57,738 research outputs found

    Overviews of Optimization Techniques for Geometric Estimation

    Get PDF
    We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques based on minimization of a given cost function: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization as a special case, and Sampson error minimization. We describe bundle adjustment and the FNS scheme for numerically solving them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is the best method

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012

    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles

    Get PDF
    We present a canonical way to turn any smooth parametric family of probability distributions on an arbitrary search space XX into a continuous-time black-box optimization method on XX, the \emph{information-geometric optimization} (IGO) method. Invariance as a design principle minimizes the number of arbitrary choices. The resulting \emph{IGO flow} conducts the natural gradient ascent of an adaptive, time-dependent, quantile-based transformation of the objective function. It makes no assumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization. It naturally recovers versions of known algorithms and offers a systematic way to derive new ones. The cross-entropy method is recovered in a particular case, and can be extended into a smoothed, parametrization-independent maximum likelihood update (IGO-ML). For Gaussian distributions on Rd\mathbb{R}^d, IGO is related to natural evolution strategies (NES) and recovers a version of the CMA-ES algorithm. For Bernoulli distributions on {0,1}d\{0,1\}^d, we recover the PBIL algorithm. From restricted Boltzmann machines, we obtain a novel algorithm for optimization on {0,1}d\{0,1\}^d. All these algorithms are unified under a single information-geometric optimization framework. Thanks to its intrinsic formulation, the IGO method achieves invariance under reparametrization of the search space XX, under a change of parameters of the probability distributions, and under increasing transformations of the objective function. Theory strongly suggests that IGO algorithms have minimal loss in diversity during optimization, provided the initial diversity is high. First experiments using restricted Boltzmann machines confirm this insight. Thus IGO seems to provide, from information theory, an elegant way to spontaneously explore several valleys of a fitness landscape in a single run.Comment: Final published versio

    Distributed Robust Learning

    Full text link
    We propose a framework for distributed robust statistical learning on {\em big contaminated data}. The Distributed Robust Learning (DRL) framework can reduce the computational time of traditional robust learning methods by several orders of magnitude. We analyze the robustness property of DRL, showing that DRL not only preserves the robustness of the base robust learning method, but also tolerates contaminations on a constant fraction of results from computing nodes (node failures). More precisely, even in presence of the most adversarial outlier distribution over computing nodes, DRL still achieves a breakdown point of at least λ/2 \lambda^*/2 , where λ \lambda^* is the break down point of corresponding centralized algorithm. This is in stark contrast with naive division-and-averaging implementation, which may reduce the breakdown point by a factor of k k when k k computing nodes are used. We then specialize the DRL framework for two concrete cases: distributed robust principal component analysis and distributed robust regression. We demonstrate the efficiency and the robustness advantages of DRL through comprehensive simulations and predicting image tags on a large-scale image set.Comment: 18 pages, 2 figure

    Implicit Langevin Algorithms for Sampling From Log-concave Densities

    Full text link
    For sampling from a log-concave density, we study implicit integrators resulting from θ\theta-method discretization of the overdamped Langevin diffusion stochastic differential equation. Theoretical and algorithmic properties of the resulting sampling methods for θ[0,1] \theta \in [0,1] and a range of step sizes are established. Our results generalize and extend prior works in several directions. In particular, for θ1/2\theta\ge1/2, we prove geometric ergodicity and stability of the resulting methods for all step sizes. We show that obtaining subsequent samples amounts to solving a strongly-convex optimization problem, which is readily achievable using one of numerous existing methods. Numerical examples supporting our theoretical analysis are also presented

    Objective Improvement in Information-Geometric Optimization

    Get PDF
    Information-Geometric Optimization (IGO) is a unified framework of stochastic algorithms for optimization problems. Given a family of probability distributions, IGO turns the original optimization problem into a new maximization problem on the parameter space of the probability distributions. IGO updates the parameter of the probability distribution along the natural gradient, taken with respect to the Fisher metric on the parameter manifold, aiming at maximizing an adaptive transform of the objective function. IGO recovers several known algorithms as particular instances: for the family of Bernoulli distributions IGO recovers PBIL, for the family of Gaussian distributions the pure rank-mu CMA-ES update is recovered, and for exponential families in expectation parametrization the cross-entropy/ML method is recovered. This article provides a theoretical justification for the IGO framework, by proving that any step size not greater than 1 guarantees monotone improvement over the course of optimization, in terms of q-quantile values of the objective function f. The range of admissible step sizes is independent of f and its domain. We extend the result to cover the case of different step sizes for blocks of the parameters in the IGO algorithm. Moreover, we prove that expected fitness improves over time when fitness-proportional selection is applied, in which case the RPP algorithm is recovered
    corecore