5 research outputs found

    A Data-Driven Regularization Model for Stereo and Flow

    Get PDF
    Data-driven techniques can reliably build semantic correspondence among images. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous regularization models based on image appearance alone, we can better resolve local ambiguity of the disparity or flow by considering the semantic information without explicit object modeling. We incorporate this data-driven regularization model into a standard Markov Random Field (MRF) model, inferred with a gradient descent algorithm and learned with a discriminative learning approach. Compared to prior state-of-the-art methods, our full model achieves comparable or better results on the KITTI stereo and flow datasets, and improves results on the Sintel Flow dataset under an online estimation setting.National Science Foundation (U.S.) (CGV 1212849)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1051

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Die Virtuelle Videokamera: ein System zur Blickpunktsynthese in beliebigen, dynamischen Szenen

    Get PDF
    The Virtual Video Camera project strives to create free viewpoint video from casually captured multi-view data. Multiple video streams of a dynamic scene are captured with off-the-shelf camcorders, and the user can re-render the scene from novel perspectives. In this thesis the algorithmic core of the Virtual Video Camera is presented. This includes the algorithm for image correspondence estimation as well as the image-based renderer. Furthermore, its application in the context of an actual video production is showcased, and the rendering and image processing pipeline is extended to incorporate depth information.Das Virtual Video Camera Projekt dient der Erzeugung von Free Viewpoint Video Ansichten von Multi-View Aufnahmen: Material mehrerer Videoströme wird hierzu mit handelsüblichen Camcordern aufgezeichnet. Im Anschluss kann die Szene aus beliebigen, von den ursprünglichen Kameras nicht abgedeckten Blickwinkeln betrachtet werden. In dieser Dissertation wird der algorithmische Kern der Virtual Video Camera vorgestellt. Dies beinhaltet das Verfahren zur Bildkorrespondenzschätzung sowie den bildbasierten Renderer. Darüber hinaus wird die Anwendung im Kontext einer Videoproduktion beleuchtet. Dazu wird die bildbasierte Erzeugung neuer Blickpunkte um die Erzeugung und Einbindung von Tiefeninformationen erweitert
    corecore