19,136 research outputs found

    Sketch-based 3D Shape Retrieval using Convolutional Neural Networks

    Full text link
    Retrieving 3D models from 2D human sketches has received considerable attention in the areas of graphics, image retrieval, and computer vision. Almost always in state of the art approaches a large amount of "best views" are computed for 3D models, with the hope that the query sketch matches one of these 2D projections of 3D models using predefined features. We argue that this two stage approach (view selection -- matching) is pragmatic but also problematic because the "best views" are subjective and ambiguous, which makes the matching inputs obscure. This imprecise nature of matching further makes it challenging to choose features manually. Instead of relying on the elusive concept of "best views" and the hand-crafted features, we propose to define our views using a minimalism approach and learn features for both sketches and views. Specifically, we drastically reduce the number of views to only two predefined directions for the whole dataset. Then, we learn two Siamese Convolutional Neural Networks (CNNs), one for the views and one for the sketches. The loss function is defined on the within-domain as well as the cross-domain similarities. Our experiments on three benchmark datasets demonstrate that our method is significantly better than state of the art approaches, and outperforms them in all conventional metrics.Comment: CVPR 201

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    3D inference and modelling for video retrieval

    Get PDF
    A new scheme is proposed for extracting planar surfaces from 2D image sequences. We firstly perform feature correspondence over two neighboring frames, followed by the estimation of disparity and depth maps, provided a calibrated camera. We then apply iterative Random Sample Consensus (RANSAC) plane fitting to the generated 3D points to find a dominant plane in a maximum likelihood estimation style. Object points on or off this dominant plane are determined by measuring their Euclidean distance to the plane. Experimental work shows that the proposed scheme leads to better plane fitting results than the classical RANSAC method
    corecore