43 research outputs found

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    Constructing Reliable Virtual Backbones in Probabilistic Wireless Sensor Networks

    Get PDF
    Most existing algorithms used for constructing virtual backbones are based on the ideal deterministic network model (DNM) in which any pair of nodes is either fully connected or completely disconnected. Different from DNM, the probabilistic network model (PNM), which presumes that there is a probability to connect and communicate between any pair of nodes, is more suitable to the practice in many real applications. In this paper, we propose a new algorithm to construct reliable virtual backbone in probabilistic wireless sensor networks. In the algorithm, we firstly introduce Effective Degree of Delivery Probability (EDDP) to indicate the reliable degree of nodes to transfer data successfully, and then exclude those nodes with zero EDDP from the candidate dominator set to construct a reliable connected dominating set (CDS). Moreover, each dominatee selects the neighbor dominator with the maximum delivery probability to transfer data. Through simulations, we demonstrate that our proposed algorithm can remarkably prolong the network lifetime compared with existing typical algorithms

    DRDT: Distributed and Reliable Data Transmission with Cooperative Nodes for Lossy Wireless Sensor Networks

    Get PDF
    Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT) scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes

    Delay-bounded medium access for unidirectional wireless links

    Get PDF
    Consider a wireless network where links may be unidirectional, that is, a computer node A can broadcast a message and computer node B will receive this message but if B broadcasts then A will not receive it. Assume that messages have deadlines. We propose a medium access control (MAC) protocol which replicates a message in time with carefully selected pauses between replicas, and in this way it guarantees that for every message at least one replica of that message is transmitted without collision. The protocol ensures this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing capabilities. We believe this result is significant because it is the only MAC protocol that offers an upper bound on the message queuing delay for unidirectional links without relying on synchronized clocks
    corecore