11,214 research outputs found

    Statistical inference using SGD

    Full text link
    We present a novel method for frequentist statistical inference in MM-estimation problems, based on stochastic gradient descent (SGD) with a fixed step size: we demonstrate that the average of such SGD sequences can be used for statistical inference, after proper scaling. An intuitive analysis using the Ornstein-Uhlenbeck process suggests that such averages are asymptotically normal. From a practical perspective, our SGD-based inference procedure is a first order method, and is well-suited for large scale problems. To show its merits, we apply it to both synthetic and real datasets, and demonstrate that its accuracy is comparable to classical statistical methods, while requiring potentially far less computation.Comment: To appear in AAAI 201

    Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent Estimator

    Full text link
    In this paper, we investigate the theoretical properties of stochastic gradient descent (SGD) for statistical inference in the context of nonconvex optimization problems, which have been relatively unexplored compared to convex settings. Our study is the first to establish provable inferential procedures using the SGD estimator for general nonconvex objective functions, which may contain multiple local minima. We propose two novel online inferential procedures that combine SGD and the multiplier bootstrap technique. The first procedure employs a consistent covariance matrix estimator, and we establish its error convergence rate. The second procedure approximates the limit distribution using bootstrap SGD estimators, yielding asymptotically valid bootstrap confidence intervals. We validate the effectiveness of both approaches through numerical experiments. Furthermore, our analysis yields an intermediate result: the in-expectation error convergence rate for the original SGD estimator in nonconvex settings, which is comparable to existing results for convex problems. We believe this novel finding holds independent interest and enriches the literature on optimization and statistical inference

    Statistical Inference with Stochastic Gradient Methods under Ï•\phi-mixing Data

    Full text link
    Stochastic gradient descent (SGD) is a scalable and memory-efficient optimization algorithm for large datasets and stream data, which has drawn a great deal of attention and popularity. The applications of SGD-based estimators to statistical inference such as interval estimation have also achieved great success. However, most of the related works are based on i.i.d. observations or Markov chains. When the observations come from a mixing time series, how to conduct valid statistical inference remains unexplored. As a matter of fact, the general correlation among observations imposes a challenge on interval estimation. Most existing methods may ignore this correlation and lead to invalid confidence intervals. In this paper, we propose a mini-batch SGD estimator for statistical inference when the data is Ï•\phi-mixing. The confidence intervals are constructed using an associated mini-batch bootstrap SGD procedure. Using ``independent block'' trick from \cite{yu1994rates}, we show that the proposed estimator is asymptotically normal, and its limiting distribution can be effectively approximated by the bootstrap procedure. The proposed method is memory-efficient and easy to implement in practice. Simulation studies on synthetic data and an application to a real-world dataset confirm our theory
    • …
    corecore