28,614 research outputs found

    Steering the distribution of agents in mean-field and cooperative games

    Full text link
    The purpose of this work is to pose and solve the problem to guide a collection of weakly interacting dynamical systems (agents, particles, etc.) to a specified terminal distribution. The framework is that of mean-field and of cooperative games. A terminal cost is used to accomplish the task; we establish that the map between terminal costs and terminal probability distributions is onto. Our approach relies on and extends the theory of optimal mass transport and its generalizations.Comment: 20 pages, 8 figure

    Steering the Distribution of Agents in Mean-Field Games System

    Get PDF
    Abstract The purpose of this work is to pose and solve the problem to guide a collection of weakly interacting dynamical systems (agents, particles, etc.) to a specified terminal distribution. The framework is that of mean-field and of cooperative games. A terminal cost is used to accomplish the task; we establish that the map between terminal costs and terminal probability distributions is onto. Our approach relies on and extends the theory of optimal mass transport and its generalizations

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    Economic Games as Estimators

    Get PDF
    Discrete event games are discrete time dynamical systems whose state transitions are discrete events caused by actions taken by agents within the game. The agents’ objectives and associated decision rules need not be known to the game designer in order to impose struc- ture on a game’s reachable states. Mechanism design for discrete event games is accomplished by declaring desirable invariant properties and restricting the state transition functions to conserve these properties at every point in time for all admissible actions and for all agents, using techniques familiar from state-feedback control theory. Building upon these connections to control theory, a framework is developed to equip these games with estimation properties of signals which are private to the agents playing the game. Token bonding curves are presented as discrete event games and numerical experiments are used to investigate their signal processing properties with a focus on input-output response dynamics.Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    • …
    corecore