76 research outputs found

    Adaptive Real-Time Image Processing for Human-Computer Interaction

    Get PDF

    INTERFACE DESIGN FOR A VIRTUAL REALITY-ENHANCED IMAGE-GUIDED SURGERY PLATFORM USING SURGEON-CONTROLLED VIEWING TECHNIQUES

    Get PDF
    Initiative has been taken to develop a VR-guided cardiac interface that will display and deliver information without affecting the surgeons’ natural workflow while yielding better accuracy and task completion time than the existing setup. This paper discusses the design process, the development of comparable user interface prototypes as well as an evaluation methodology that can measure user performance and workload for each of the suggested display concepts. User-based studies and expert recommendations are used in conjunction to es­ tablish design guidelines for our VR-guided surgical platform. As a result, a better understanding of autonomous view control, depth display, and use of virtual context, is attained. In addition, three proposed interfaces have been developed to allow a surgeon to control the view of the virtual environment intra-operatively. Comparative evaluation of the three implemented interface prototypes in a simulated surgical task scenario, revealed performance advantages for stereoscopic and monoscopic biplanar display conditions, as well as the differences between three types of control modalities. One particular interface prototype demonstrated significant improvement in task performance. Design recommendations are made for this interface as well as the others as we prepare for prospective development iterations

    The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things

    Get PDF
    In the early nineties, Mark Weiser, a chief scientist at the Xerox Palo Alto Research Center (PARC), wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. Within this vision, computers and others digital technologies are integrated seamlessly into everyday objects and activities, hidden from our senses whenever not used or needed. An important facet of this vision is the interconnectivity of the various physical devices, which creates an Internet of Things. With the advent of Printed Electronics, new ways to link the physical and digital worlds became available. Common printing technologies, such as screen, flexography, and inkjet printing, are now starting to be used not only to mass-produce extremely thin, flexible and cost effective electronic circuits, but also to introduce electronic functionality into objects where it was previously unavailable. In turn, the growing accessibility to Personal Fabrication tools is leading to the democratization of the creation of technology by enabling end-users to design and produce their own material goods according to their needs. This paper presents a survey of commonly used technologies and foreseen applications in the field of Printed Electronics and Personal Fabrication, with emphasis on the potential to drive the Internet of Things

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    MatchPoint:Spontaneous Spatial Coupling of Body Movement for Touchless Pointing

    Get PDF
    Pointing is a fundamental interaction technique where user movement is translated to spatial input on a display. Conventionally, this is based on a rigid configuration of a display coupled with a pointing device that determines the types of movement that can be sensed, and the specific ways users can affect pointer input. Spontaneous spatial coupling is a novel input technique that instead allows any body movement, or movement of tangible objects, to be appropriated for touchless pointing on an ad hoc basis. Pointer acquisition is facilitated by the display presenting graphical objects in motion, to which users can synchronise to define a temporary spatial coupling with the body part or tangible object they used in the process. The technique can be deployed using minimal hardware, as demonstrated by MatchPoint, a generic computer vision-based implementation of the technique that requires only a webcam. We explore the design space of spontaneous spatial coupling, demonstrate the versatility of the technique with application examples, and evaluate MatchPoint performance using a multi-directional pointing task

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Gestures in Machine Interaction

    Full text link
    Vnencumbered-gesture-interaction (VGI) describes the use of unrestricted gestures in machine interaction. The development of such technology will enable users to interact with machines and virtual environments by performing actions like grasping, pinching or waving without the need of peripherals. Advances in image-processing and pattern recognition make such interaction viable and in some applications more practical than current modes of keyboard, mouse and touch-screen interaction provide. VGI is emerging as a popular topic amongst Human-Computer Interaction (HCI), Computer-vision and gesture research; and is developing into a topic with potential to significantly impact the future of computer-interaction, robot-control and gaming. This thesis investigates whether an ergonomic model of VGI can be developed and implemented on consumer devices by considering some of the barriers currently preventing such a model of VGI from being widely adopted. This research aims to address the development of freehand gesture interfaces and accompanying syntax. Without the detailed consideration of the evolution of this field the development of un-ergonomic, inefficient interfaces capable of placing undue strain on interface users becomes more likely. In the course of this thesis some novel design and methodological assertions are made. The Gesture in Machine Interaction (GiMI) syntax model and the Gesture-Face Layer (GFL), developed in the course of this research, have been designed to facilitate ergonomic gesture interaction. The GiMI is an interface syntax model designed to enable cursor control, browser navigation commands and steering control for remote robots or vehicles. Through applying state-of-the-art image processing that facilitates three-dimensional (3D) recognition of human action, this research investigates how interface syntax can incorporate the broadest range of human actions. By advancing our understanding of ergonomic gesture syntax, this research aims to assist future developers evaluate the efficiency of gesture interfaces, lexicons and syntax

    Sketches vs Skeletons: Video Annotation Can Capture What Motion Capture Cannot

    Get PDF
    Good posture is vital to successful musical performance and music teachers spend a considerable amount of effort on improving their students' posture. This paper presents a user study to evaluate a skeletal motion capture system (based on the Microsoft Kinect™) for supporting teachers as they give feedback to learners about their posture and movement whilst playing an instrument. The study identified a number of problems with skeletal motion capture that are likely to make it unsuitable for this type of feedback: glitches in the capture reduce trust in the system, particularly as the motion data is removed from other contextual cues that could help judge whether it is correct or not; automated feedback can fail to account for the diversity of playing styles required by learners of different physical proportions, and most importantly, the skeleton representation leaves out many cues that are required to detect posture problems in all but the most elementary beginners. The study also included a participatory design stage which resulted in a radically redesigned prototype, which replaced skeletal motion capture with an interface that allows teachers and learners to sketch on video with the support of computer vision tracking
    corecore