130804~20130807[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Portland, Oregon, US

    Passive force closure and its computation in compliant-rigid grasps

    Get PDF
    The classical notion of force closure is formulated for multifingered hands, where the fingers actively apply any desired force consistent with friction constraints at the contacts. This paper considers a simpler notion of passive force closure, where each finger obeys some force-displacement law that depends on the finger's joint parameters. The fingers apply initial preload grasping forces, and the grasped object is stabilized against external disturbances by the automatic response of the grasping fingers. After motivating the usefulness of passive force closure, we characterize the conditions for its existence. Then we introduce the passive stability set, defined as the collection of external wrenches that can be passively resisted by a given grasp. We introduce a class of grasp arrangements where the grasping mechanism is compliant while the grasped object is rigid. Such compliant-rigid systems are common, and for these systems the passive closure set can be computed in closed form. Simulation results demonstrate the computation of the passive closure set for two and three-finger planar grasps

    Mobility of bodies in contact. I. A 2nd-order mobility index formultiple-finger grasps

    Get PDF
    Using a configuration-space approach, the paper develops a 2nd-order mobility theory for rigid bodies in contact. A major component of this theory is a coordinate invariant 2nd-order mobility index for a body, B, in frictionless contact with finger bodies A1,...A k. The index is an integer that captures the inherent mobility of B in an equilibrium grasp due to second order, or surface curvature, effects. It differentiates between grasps which are deemed equivalent by classical 1st-order theories, but are physically different. We further show that 2nd-order effects can be used to lower the effective mobility of a grasped object, and discuss implications of this result for achieving new lower bounds on the number of contacting finger bodies needed to immobilize an object. Physical interpretation and stability analysis of 2nd-order effects are taken up in the companion pape

    Grasp analysis using deformable fingers

    Get PDF
    The human hand is unrivaled in its ability to grasp and manipulate objects, but we still do not understand all of its complexities. One benefit it has over traditional robot hands is the fact that our fingers conform to a grasped object's shape, giving rise to larger contact areas and the ability to apply larger frictional forces. In this paper, we demonstrate how we have extended our simulation and analysis system with finite element modeling to allow us to evaluate these complex contact types. We also propose a new contact model that better accounts for the deformations and show how grasp quality is affected. This work is part of a larger project to understand the benefits the human hand has in grasping

    Modelling and Interactional Control of a Multi-fingered Robotic Hand for Grasping and Manipulation.

    Get PDF
    PhDIn this thesis, the synthesis of a grasping and manipulation controller of the Barrett hand, which is an archetypal example of a multi-fingered robotic hand, is investigated in some detail. This synthesis involves not only the dynamic modelling of the robotic hand but also the control of the joint and workspace dynamics as well as the interaction of the hand with object it is grasping and the environment it is operating in. Grasping and manipulation of an object by a robotic hand is always challenging due to the uncertainties, associated with non-linearities of the robot dynamics, unknown location and stiffness parameters of the objects which are not structured in any sense and unknown contact mechanics during the interaction of the hand’s fingers and the object. To address these challenges, the fundamental task is to establish the mathematical model of the robot hand, model the body dynamics of the object and establish the contact mechanics between the hand and the object. A Lagrangian based mathematical model of the Barrett hand is developed for controller implementation. A physical SimMechanics based model of the Barrett hand is also developed in MATLAB/Simulink environment. A computed torque controller and an adaptive sliding model controller are designed for the hand and their performance is assessed both in the joint space and in the workspace. Stability analysis of the controllers are carried out before developing the control laws. The higher order sliding model controllers are developed for the position control assuming that the uncertainties are in place. Also, this controllers enhance the performance by reducing chattering of the control torques applied to the robot hand. A contact model is developed for the Barrett hand as its fingers grasp the object in the operating environment. The contact forces during the simulation of the interaction of the fingers with the object were monitored, for objects with different stiffness values. Position and force based impedance controllers are developed to optimise the contact force. To deal with the unknown stiffness of the environment, adaptation is implemented by identifying the impedance. An evolutionary algorithm is also used to estimate the desired impedance parameters of the dynamics of the coupled robot and compliant object. A Newton-Euler based model is developed for the rigid object body. A grasp map and a hand Jacobian are defined for the Barrett hand grasping an object. A fixed contact model with friction is considered for the grasping and the manipulation control. The compliant dynamics of Barrett hand and object is developed and the control problem is defined in terms of the contact force. An adaptive control framework is developed and implemented for different grasps and manipulation trajectories of the Barrett hand. The adaptive controller is developed in two stages: first, the unknown robot and object dynamics are estimated and second, the contact force is computed from the estimated dynamics. The stability of the controllers is ensured by applying Lyapunov’s direct method
    corecore