5,808 research outputs found

    Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements

    Full text link
    We present an approach to depth estimation that fuses information from a stereo pair with sparse range measurements derived from a LIDAR sensor or a range camera. The goal of this work is to exploit the complementary strengths of the two sensor modalities, the accurate but sparse range measurements and the ambiguous but dense stereo information. These two sources are effectively and efficiently fused by combining ideas from anisotropic diffusion and semi-global matching. We evaluate our approach on the KITTI 2015 and Middlebury 2014 datasets, using randomly sampled ground truth range measurements as our sparse depth input. We achieve significant performance improvements with a small fraction of range measurements on both datasets. We also provide qualitative results from our platform using the PMDTec Monstar sensor. Our entire pipeline runs on an NVIDIA TX-2 platform at 5Hz on 1280x1024 stereo images with 128 disparity levels.Comment: 7 pages, 5 figures, 2 table

    Stereo and ToF Data Fusion by Learning from Synthetic Data

    Get PDF
    Time-of-Flight (ToF) sensors and stereo vision systems are both capable of acquiring depth information but they have complementary characteristics and issues. A more accurate representation of the scene geometry can be obtained by fusing the two depth sources. In this paper we present a novel framework for data fusion where the contribution of the two depth sources is controlled by confidence measures that are jointly estimated using a Convolutional Neural Network. The two depth sources are fused enforcing the local consistency of depth data, taking into account the estimated confidence information. The deep network is trained using a synthetic dataset and we show how the classifier is able to generalize to different data, obtaining reliable estimations not only on synthetic data but also on real world scenes. Experimental results show that the proposed approach increases the accuracy of the depth estimation on both synthetic and real data and that it is able to outperform state-of-the-art methods

    Reliable fusion of ToF and stereo depth driven by confidence measures

    Get PDF
    In this paper we propose a framework for the fusion of depth data produced by a Time-of-Flight (ToF) camera and stereo vision system. Initially, depth data acquired by the ToF camera are upsampled by an ad-hoc algorithm based on image segmentation and bilateral filtering. In parallel a dense disparity map is obtained using the Semi- Global Matching stereo algorithm. Reliable confidence measures are extracted for both the ToF and stereo depth data. In particular, ToF confidence also accounts for the mixed-pixel effect and the stereo confidence accounts for the relationship between the pointwise matching costs and the cost obtained by the semi-global optimization. Finally, the two depth maps are synergically fused by enforcing the local consistency of depth data accounting for the confidence of the two data sources at each location. Experimental results clearly show that the proposed method produces accurate high resolution depth maps and outperforms the compared fusion algorithms

    3D RECONSTRUCTION FROM STEREO/RANGE IMAGES

    Get PDF
    3D reconstruction from stereo/range image is one of the most fundamental and extensively researched topics in computer vision. Stereo research has recently experienced somewhat of a new era, as a result of publically available performance testing such as the Middlebury data set, which has allowed researchers to compare their algorithms against all the state-of-the-art algorithms. This thesis investigates into the general stereo problems in both the two-view stereo and multi-view stereo scopes. In the two-view stereo scope, we formulate an algorithm for the stereo matching problem with careful handling of disparity, discontinuity and occlusion. The algorithm works with a global matching stereo model based on an energy minimization framework. The experimental results are evaluated on the Middlebury data set, showing that our algorithm is the top performer. A GPU approach of the Hierarchical BP algorithm is then proposed, which provides similar stereo quality to CPU Hierarchical BP while running at real-time speed. A fast-converging BP is also proposed to solve the slow convergence problem of general BP algorithms. Besides two-view stereo, ecient multi-view stereo for large scale urban reconstruction is carefully studied in this thesis. A novel approach for computing depth maps given urban imagery where often large parts of surfaces are weakly textured is presented. Finally, a new post-processing step to enhance the range images in both the both the spatial resolution and depth precision is proposed
    • …
    corecore