8,875 research outputs found

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    ComplexWorld Position Paper

    Get PDF
    The Complex ATM Position Paper is the common research vehicle that defines the high-level, strategic scientific vision for the ComplexWorld Network. The purpose of this document is to provide an orderly and consistent scientific framework for the WP-E complexity theme. The specific objectives of the position paper are to: - analyse the state of the art within the different research areas relevant to the network, identifying the major accomplishments and providing a comprehensive set of references, including the main publications and research projects; - include a complete list of , a list of application topics, and an analysis of which techniques are best suited to each one of those applications; - identify and perform an in-depth analysis of the most promising research avenues and the major research challenges lying at the junction of ATM and complex systems domains, with particular attention to their impact and potential benefits for the ATM community; - identify areas of common interest and synergies with other SESAR activities, with special attention to the research topics covered by other WP-E networks. An additional goal for future versions of this position paper is to develop an indicative roadmap on how these research challenges should be accomplished, providing a guide on how to leverage on different aspects of the complexity research in Air Transport

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    B&W Call Admission Control for Multimedia Communication Networks

    Get PDF
    In the multimedia communication networks providing quality of service (QoS), an interface between the signal processing systems and the communication systems is the call admission control (CAC) mechanism. Owing to the heterogeneous traffic produced by diverse signal processing systems in a multimedia communication network, the traditional CAC mechanism that used only one CAC algorithm can no longer satisfy the aim of QoS CAC: Utilize the network resource to the most best and still satisfy the QoS requirements of all connections. For satisfying the aim of QoS CAC in the multimedia communication networks, this study proposed an innovative CAC mechanism called black and white CAC (B&W CAC), which uses two CAC algorithms. One of them is called black CAC controller and is used for the traffic with specifications more uncertain, which is called black traffic here. The other is call white CAC controller and is for the traffic with clearer specifications, which is call white traffic. Because white traffic is simple, an equivalent bandwidth CAC is taken as the white CAC. On the other hand, a neural network CAC (NNCAC) is employed to be the black CAC to overcome the uncertainty of black traffic. Furthermore, owing to more parameters needed in a QoS CAC mechanism, a hierarchical NNCAC is proposed instead of the common used NNCAC. Besides to accommodate more parameters, a hierarchical NNCAC can keep the complexity low. The simulation results show the B&W CAC can obtain higher utilization and still meet the QoS requirements of traffic sources

    Economic FAQs About the Internet

    Get PDF
    This is a set of Frequently Asked Questions (and answers) about the economic, institutional, and technological structure of the Internet. We describe the history and current state of the Internet, discuss some of the pressing economic and regulatory problems, and speculate about future developments.Internet, telecommunications, congestion pricing, National Information Infrastructure

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands
    • …
    corecore