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Abstract— The human hand is unrivaled in its ability to grasp
and manipulate objects, but we still do not understand all of its
complexities. One benefit it has over traditional robot hands is
the fact that our fingers conform to a grasped object’s shape,
giving rise to larger contact areas and the ability to apply larger
frictional forces. In this paper, we demonstrate how we have
extended our simulation and analysis system with finite element
modeling to allow us to evaluate these complex contact types.
We also propose a new contact model that better accounts for
the deformations and show how grasp quality is affected. This
work is part of a larger project to understand the benefits the
human hand has in grasping.

Index Terms— Grasp Analysis, Deformations, FEM

I. INTRODUCTION

Evolution has provided humans with incredibly sophisti-
cated means of manipulation. As an end-effector, the human
hand is unrivaled. There is an inherent mismatch between the
mechanical design and capabilities of robotic hands versus
human hands, as robotics-based models use idealized simple
joints, torque motors and finger-pad elements. As part of a
larger project to understand the effect these differences have
on a hand’s ability to grasp, this paper focuses on modeling
the deformations undertaken by fingers as they grasp rigid
objects. This deformation is a key factor in the human hand’s
ability to create stable, encompassing grasps with subsets
of fingers. Typical robot hands use stiff fingers that do not
deform, and this often leads to difficulty in grasping.

Grasp analysis methods use a variety of contact models to
describe the possible forces and torques that can be transmit-
ted from one body to the other through the interface. When
two rigid bodies contact at a point, there is always some
amount of friction that can be supported within the tangent
plane of the contact. If one of the bodies is deformable, then
the contact will no longer occur at just a point but will be over
some area that increases as the normal force increases. Then
it is possible for the contact to support frictional moments
about the contact normal as well, and the magnitude of these
moments is constrained by the magnitude of the tangential
friction and vice versa. In addition, contacts on soft fingertips
are able to resist some disturbance moments within the
contact tangent plane, which lead to further deformation of
the fingertip and result in larger resistive moments.
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To account for the complex nature of soft finger contacts,
we have augmented the traditional model through Finite
Element Analysis. After reviewing some of the previous work
related to frictional contact models and deformable fingers,
we will discuss the existing contact models and propose an
improved model that accounts for the ability of a deformed
finger to apply normal forces over an area larger than a point.
In section IV, we show how the Finite Element Method can
be used to analyze the characteristics of a soft contact, such
as contact area shape and size, as well as frictional forces
and moments. We also show how these characterstics affect
the overall grasp quality. Section V describes how this work
fits into our larger project of identifying and modeling the
properties of a human hand that make it such an effective
grasper. Finally, we present our conclusions and plans for
future research.

These modeling and simulation efforts extend our previous
research in grasp simulation using the GraspIt!1 simulator,
which can accommodate a wide variety of hand and robot
designs [1], [2]. It includes a rapid collision detection and
contact determination system that allows a user to interac-
tively manipulate the joints of the hand and create new grasps
of a target object. Each grasp is evaluated with numeric
quality measures, and visualization methods allow the user
to see the weak point of the grasp and create arbitrary 3D
projections of the 6D grasp wrench space. The dynamics
engine within GraspIt! computes the motions of a group of
connected robot elements, such as an arm and a hand, under
the influence of controlled motor forces, joint constraint
forces, contact forces and external forces. This allows the
dynamic simulation of an entire grasping task, as well as the
ability to test custom robot control algorithms.

II. RELATED WORK

Theoretical and experimental results have been presented
in the analysis of soft finger contact models. Goyal et
al. [3] present the concept of limit surface, characterizing the
relationship between relative motion and frictional forces and
moments for planar contacts. Howe and Cutkosky [4] discuss
the shape of the limit surface for different contact pressure

1The source code for GraspIt! is available for download from
http://www.cs.columbia.edu/˜amiller/graspit.
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distributions and develop practical methods for constructing
the limit surface using experimental results. Xydas et al.
proposed the power-law model for the contact between a
soft fingertip and a rigid object [5], and used non-linear
Finite Element simulations as well as experimental data to
derive the parameters of the model for specific materials and
fingertip shapes [6].

The effect that soft fingertips have on grasping and ma-
nipulation ability is discussed in [7], while specific fingertip
materials and their impact on rolling manipulation tasks are
discussed in [8]. Designing controllers for robotic fingers
with soft tips has also been a highly active area of re-
search. Reznik et al. [9] proposed a mass-spring model for
deformable fingertips and design a controller able to interact
with the model in real time. The problem of controlling
a robotic finger when the dynamic properties of the soft
fingertip are unknown is discussed in [10], using sensory
feedback to design a controller that can learn the character-
istics of the fingertip and apply the desired level of force
on the grasped object. This method was also extended and
applied for two-fingered grasps and manipulation tasks [11],
while the control of rolling manipulation using deformable
fingertips is discussed in [12].

The interaction between rigid and deformable objects has
also been studied in order to recover contact forces for
haptic feedback. Picinbono et al. [13] used the Finite Element
Method to simulate human organs undergoing laparoscopic
surgery. Duriez et al. [14] proposed a different Finite Element
approach to obtain haptic feedback from manipulating a
virtual deformable object.

Human finger deformation and its grasping ability have
also been studied. Barbagli et al. proposed a soft finger
proxy model of human fingers based on experimental data
for use in haptic simulations [15]. This allows them to impart
moments on an object grasped between two fingers without
computing actual finger deformations which would degrade
real-time performance. A Finite Element model of a human
finger was used by biomedical engineering researchers [16]
to investigate the behavior of mechanoreceptors that govern
sense of touch under line loads while a viscoelastic model
was used to predict fingertip pulp displacement during fast
tapping [17].

III. CONTACT MODELS

Understanding the nature of contact is paramount to the
analysis of grasping. When two objects touch, it is possible
for each of them to transmit forces and velocities through
the regions of contact. We will briefly discuss some possible
contact models, using the following notations: a contact
coordinate frame is defined with the origin in the pressure-
weighted center of the contact region and with the z axis
parallel with the contact normal direction n̂. Total normal
force applied at a contact is fn. Contact frictional force is

applied in a direction that is perpendicular to the contact
normal and is given by ft, while fx and fy represent its
components along the x and y axes. Frictional moment is
applied around the normal direction and is given by τz .

A. Point Contact with Friction

For point contacts, a commonly used model is point contact
with friction or PCWF. The limit on the size of the tangential
frictional forces that can arise at the contact is determined
using Coulomb’s model, and the contact can not resist any
moment applied around its normal direction:

f2
x + f2

y ≤ µ2f2
n (1)

τz = 0 (2)

From this equation, it is apparent that the forces that may
be applied at the contact lie within a cone aligned with the
contact normal, commonly known as a friction cone.

B. Soft Finger Contact

The situation becomes more complex once contacts can
no longer be assumed to have zero area. When a deformable
finger comes into contact with either a rigid body or another
deformable body, the initial area may be only a point, but in
a short time the contact begins to conform to the local shape
of the contacted object. Friction arising at the contact can
also resist moments about the contact normal, thus requiring
a different contact model.

The Soft Finger Contact model, or SFC, uses the concept
of a limit surface which we briefly describe below and further
details can be found in [3], [4]. For a planar contact surface,
assume instantaneous motion described as a pure rotation
around a center of rotation, or COR, lying in the contact
plane (COR is at infinity in the case of pure translation).
Once the direction of relative motion at the contact is decided,
the total frictional force and moment that are applied at the
contact can be determined. The surface obtained by plotting
the frictional force against the frictional moment computed
for various positions of the COR is called the limit surface.
It completely describes the space of forces and moments that
contact friction can resist: if the point obtained by plotting
a given force against a given moment lies inside the limit
surface then slip will not occur. Steady sliding will occur if
the point is on the limit surface, and sliding will accelerate
if the point lies on its outside.

Expressions for frictional force and moment depend on
the pressure distribution inside the contact, and analytical
solutions exist only for a few special cases, such as Hertzian
or uniform pressure. However, it was shown [4] that for most
pressure distributions the limit surface can be approximated
by an ellipsoid. This shows that the magnitudes of the
maximum frictional tangential forces and axial moments are
inter-related such that as the tangential force increases, the
moment about the contact normal decreases. If no frictional



Fig. 1. These are two views of the friction ellipsoid with ez = 0.2,
linearized by taking the convex hull of 40 points on its surface. The x
and y axes show the magnitude of the respective components of tangential
frictional force while the z axis shows the relative magnitude of the frictional
moment.

moment is applied at the contact (τz = 0) the total frictional
force that can be applied in any direction in the tangent plane
is equal to the total normal force multiplied by the coefficient
of friction. The base of the ellipsoid is therefore always a
circle with radius µfn and the ellipsoid model is described
by the relationship:

f2
x + f2

y +
τ2
z

e2
z

≤ µ2f2
n (3)

where e2
z is the eccentricity parameter that relates the max-

imum value of τz to the friction coefficient µ and the nor-
mal force fn: the maximum frictional moment max(τz) =
ez µ fn can be applied at the contact if tangential frictional
forces are equal to 0 (see fig. 1). This parameter is set
according to the characteristics of the contact area, such as
shape, size and pressure distribution.

C. Soft Finger with Finite Contact Area

When using an accurate value of the eccentricity parameter
ez , the Soft Finger Model accurately describes the space of
frictional forces and moments that a soft contact can apply.
As the contact area shape and pressure distribution are not
explicitly computed, the normal force applied at the contact
is assumed to be concentrated in a single point, most likely
the initial point of contact between the two surfaces. This
means that the contact cannot resist moments that lie within
the contact tangent plane. However, we feel that this is too
conservative. These moments, as well as any other forces or
moments resisted by the contact, will deform the finger and
allow some motion, but the pressure distribution will change
in response and ultimately limit that motion.

The method we propose for modeling soft finger contacts
relies upon the Finite Element Method to compute the
deformation of a soft fingertip in contact with a planar rigid
surface. Given the value of the total normal force applied
at the contact, we compute the contact forces applied at
each vertex of the finite element mesh that prevent inter-
penetration, as well as the deformation of the soft fingerpad
(the displacement of each vertex) as a result of contact. If
relative motion at the contact is specified (by specifying

the position of the COR) frictional forces that result during
sliding will also be computed, as well as deformation due
to these forces. Specific details regarding the derivation and
implementation of the finite element simulation method can
be found in Appendix I.

Using the contact area information resulting from the
finite element simulation, we augment the space of forces
and moments that the contact can apply with the range of
moments obtained by considering the contribution of the total
normal force applied at any of the vertices comprised in the
contact area. This range is added to the space of frictional
forces and moments created using a Soft Finger Contact
model positioned at the center of pressure. We now have
a complete model of the contact that can be used for grasp
analysis, as discussed in the next section.

IV. GRASP ANALYSIS

A. Grasp Quality Metrics

Our aim is to examine the ability of a grasp to maintain
relative object position in the face of disturbances. We refer
to the complete range of wrenches that a grasp can apply as
the grasp wrench space. We will briefly describe the method
used for the construction of the grasp wrench space, and for
further details we refer the reader to [18]. In order to obtain
coherent results that can be used to compare grasps applying
a wide range of normal forces, the value of the total normal
force applied at each contact is scaled to 1. The process then
assumes that the space of frictional forces at each contact
can be represented with a finite set of friction wrenches.
For each of these, an object wrench is computed based on
the contact location relative to a common reference point
within the body. The total grasp wrench space is computed
by finding the Minkowski sum of the sets of object wrenches
(wi,1, . . . ,wi,m) associated with each of the n contacts, and
then taking the convex hull of the resulting set:

GWSL∞ = ConvexHull(
n⊕

i=1

{wi,1, . . . ,wi,m}). (4)

The Minkowski sum operation allows us to consider the
independent contributions of contacts on different fingers, but
it quickly becomes intractable for large numbers of contacts.
One approximation is to simply use the union of the contact
wrenches instead, or if we are interested in a particular
portion of the wrench space, we can first build a coarse
model of the space using fewer contact wrenches, and then
incremently refine it, as in [19].

We will use the total volume of the resulting wrench
space as a quality metric that allows different grasps to be
compared. Another possible metric is the smallest distance
between the origin and the boundary of the wrench space,
which determines the magnitude of the worst-case wrench
that the grasp can resist. Both of these metrics, inferred using



Fig. 2. Three possible contacts between a soft fingerpad and a rigid planar
surface. Left: low local curvature (“flat” contact); Middle: medium local
curvature; Right: high local curvature (“round” contact)

the total grasp wrench space, rely on a correct model for the
space of forces that each participating contact can apply.

B. Frictional Forces and Moments

We use the ellipsoidal approximation for the limit surface
described in section III-B to create the space of frictional
forces and moments that can be applied at each contact. The
eccentricity parameter ez that defines the ellipsoid can be
obtained experimentally [4], but the resulting value is only
accurate for the particular combination of normal force and
finger structure used in the experiment. For example, it has
been shown [15] that if the contact area varies with the
applied normal force, the relationship between max(τz) and
fn is non-linear, which implies that the value of ez changes
with variations in the normal force.

Using the FEM-based simulation we can compute the total
frictional force and moment applied at the contact for any
relative motion between the bodies in contact. Any such
force-moment combination describes a point on the limit
surface, therefore the entire limit surface can be plotted by
sampling these values for different positions of the COR. Of
particular interest is the maximum frictional torque max(τz)
that can applied at the contact for a given normal force
fn. This value is equal to the frictional torque applied with
the COR positioned at the pressure-weighted center of the
contact area, and the eccentricity parameter can be recovered
as ez = max(τz)

fn
.

To illustrate this method we have modeled the contact
between a robotic finger with a soft fingerpad and a rigid
planar surface. We chose three contact locations on the
fingerpad, each with a different local curvature (figure 2),
leading to different pressure distributions inside the contact
area. At each of these contact points we used the finite
element method to compute maximum frictional torque for
a range of applied normal forces. The results are shown
in figure 3: the finite element simulation captures the non-
linearities between max(τz) and fn for small normal forces,
and displays an almost linear relationship in the upper range
of normal forces. This is explained by the fact that as normal
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Fig. 3. Maximum frictional torque vs. total normal force for three contact
locations: “flat”, “intermediate” and “round”, in the order of increasing local
curvature of the fingerpad

forces increase, the contact area eventually reaches a plateau
where even large forces do not affect the surface of contact.

Figure 3 also shows that the linear region of each of the
three plots displays a different inclination. This is an expected
result, as the shape and size of the stabilized contact area
will vary depending on the location of the contact on the
fingertip, with larger contact areas created on flat regions and
smaller areas on regions with high curvature. In consequence,
a contact established in the flat region of the finger is able to
apply a higher torque than a contact in a region with higher
curvature applying equal normal force.

We conclude that the finite element simulation can be used
to predict the value of the parameter ez for different contact
locations and normal forces, allowing the construction of the
friction ellipsoid corresponding to each contact.

C. Moments Corresponding to Normal Forces

We complete the model of the contact wrench space by
adding object wrenches corresponding to unit forces applied
along the contact normal at each of the vertices of the contact
surface. Computation can be simplified by observing that it
suffices to consider the wrenches introduced by placing the
normal force at the vertices that form the boundary of the
surface (i.e. any wrench resulting from a force applied at
a position inside this area will be comprised in the convex
hull of the boundary wrenches). Total contact wrench space is
then constructed by applying the convex hull operation on the
complete set of contact wrenches, including the contributions
of frictional and normal forces.

The total grasp wrench space is constructed as discussed in
section IV, by taking the convex hull of the Minkowski sum
of all contact wrench spaces. We can now compute the quality
metric of a grasp, as discussed in the following section.



Fig. 4. The DLR hand grasping a cube with two fingers, using different
locations of the fingerpad. Left: flat contact region; Right: round contact
region

TABLE I
GRASP QUALITIES AT DIFFERENT POSITIONS ON THE FINGERPAD

Fingerpad curvature
at contact locations Grasp quality

low 0.893
intermediate 0.828

high 0.778

D. Results

We have used this method to compute the quality metric
of three grasps, with the DLR hand using two fingers with
soft fingerpads to grasp a cube. These fingerpads have an
elasticity modulus of 0.8 MPa, corresponding to soft rubber.
All three grasps applied the same total normal force at each
contact. However, the location of the contact on the finger-
pads was different between each grasp, with both fingers
creating either “flat”, “round” or “intermediate” contacts. A
comparative view of two of these grasps is shown in figure 4,
and the quality metric for each grasp is presented in table I.
As expected, the best grasp is the one that uses the flat regions
of the fingertip, with quality decreasing for the grasps that
use fingerpad regions with higher local curvature.

We also analyzed the relationship between grasp quality
and normal force applied at the contacts. Figure 5 shows the
quality of the grasp for a range of normal contact forces,
using flat fingerpad contact locations. As mentioned before,
contact normal forces are scaled to 1 for the grasp quality
computation. When this method is applied to rigid fingers,
the resulting quality value is therefore independent of the
applied normal forces. However, for soft fingers, when an
increase in normal force causes an increase in contact area
size, grasp quality is also affected. This is explained by
the increase of the eccentricity parameter ez of the friction
ellipsoid, which, as discussed in section III-B, shows the
ratio of contact frictional moment to normal force. Once
the contact area stabilizes, the eccentricity parameter also
approaches a constant value, therefore grasp quality does
not grow significantly even with further increases of contact
normal forces. In figure 6 we show the deformation of the

Fig. 5. Grasp quality vs. normal force applied at each contact

Fig. 6. The contact area grows quickly after the initial contact is made.
Here we show a view of the contact areas for a 5N normal force (left) and
a 25N normal force (right) from within a transparent cube. The vertices of
the convex boundary of the contact area are marked with thin cylinders.

index finger that was computed for normal forces of 5N and
25N.

The results of this grasp analysis method are qualitatively
correct, however quantitative validation can only be per-
formed by comparing simulation results with experimental
data. Various aspects of the simulation can be tested experi-
mentally, such as the value of the eccentricity parameter ez

for varying finger structures and materials, or the magnitude
of the worst-case disturbance that can be resisted by a
contact. We intend to perform such analysis as part of future
development.

V. HUMAN HAND

Our current efforts are focused on constructing a biome-
chanically realistic human hand model. Such a model would
serve to aid clinicians planning reconstructive surgeries of a
hand, since many of the mechanical aspects of this complex
organ are still not fully understood. However, this sort of
model would also allow us to determine which features of
the human hand are the most important to be mimicked when
designing a robotic hand. These beneficial features will be
identified by creating several versions of the human hand
model, each with different sets of features, and analyzing
the ability of each hand to perform a set of grasping and
manipulation tasks. The iterative refinements include skin



Fig. 7. Left: Front and Side views of a human thumb model constructed
using CT data. Middle and Right: A planar surface is pushed up into the
thumb pad which deforms in response. Notice the bulges on the sides of the
thumb due to the nearly incompressible nature of human tissue.

deformations, realistic human joints to determine the benefits
of a compliant kinematic structure, and the network of
tendons to determine what are the advantages, if any, of
indirect actuation of the joints [20].

In order to study the behavior of the human fingertip during
grasping we are using the FEM to simulate loads applied
to a human thumb. To generate a highly realistic model we
are using a set of Computed Tomography (CT) scans of a
real thumb. The data comes in the form of cross-sectional
slices showing the contours of both soft tissue and bone.
Specialized software is used to process these slices and obtain
3D surface information on the outer shape of the finger and
the bone inside, and surface information is further processed
in order to generate a finite element mesh. The final model
consists of 332 nodes and 1007 finite elements (tetrahedra)
and the value of the elastic modulus of human tissue is set
using the results of [16]. Simulation results are shown in
figure 7. We are currently investigating methods to validate
these results by studying the ratio of load to contact surface
and comparing it to real-life data. Future work will also
assess how the simulation of multiple tissue layers affects
these results.

VI. CONCLUSION AND FUTURE WORK

We consider that the analysis method presented in this pa-
per can capture the effect that compliant contact surfaces have
on soft-fingered grasps. With an increased contact region,
fingers are able to apply forces over a larger area and thus
are able to apply a greater variety of moments to the grasped
object. This is taken into account by the grasp analysis, which
uses a Soft Finger Contact model to describe the space of
contact frictional forces and moments, and a finite element
based simulation to recover contact specific parameters and
pressure distributions. We believe that the use of the FEM
provides us with a framework for building highly realistic
models for a wide range of complex-structured fingers.

In its current version, this method is limited to grasp
analysis for situations in which all the contacts involved

are planar. This is due in equal measure to the Soft Finger
friction model and the finite element simulator, both of them
restricted to planar contacts. We plan to build on the work
presented in this paper with the goal of delivering a grasp
analysis method for deformable fingers that can be applied
to grasps involving non-planar contacts and a wide variety
of finger structures and grasped objects.
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APPENDIX I
MODELING DEFORMABLE FINGERTIPS USING THE FINITE

ELEMENT METHOD

Our method for simulating frictional contact between a soft
fingertip and a planar rigid surface is based primarily on [21]
and a brief description is given below. We assume familiarity
with the basic concepts of the stress-strain approach to FEM,
as described in textbooks such as [22].

Given the total normal force applied at the contact as
well as relative motion of the two bodies, we would like
to compute the deformation of the fingertip as well as
the contact forces applied at each vertex that cause this
deformation. Consider a vertex of the deformable mesh that
makes contact with the planar surface. We will decompose
the contact force applied at this vertex into a component
normal to the rigid plane and a tangential component. The
value of the normal component will be given by fn

i = λin̂i

where the scalar λi represents the unknown magnitude of the
normal force applied at vertex i and n̂i is the surface normal.
We will refer to this normal component as contact traction.
The tangential component of the contact force appears as a
result of contact friction. Using a Coulomb friction model,
the magnitude and direction of this component are given by
f t

i = µλiv̂i where the normalized vector v̂i represents the
direction of relative velocity at the vertex i.

The complete vector of nodal contact forces rc can be
assembled using the above expressions, with one entry for
each contact node:

rc =
[
. . . , λi (n̂i + µv̂i)

T
, . . .

]T

(5)

where λi (n̂i + µv̂i) is the total contact force manifested at
vertex number i.



For each contact vertex we therefore introduce a new
unknown, the magnitude of contact traction λi. Further
constraints need to be imposed on this set of unknowns:
contact traction must prevent interpenetration without adding
energy to the system. For any vertex i of the deformable
mesh we define the gap function gi as the signed distance
between the position of the vertex and the contact plane. The
above constraint can be expressed as:

gi ≥ 0, λi ≥ 0, giλi = 0 (6)

This formulation ensures that no interpenetration is occurring
(gi ≥ 0), contact forces can only push (not pull) deformable
vertices (λi ≥ 0) and contact tractions can only be applied at
contact vertices for which the gap is equal to zero (giλi = 0).
In practice, we enforce these constraints using a function that
closely approximates equations (6) but is differentiable as
required by the Newton iteration method. One example is

w(g, λ) =
g + λ

2
−

√(
g − λ

2

)2

+ ε (7)

which has the property that for very small but nonzero ε the
solutions of w(g, λ) = 0 have the required characteristics.
Again we assemble these constraints into a global constraint
vector fc with one entry for each deformable vertex:

fc = [. . . , w(gi, λi), . . .] (8)

The complete equilibrium conditions with contact con-
straints are:

Ku = f + rc (9)
fc = 0 (10)

where K is the body stiffness matrix, f contains any
additional forces (such as gravity) that may act on the vertices
and u is the vector of nodal displacements. We can now
solve for nodal displacements and contact nodes traction
using the Newton iteration method to account for non-linear
dependencies of the stiffness matrix K on u.

REFERENCES

[1] A. Miller and H. Christensen, “Implementation of multi-rigid-body
dynamics within a robotic grasping simulator,” in Proc. of the 2003
IEEE Intl. Conf. on Robotics and Automation, 2003, pp. 2262–2268.

[2] A. Miller and P. K. Allen, “Graspit!: A versatile simulator for robotic
grasping,” IEEE Robotics and Automation Magazine, vol. 11, no. 4,
pp. 110–122, December 2004.

[3] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry
friction, part 1,” Wear, vol. 143, pp. 307–330, 1991.

[4] R. Howe and M. Cutkosky, “Practical force-motion models for sliding
manipulation,” Intl. J. of Robotics Research, vol. 15, no. 6, pp. 557–
572, December 1996.

[5] N. Xydas and I. Kao, “Modeling of contact mechanics with experimen-
tal results for soft fingers,” in IEEE Intl. Conf. on Intelligent Robots
and Systems, 1998, pp. 488–493.

[6] N. Xydas, M. Bhagavat, and I. Kao, “Study of soft-finger contact
mechanics using finite elements analysis and experiments,” in IEEE
Intl. Conf. on Robotics and Automation, 2000, pp. 2179–2184.

[7] K. B. Shimoga and A. A. Goldenberg, “Soft materials for robotic
fingers,” in IEEE Intl. Conf. on Robotics and Automation, 1992, pp.
1300–1305.

[8] D. C. Chang and M. R. Cutkosky, “Rolling with deformable fingertips,”
in IEEE Intl. Conf. on Intelligent Robots and Systems, 1995, pp. 2194–
2199.

[9] D. Reznik and C. Laugier, “Dynamic simulation and virtual control of a
deformable fingertip,” in IEEE Intl. Conf. on Robotics and Automation,
April 1996, pp. 1669–1674.

[10] Z. Doulgeri, A. Simeonidis, and S. Arimoto, “A position/force control
for a soft tip robotic finger under kinematic uncertaintes,” in IEEE Intl.
Conf. on Robotics and Automation, 2000, pp. 3867–3872.

[11] H. Y. Han, S. Arimoto, K. Tahara, M. Yamaguchi, and P. Nguyen,
“Robotic pinching by means of a pair of soft fingers with sensory
feedback,” in IEEE Intl. Conf. on Robotics and Automation, 2001, pp.
97–102.

[12] Z. Doulgeri and J. Fasoulas, “Grasping control of rolling manipulations
with deformable fingertips,” IEEE/ASME Transactions on Mechatron-
ics, vol. 8, no. 2, pp. 283–286, 2003.

[13] G. Picinbono, J. Lombardo, H. Delingette, and N. Ayache, “Improving
realism of a surgery simulator: Linear anisotropic elasticity, complex
interactions and force extrapolation,” J. Visualization and Computer
Animation, 2002.

[14] C. Duriez and C. Andriot, “A multi-threaded approach for de-
formable/rigid contacts with haptic feedback,” in 12th Intl. Symposium
on Haptic Interfaces for Virtual Environments and Teleoperator Sys-
tems, 2004, pp. 272–279.

[15] F. Barbagli, A. Frisoli, K. Salisbury, and M. Bergamasco, “Simulating
human fingers: a soft finger proxy model and algorithm,” in 12th
Intl. Symposium on Haptic Interfaces for Virtual Environments and
Teleoperator Systems, 2004, pp. 9–17.

[16] K. Dandekar, B. Raju, and M. Srinivasan, “3-D finite-element models
of human and monkey fingertips to investigate the mechanics of tactile
sense,” J. Biomechanical Engineering, 2003.

[17] D. Jindrich, Y. Zhou, T. Becker, and J. Dennerlein, “Non-linear
viscoelastic models predict fingertip pulp force-displacement charac-
teristics during voluntary tapping,” Journal of Biomechanics, vol. 36,
pp. 497–503, 2003.

[18] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. of the 1992
IEEE Intl. Conf. on Robotics and Automation, 1992, pp. 2290–2295.

[19] C. Borst, M. Fischer, and G. Hirzinger, “A fast and robust grasp planner
for arbitrary 3D objects,” in Proc. of the 1999 IEEE International
Conference on Robotics and Automation, Detroit, MI, May 1999, pp.
1890–1896.

[20] F. Valero-Cuevas, “Applying principles of robotics to understand the
biomechanics, neuromuscular control and clinical rehabilitation of
human digits,” in Proc. of the 2000 IEEE Intl. Conf. on Robotics and
Automation (2000), 2000, pp. 255–262.

[21] A. Eterovic and K. Bathe, “On the treatment of inequality constraints
arising from contact conditions in finite element analysis,” Computers
and Structures, vol. 40, no. 2, pp. 203–209, 1991.

[22] O. Zienkiewicz and R. Taylor, The Finite Element Method, 4th ed.
McGraw-Hill, 1989.


