141,488 research outputs found

    Decision theory results for one-sided multiple comparison procedures

    Full text link
    A resurgence of interest in multiple hypothesis testing has occurred in the last decade. Motivated by studies in genomics, microarrays, DNA sequencing, drug screening, clinical trials, bioassays, education and psychology, statisticians have been devoting considerable research energy in an effort to properly analyze multiple endpoint data. In response to new applications, new criteria and new methodology, many ad hoc procedures have emerged. The classical requirement has been to use procedures which control the strong familywise error rate (FWE) at some predetermined level \alpha. That is, the probability of any false rejection of a true null hypothesis should be less than or equal to \alpha. Finding desirable and powerful multiple test procedures is difficult under this requirement. One of the more recent ideas is concerned with controlling the false discovery rate (FDR), that is, the expected proportion of rejected hypotheses which are, in fact, true. Many multiple test procedures do control the FDR. A much earlier approach to multiple testing was formulated by Lehmann [Ann. Math. Statist. 23 (1952) 541-552 and 28 (1957) 1-25]. Lehmann's approach is decision theoretic and he treats the multiple endpoints problem as a 2^k finite action problem when there are k endpoints. This approach is appealing since unlike the FWE and FDR criteria, the finite action approach pays attention to false acceptances as well as false rejections.Comment: Published at http://dx.doi.org/10.1214/009053604000000968 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simultaneous Inference in General Parametric Models

    Get PDF
    Simultaneous inference is a common problem in many areas of application. If multiple null hypotheses are tested simultaneously, the probability of rejecting erroneously at least one of them increases beyond the pre-specified significance level. Simultaneous inference procedures have to be used which adjust for multiplicity and thus control the overall type I error rate. In this paper we describe simultaneous inference procedures in general parametric models, where the experimental questions are specified through a linear combination of elemental model parameters. The framework described here is quite general and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalized linear models, linear mixed effects models, the Cox model, robust linear models, etc. Several examples using a variety of different statistical models illustrate the breadth of the results. For the analyses we use the R add-on package multcomp, which provides a convenient interface to the general approach adopted here

    The Interval Property in Multiple Testing of Pairwise Differences

    Full text link
    The usual step-down and step-up multiple testing procedures most often lack an important intuitive, practical, and theoretical property called the interval property. In short, the interval property is simply that for an individual hypothesis, among the several to be tested, the acceptance sections of relevant statistics are intervals. Lack of the interval property is a serious shortcoming. This shortcoming is demonstrated for testing various pairwise comparisons in multinomial models, multivariate normal models and in nonparametric models. Residual based stepwise multiple testing procedures that do have the interval property are offered in all these cases.Comment: Published in at http://dx.doi.org/10.1214/11-STS372 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Information theoretic novelty detection

    Get PDF
    We present a novel approach to online change detection problems when the training sample size is small. The proposed approach is based on estimating the expected information content of a new data point and allows an accurate control of the false positive rate even for small data sets. In the case of the Gaussian distribution, our approach is analytically tractable and closely related to classical statistical tests. We then propose an approximation scheme to extend our approach to the case of the mixture of Gaussians. We evaluate extensively our approach on synthetic data and on three real benchmark data sets. The experimental validation shows that our method maintains a good overall accuracy, but significantly improves the control over the false positive rate

    Characterization of Bayes procedures for multiple endpoint problems and inadmissibility of the step-up procedure

    Full text link
    The problem of multiple endpoint testing for k endpoints is treated as a 2^k finite action problem. The loss function chosen is a vector loss function consisting of two components. The two components lead to a vector risk. One component of the vector risk is the false rejection rate (FRR), that is, the expected number of false rejections. The other component is the false acceptance rate (FAR), that is, the expected number of acceptances for which the corresponding null hypothesis is false. This loss function is more stringent than the positive linear combination loss function of Lehmann [Ann. Math. Statist. 28 (1957) 1-25] and Cohen and Sackrowitz [Ann. Statist. (2005) 33 126-144] in the sense that the class of admissible rules is larger for this vector risk formulation than for the linear combination risk function. In other words, fewer procedures are inadmissible for the vector risk formulation. The statistical model assumed is that the vector of variables Z is multivariate normal with mean vector \mu and known intraclass covariance matrix \Sigma. The endpoint hypotheses are H_i:\mu_i=0 vs K_i:\mu_i>0, i=1,...,k. A characterization of all symmetric Bayes procedures and their limits is obtained. The characterization leads to a complete class theorem. The complete class theorem is used to provide a useful necessary condition for admissibility of a procedure. The main result is that the step-up multiple endpoint procedure is shown to be inadmissible.Comment: Published at http://dx.doi.org/10.1214/009053604000000986 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • ā€¦
    corecore