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ABSTRACT 
Static grasping of a spherical object by two robot fingers 

is studied in this paper. The fingers may be rigid bodies or 
elastic beams, they may grasp the body with various orientation 
angles, and the tightening displacements may be linear or 
angular. Closed-form solutions for normal and tangential 
contact forces due to tightening displacements are obtained by 
solving compatibility equations, force-displacement relations 
based on Hertz contact theory, and equations of equilibrium. 
Solutions show that relations between contact forces and 
tightening displacements depend upon the orientation of the 
fingers, the elastic constants of the materials, and area moments 
of inertia of the beams. 
 
1. INTRODUCTION 

Robot grasping refers to the state that an object loses its 
mobility and moves along with robot fingers. Certain geometric 
shapes can only be grasped by frictional contacts [1]. But the 
presence of friction causes some difficulties in dynamic 
modeling and simulation. When Coulomb’s law of friction is 
imposed on a system of rigid bodies, a dynamic problem may 
have no solution, or multiple solutions [2-3]. Dupond [4] 
showed that this unreasonable phenomenon can happen even in 
a single degree-of-freedom system, and he suggested imposing 
compliance to avoid this difficulty [4-5]. Howard and Kumar 
[6] hence include compliance and local deformations in their 
study of finger-object elastic contact. Normal and tangential 
contact forces are distributed in contact regions. Frictional 
grasping is expressed as a problem of variational calculus, and 
when the contact region is discretized into a series of cells, 
contact force distribution may be obtained by a numerical 
technique. It is uncertain if the model may always provide a 
unique solution. But when the contact is modeled as a system 

of lumped springs, a unique solution may always be obtained. 
A rigorous proof of existence and uniqueness of solution for a 
lumped-spring formulation is given by Kraus, et al [7]. 

Therefore, from the aspect of dynamic modeling, it is 
necessary to include compliance and deformation for frictional 
grasping; even only one finger is in contact. In solid mechanics, 
if the number of unknown forces exceeds the number of 
equilibrium equations, the problem is statically indeterminate, 
and solution can only be obtained by considering deformation. 
Cutkosky [8] treated the object as a deformable body and 
estimated its stiffness. Later, Cutkosky and Kao [9] estimated 
the compliance of grasp in terms of various parameters. 
Nguyen [10] developed a method to grasp objects using 
compliance, with which a planar polygon of any shape can 
always be grasped firmly. Nguyen [11] also showed that a firm 
force-closure grasp can always be carried out by elastic springs. 
Howard and Kumar [12] discussed conditions for stable grasps 
under static equilibrium, and derived conditions for a finger 
with compliance to firmly hold a planar object. Donoghue et al 
[13] and Howard and Kumar [14] obtained stability conditions 
for spatial work piece fixtures. 

In many of the above-mentioned studies compliance is 
produced by linear springs, but Lin et al [15] pointed out that 
the linear spring model is not supported by experiments. Rimon 
and Burdick [16] showed this model may even produce 
erroneous results since curvature effects of the two bodies in 
contact can not be included. They used Hertz contact theory to 
produce nonlinear compliance, and obtained the stiffness 
matrix during a compliance grasping. In dealing with problems 
of frictional grasping, Sinha and Abel [17] imposed nonlinear 
force-displacement relations also in the tangential direction. 
They used a nonlocal friction law so that system potential 
energy may be defined, and by minimizing this potential 
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energy, both normal and tangential contact forces were 
determined. Xydas and Kao [18-20], Li and Kao [21], and Kao 
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Figure 1 A Two-fingered gripper that may impose linear 

tightening displacement. 
 
[22] estimated stiffness and compliance for a soft finger. Lin et 
al [23] established mathematical models grasping flexible 
objects. Ghafoor et al [24] used line springs based on screw 
theory to obtain stiffness which includes rotational effects. 
Khurshid et al [25] included viscoelastic material behavior in 
modeling two fingered gasping. Wu and Dong [26] performed 
two dimensional finite element analysis of frictionless contact 
of human fingers, and later Wu [27] performed the three 
dimensional analysis. Zivanovic and Vukobratovic [28] 
established dynamic models for multi-arm cooperative 
grasping, from which simulation results were obtained. 

In cases with enveloping grasps, force-closures are often 
enforced by tightening displacements [29]. In such cases force-
displacement relations are useful tools to estimate magnitudes 
of grasping forces during gripper design and simulation. The 
purpose of this study is to determine solutions for static contact 
forces produced by tightening displacements of two-fingered 
grippers. Instead of using simplified models with springs and 
lumped mass, we use Hertz contact theory for elastic bodies. 
The fingers may be soft or rigid, and the gripper may impose 
linear or angular tightening displacements. As the first attempt 
to this problem, we treat the case of a spherical object in planar 
motion with no accelerations. Solutions are presented in 
closed-form, which may be used in real time simulation, or may 
be used as test cases to check numerical solutions. 

2. LINEAR TIGHTENING DISPLACEMENTS 
2.1 Problem Formulation 

Figure 1 shows an elastic sphere grasped by two elastic 
fingers that may slide along a link of the hand, and this link 
may be considered as the fixed link in the following analysis. 
In the initial state tightening displacements l1 and l2 have not 
yet been imposed, the fingers touch the sphere at two points A1 
and A2 but with no contact forces transmitted. In this state the 

orientation of the two fingers, denoted by 1 and 2, are angles 
between the fingers and a line perpendicular to the fixed link. 
Unit vectors n1 and n2 indicate directions of common normal at 
A1 and A2. The distance OA1, from the center of the sphere O to 
the point A1, has a component parallel to the fixed link, and this 
component is denoted by l1. The symbol l2 is similarly defined, 
as shown in Fig. 1. Upon imposing tightening displacements 
l1 and l2, normal forces N1 and N2, as well as tangential (or 
friction) forces T1 and T2, develop at A1 and A2. In this study we 
deal with cases with no applied forces. Also, if the two finger 
surfaces in contact with the sphere are perpendicular to the 
plane on which figure 1 lies, then both A1 and A2 belong to the 
same great circle of the sphere, and all the contact forces lie on 
the plane that contains figure 1. 

Displacement of each finger can be separated into two 
parts, as shown in Fig. 1. The first part is the rigid 
displacements l1 and l2 along the fixed link, obtained by 
considering the two fingers as rigid bodies. The second part is 
elastic displacements w1 and w2, obtained by modeling the 
elastic fingers as cantilever beams. According to classical beam 
theory these displacements are given by 
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where Ef is the modulus of elasticity of the fingers, and I is the 
area moment of inertia of the cross section of the beams. Note 
that normal forces N1 and N2 must be compressive, and friction 
forces T1 and T2 on the sphere are positive when they act in the 
same directions as tangential vectors t1 and t2, respectively. 
When the sphere is free from any applied force, the internal 
grasping forces are self-equilibrium. Force equilibrium in the x 
and y directions, as well as moment equilibrium in the z 
direction, lead to 
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Elastic displacements at O in the x and y directions are 
denoted by u and v, respectively. Projecting the displacement 
vector ji vu   on n1, n2, t1, and t2, respectively, we may obtain 
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The displacement of sphere center O relative to A1 is 
considered next. The components of this displacement in the 
direction of n1 and t1 are denoted by n1 and t1, respectively, 
and are given by 
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According to Hertz contact theory [30], the relation 
between relative approach n1 and normal force N1 is given by 
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where R is radius of the sphere and E* is defined later. The 
relation between relative tangential displacement t1 and 
tangential force T1 is given by ([30], pp. 217-220) 
























32

11

1

1
*

11
1 11 

16

3

Nμ

T

aG

Nμ
t

          (7) 

where 1 is coefficient of friction between the sphere and the 
finger at A1, a1 denotes the contact length at A1, given by 
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In the last equation G is shear modulus of elasticity, and  is 
Poisson’s ratio. Subscripts s and f represent the sphere, and the 
finger, respectively. Substituting Eqs. (6) and (7) into Eqs. (4) 
and (5), obtaining 
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Similarly, by considering displacement of O relative to the 
point A2, we may obtain [31] 
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where 2 is the coefficient of friction at A2, and a2 is the contact 
length at A2. 

For the gripper shown in figure 1, solutions depend on the 
total tightening displacement l, given by 

21 lll                  (13) 

not on individual values of l1 or l2. In other words, only the 
relative displacement l between the two fingers matters. 
Equation (13) may be called compatibility equation since it 
requires that displacements of the two fingers must equal to the 
imposed tightening displacement. 

Hence there are 8 equations [Eqs. (1) to (3), and (9) to 
(13)] for 8 unknowns, namely, contact forces N1, N2, T1, T2, 
elastic displacements u, v, and l1, l2. 

 
2.2 Solution Procedure 

To solve for these unknowns we first notice that equations 
(1) to (3) contain 4 unknown forces, and we may express 

)( 12 TT   in terms of normal forces N1 and N2, as follows 
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From this equation we may obtain 
     212211 cos1cos1  NN  
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NNN  21             (14) 

Substituting this result into Eqs. (1) and (2), one may find 
 212211 coscossinsin  NTT  

 212211 sinsincoscos  NTT  

Solving these two equations for T1 and T2, one finds 
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Substituting Eq. (14) into Eqs. (9) and (11), obtaining 
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Displacements u and v may be solved from these two 
equations, giving 
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The result N1=N2 implies that the two contact lengths are equal 
[see Eq. (14)], i.e. 
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Substituting this relation, together with Eqs. (15) and (16), into 
Eqs. (10) and (12), we obtain 
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where 
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Solving u and v from Eqs. (22) and (23), one yields 
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Equating two expressions of u, given by Eqs. (19) and (25), 
and two expressions of v, shown in Eqs.(20) and (26), one finds 
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We have two equations for the normal force N. The two 
equations are in general different, leading to multiple solutions 
for N. Note that if the problem is symmetric, namely if 

 21 , ddd  21 , μμμ  21 , and 
32

tan
11

1







 


μμ
             (29) 

then both sides of Eq. (27) reduces to zero, and Eq. (28) takes 
the form 
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from which N can be solved. The reason for existing two 
different equations for N in an asymmetric case is unclear. The 
authors suspect that in such a case a small amount of rolling of 
the sphere occurs, and rolling has not been included in the 
formulation. 
 

Equation (30) may be recast into a cubic equation [31] 

032
2

1
3  bNbNbN             (31) 

 

 
Figure 2 N to l relations for various values of  (Ef = Es, 
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Closed-form solutions for N is obtained from Eq. (31). 
 
2.3 Special Cases 
In some special cases Eq.(31) can be further simplified, as 
follows. 
a). Very large fingers: The case of two fingers grasping a very 

small sphere can be modeled by letting I in Eq. (30), 
and the normal force is found to be 
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b). Rigid fingers: Letting
fE and

fG approach  in Eq. (30), one 
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c). Rigid sphere: By letting Es  and Gs , Eq. (30) 
reduces to 

lN
IE

αd
N

REμ

μα
α

ff

f

f

f
Δ

3

cos2

2

)1(9

1

2

2

sin
cos

3
3

23

1

2

22












 


































  (35) 

d). A rigid sphere grasped by very large fingers: By setting Es 
  in Eq. (33), one finds 

 



 5 Copyright © 2013 by ASME 

 
Figure 3 N to l relations for various values of sf EE (=5, 

I/(Rd3)=1). 
 

 
Figure 4 N to l relations for various values of I (=5, 

I/(Rd3)=1). 
 

 
Figure 5 N to l relations for very large fingers (Ef = Es). 

 
 

 
Figure 6 N to l relations for rigid fingers ( fE ). 

 

 
Figure 7 N to l relations for a rigid sphere ( sE ). 
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Note that the tangential forces may be obtained from Eqs. (15) 
and (16), as follows 

 tan21 NTT                (37) 

Equation (37), obtained from static equilibrium, predicts 
that slipping occurs when the angle  reaches the value tan1, 
a well-known condition for slipping in statics. In this paper we 
assume that μ1tan  . 

Relations between the normal N and the tightening 
displacement l, given by Eq. (31), are shown in figures 2 for 
three values of , in figure 3 for various values of sf EE , and 

in figure 4 for various values of I. It can be seen from these 
figures that for a given tightening displacement l, a larger 
normal force N can be produced by a finger with a smaller 
value of , by a stiffer finger with larger Ef, or by a larger 
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Figure 8 A Two-fingered gripper that may impose angular 

tightening displacement. 
 

figures 5-7. Figure 5 shows cases with very large fingers, the N 
to l relation of which is governed by Eq. (33). In Fig. 6 the 
fingers are rigid, and the relation is given by Eq. (34). Finally, 
in Fig. 7, the relation is Eq. (35) for a rigid sphere. 

3. ROTATIONAL TIGHTENING DISPLACEMENTS 
3.1 Problem Formulation 

Figure 8 shows a two-fingered gripper which may impose 
angular tightening displacements on a sphere. In the initial state 
the two fingers touch the sphere with no force transmission, 
whose angular positions are 1 and 2. We first note that the 
results given by equations (14)-(16) are still valid since they 
were obtained from equilibrium equations (1)-(3), and Eq. (21) 
is a direct result of Eq. (14). Then we consider displacement of 
O relative to initial contact point A1 when angular tightening 
displacements 1 and 2 are imposed. The projection of this 
relative displacement onto the vector n1, denoted by n1, is 
shown on the left hand side of Eq. (9), with l1cos1 replaced 
by d11, namely, 

31

2*

23
1

1111
16

9

3
sincos 












RE

N

IE

Nd
vud

f

   (38) 

The component of the displacement of O relative to A1 in the 
direction of t1, which we call t1, is obtained by deleting the 
term l1sin1 in Eq. (10), i.e. 
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Similarly, the displacements of O relative to A2 has two 
components n2 and t2, in the directions of n2 and t2, 
respectively, given by 
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Finally, the angular displacements of the two fingers must be 
compatible with total angular tightening displacement , 
namely 

 21                 (42) 

We hence have 7 equations, i.e. Eqs. (15), (16), and (38)-(42) 
for the following 7 unknowns: N, T1, T2, u, v, 1, and 2. 
 
3.2 Solution procedure 

Solution procedure is exactly the same as in the previous 
case with linear tightening displacements [31]. We may first 
substitute T1 and T2 in Eqs. (15) and (16), as well as a in Eq. 
(21), into Eqs. (39) and (41), to obtain two equations for elastic 
displacements u and v, from which analytical expressions for u 
and v may be found. But u and v may also be obtained by 
solving Eqs. (38) and (40). Equating the two expressions for u 
and then the two expressions for v, we find 
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Again we have two different equations for N. A solution exits 
only in a case of symmetry, that is,  21 , ddd  21 , 

and μμμ  21 , then Eq. (44) may be recast into the 

following cubic equation of N 
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and   is defined in Eq. (29). Solutions in the extreme cases 

are given below. 
 
3.3 Special Caese 
a). Very large fingers: By letting I, one may show that [31] 



 7 Copyright © 2013 by ASME 

 
Figure 9 N to  relations for various values of  (Ef = Es, 

I/(Rd3)=1). 
 

 
Figure 10 N to  relations for various values of sf EE (=5, 

I/(Rd3)=1). 
 

 
Figure 11 N to  relations for various values of I (=5, 

I/(Rd3)=1). 
 

 
Figure 12 N to  relations for very large fingers (Ef = Es). 

 

 
Figure 13 N to  relations for rigid fingers ( fE ). 
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b). Rigid fingers: Letting Ef and Gf approach , then [31] 
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c). Rigid sphere: By letting Es  and Gs , one may find 
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d). A rigid sphere grasped by very large fingers: By setting Es 
 , Eq. (47) reduces to 
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Figure 14 N to  relations for a rigid sphere ( sE ). 
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Figures 9 to 11 show N to  relations for various values of  
(Fig. 9), various values of sf EE (Fig. 10), and various values 

of I (Fig. 11). Again we see that a larger normal force N may be 
obtained by using grippers with smaller orientation angles , 
stiffer fingers, or fingers with larger inertia I. Figure 12 shows 
N to  relations predicted by Eq. (47) for very large fingers. 
Figure 13 shows the same relations obtained from Eq. (48) for 
rigid fingers, and figure 14 shows the relations governed by Eq. 
(49) for a rigid sphere. 

4. CONCLUSIONS 
In this study we present closed-form solutions for contact 

forces between an elastic sphere and two elastic fingers 
symmetrically placed. By modeling the fingers as fixed-end 
beams, and using force-displacement equations based upon 
Hertz contact theory, we find the normal contact force satisfy a 
cubic equation, and can be expressed in terms of linear or 
angular tightening displacements. For static cases the normal 
force N and tangential friction T are always symmetric about 
the center axis, and the relation between them is T =N tan, 
which implies sliding would occur when the inclination angle 
α satisfies the relation μ1tan  . Both linear and 

rotational tightening show the same tendency, that is, a larger 
normal force may be produced by a finger with a smaller 
inclination angle , by a stiffer finger, or by a finger with a 
larger area moment of inertia. 
 
5. FURUTE WORK 

The solution procedure can be applied to grasping with 
three or more than three fingers, to cases with inertia forces, 
and to unsymmetrical situations. 
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