100 research outputs found

    Soft Computing Decision Support for a Steel Sheet Incremental Cold Shaping Process

    Get PDF
    It is known that the complexity inherited in most of the new real world problems, for example, the cold rolled steel industrial process, increases as the computer capacity does. Higher performance requirements with a lower amount of data samples are needed due to the costs of generating new instances, specially in those processes where new technologies arise. This study is focused on the analysis and design of a novel decision support system for an incremental steel cold shaping process, where there is a lack of knowledge of which operating conditions are suitable for obtaining high quality results. The most suitable features have been found using a wrapper feature selection method, in which genetic algorithms and neural networks are hybridized. Some facts concerning the enhanced experimentation needed and the improvements in the algorithm are drawn

    Meta-heuristic improvements applied for steel sheet incremental cold shaping

    Get PDF
    In previous studies, a wrapper feature selection method for decision support in steel sheet incremental cold shaping process (SSICS) was proposed. The problem included both regression and classification, while the learned models were neural networks and support vector machines, respectively. SSICS is the type of problem for which the number of features is similar to the number of instances in the data set, this represents many of real world decision support problems found in the industry. This study focuses on several questions and improvements that were left open, suggesting proposals for each of them. More specifically, this study evaluates the relevance of the different cross validation methods in the learned models, but also proposes several improvements such as allowing the number of chosen features as well as some of the parameters of the neural networks to evolve, accordingly. Well-known data sets have been use in this experimentation and an in-depth analysis of the experiment results is included. 5 Ă— 2 CV has been found the more interesting cross validation method for this kind of problems. In addition, the adaptation of the number of features and, consequently, the model parameters really improves the performance of the approach. The different enhancements have been applied to the real world problem, an several conclusions have been drawn from the results obtained

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore