3,014 research outputs found

    Generalization error for multi-class margin classification

    Full text link
    In this article, we study rates of convergence of the generalization error of multi-class margin classifiers. In particular, we develop an upper bound theory quantifying the generalization error of various large margin classifiers. The theory permits a treatment of general margin losses, convex or nonconvex, in presence or absence of a dominating class. Three main results are established. First, for any fixed margin loss, there may be a trade-off between the ideal and actual generalization performances with respect to the choice of the class of candidate decision functions, which is governed by the trade-off between the approximation and estimation errors. In fact, different margin losses lead to different ideal or actual performances in specific cases. Second, we demonstrate, in a problem of linear learning, that the convergence rate can be arbitrarily fast in the sample size nn depending on the joint distribution of the input/output pair. This goes beyond the anticipated rate O(n1)O(n^{-1}). Third, we establish rates of convergence of several margin classifiers in feature selection with the number of candidate variables pp allowed to greatly exceed the sample size nn but no faster than exp(n)\exp(n).Comment: Published at http://dx.doi.org/10.1214/07-EJS069 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on ``Support Vector Machines with Applications'' [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000484 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Reject and Refine Options in Multicategory Classification

    Full text link
    In many real applications of statistical learning, a decision made from misclassification can be too costly to afford; in this case, a reject option, which defers the decision until further investigation is conducted, is often preferred. In recent years, there has been much development for binary classification with a reject option. Yet, little progress has been made for the multicategory case. In this article, we propose margin-based multicategory classification methods with a reject option. In addition, and more importantly, we introduce a new and unique refine option for the multicategory problem, where the class of an observation is predicted to be from a set of class labels, whose cardinality is not necessarily one. The main advantage of both options lies in their capacity of identifying error-prone observations. Moreover, the refine option can provide more constructive information for classification by effectively ruling out implausible classes. Efficient implementations have been developed for the proposed methods. On the theoretical side, we offer a novel statistical learning theory and show a fast convergence rate of the excess \ell-risk of our methods with emphasis on diverging dimensionality and number of classes. The results can be further improved under a low noise assumption. A set of comprehensive simulation and real data studies has shown the usefulness of the new learning tools compared to regular multicategory classifiers. Detailed proofs of theorems and extended numerical results are included in the supplemental materials available online.Comment: A revised version of this paper was accepted for publication in the Journal of the American Statistical Association Theory and Methods Section. 52 pages, 6 figure

    The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization

    Get PDF
    The support vector machine (SVM) is a flexible classification method that accommodates a kernel trick to learn nonlinear decision rules. The traditional formulation as an optimization problem is a quadratic program. In efforts to reduce computational complexity, some have proposed using an L1-norm regularization to create a linear program (LP). In other efforts aimed at increasing the robustness to outliers, investigators have proposed using the ramp loss which results in what may be expressed as a quadratic integer programming problem (QIP). In this paper, we consider combining these ideas for ramp loss SVM with L1-norm regularization. The result is four formulations for SVM that each may be expressed as a mixed integer linear program (MILP). We observe that ramp loss SVM with L1-norm regularization provides robustness to outliers with the linear kernel. We investigate the time required to find good solutions to the various formulations using a branch and bound solver
    corecore