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Stochastic gradients methods for statistical inference

Tianyang Li, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Constantine Caramanis

Statistical inference, such as hypothesis testing and calculating a confidence interval,

is an important tool for accessing uncertainty in machine learning and statistical problems.

Stochastic gradient methods, such as stochastic gradient descent (SGD), have recently been

successfully applied to point estimation in large scale machine learning problems. In this

work, we present novel stochastic gradient methods for statistical inference in large scale

machine learning problems.

Unregularized M-estimation using SGD. Using SGD with a fixed step size, we demon-

strate that the average of such SGD sequences can be used for statistical inference, after

proper scaling. An intuitive analysis using the Ornstein-Uhlenbeck process suggests that such

averages are asymptotically normal. From a practical perspective, our SGD-based inference

procedure is a first order method, and is well-suited for large scale problems. To show its

merits, we apply it to both synthetic and real datasets, and demonstrate that its accuracy is

comparable to classical statistical methods, while requiring potentially far less computation.

Approximate Newton-based statistical inference using only stochastic gradients

for unregularized M-estimation. We present a novel inference framework for convex
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empirical risk minimization, using approximate stochastic Newton steps. The proposed

algorithm is based on the notion of finite differences and allows the approximation of

a Hessian-vector product from first-order information. In theory, our method efficiently

computes the statistical error covariance in M -estimation for unregularized convex learning

problems, without using exact second order information, or resampling the entire data set. In

practice, we demonstrate the effectiveness of our framework on large-scale machine learning

problems, that go even beyond convexity: as a highlight, our work can be used to detect

certain adversarial attacks on neural networks.

High dimensional linear regression statistical inference using only stochastic gra-

dients. As an extension of the approximate Newton-based statistical inference algorithm

for unregularized problems, we present a similar algorithm, using only stochastic gradients,

for statistical inference in high dimensional linear regression, where the number of features is

much larger than the number of samples.

Stochastic gradient methods for time series analysis. We present a novel stochastic

gradient descent algorithm for time series analysis, which correctly captures correlation

structures in a time series dataset during optimization. Instead of uniformly sampling indices

in vanilla SGD, we uniformly sample contiguous blocks of indices, where the block length

depends on the dataset.
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Chapter 1

Introduction

Statistical inference, such as hypothesis testing and calculating a confidence interval, is

an important tool for accessing uncertainty in machine learning and statistical problems, both

for estimation and prediction purposes [FHT01, EH16]. E.g., in unregularized linear regression

and high-dimensional LASSO settings [vdGBRD14, JM15, TWH15], we are interested in

computing coordinate-wise confidence intervals and p-values of a p-dimensional variable,

in order to infer which coordinates are active or not [Was13]. Traditionally, the inverse

Fisher information matrix [Edg08] contains the answer to such inference questions; however

it requires storing and computing a p× p matrix structure, often prohibitive for large-scale

applications [TRVB06]. Alternatively, the Bootstrap [Efr82, ET94] method is a popular

statistical inference algorithm, where we solve an optimization problem per dataset replicate,

but can be expensive for large data sets [KTSJ14].

Stochastic gradient methods, such as stochastic gradient descent (SGD) [RM85,

Bub15a, Bot10], have been recently been successfully applied to point estimation in large

scale machine learning problems. For example, in deep learning [GBC16], stochastic gradient

methods such as SGD and Adam [KB14] are widely used to train neural nets.

In this context, we follow a different path: we show that inference can also be

accomplished by directly using stochastic gradient methods, such as SGD, both for point

estimates and inference. While optimization is mostly used for point estimates, recently it

This chapter also appears in [LKLC18, LLKC18]. It was written by Tianyang Li, and edited by Anastasios
Kyrillidis and Constantine Caramanis.
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is also used as a means for statistical inference in large scale machine learning [LKLC18,

LLKC18, CLTZ16, SZ18, FXY17].

In Chapter 3, we present a statistical inference procedure using SGD with fixed step

size [LLKC18]. It is well-established that fixed step-size SGD is by and large the dominant

method used for large scale data analysis. We prove, and also demonstrate empirically, that

the average of SGD sequences, obtained by empirical risk minimization (ERM), can also be

used for statistical inference. Unlike the Bootstrap, our approach does not require creating

many large-size subsamples from the data, neither re-running SGD from scratch for each of

these subsamples. Our method only uses first order information from gradient computations,

and does not require any second order information. Both of these are important for large scale

problems, where re-sampling many times, or computing Hessians, may be computationally

prohibitive.

In Chapter 4, we present a framework for approximate Newton-based statistical

inference using only stochastic gradients [LKLC18]. This is enabled by the fact that we

only need to compute Hessian-vector products; in math, this can be approximated using

∇2f(θ)v ≈ ∇f(θ+δv)−∇f(θ)
δ

, where f is the objective function, and ∇f , ∇2f denote the gradient

and Hessian of f . Our method can be interpreted as a generalization of stochastic variance

reduced gradient (SVRG) [JZ13] in optimization [JZ13] (Chapter 7); further, it is related to

other stochastic Newton methods (e.g. [ABH17]) when δ → 0.

As an extension of the approximate Newton-based statistical inference procedure using

stochastic gradients, in Chapter 5 we present a novel statistical inference procedure for high

dimensional linear regression using stochastic gradients, where the number of features is much

larger than the number of samples. The intuition behind our algorithm is that each proximal

Newton descent step [LSS14] can be solved using proximal SVRG [XZ14].

In Chapter 6, we present a novel stochastic gradient framework for time series analysis,

which correctly captures dependence relationships in a time series dataset. Unlike vanilla

2



SGD where we sample indices uniformly over the entire dataset, we sample contiguous blocks

of indices, where the data-dependent block length is the lag. This enables our stochastic

gradient procedure to compute a covariance estimate similar to the Driscoll-Kraay method

[DK98, Hoe07]. The sampling scheme in our procedure is similar to that of moving block

bootstrap [Lah13], and similar sampling schemes in conformal prediction for time series

analysis [BHV14], which also use contiguous blocks chosen from the dataset.

1.1 Related work

1.1.1 Connection with Bootstrap methods

The classical approach for statistical inference is to use the bootstrap [ET94, ST12].

Bootstrap samples are generated by replicating the entire data set by resampling, and then

solving the optimization problem on each generated set of the data. We identify our algorithm

and its analysis as an alternative to bootstrap methods. Our analysis is also specific to SGD,

and thus sheds light on the statistical properties of this very widely used algorithm.

In bootstrap, given a dataset with n samples, each time we resample n times with

replacement from the dataset, and compute an estimate (replicate) on this resampled dataset.

We then perform statistical inference, such as hypothesis testing or computing confidence

intervals, using the empirical distribution of bootstrap replicates.

In jackknife, we generate n datasets, where each dataset has n−1 elements, by leaving

out one element each time. We then use the variance of jackknife replicates in asymptotic

normality to perform statistical inference, such as hypothesis testing or computing confidence

intervals.

3



1.1.2 Other stochastic gradient methods for frequentist inference

This work provides a general, flexible framework for simultaneous point estimation

and statistical inference, and improves upon previous methods, based on averaged stochastic

gradient descent [LLKC18, CLTZ16].

Compared to [CLTZ16] (and similar works [SZ18, FXY17] using SGD with decreasing

step size), our method does not need to increase the lengths of “segments” (inner loops) to

reduce correlations between different “replicates”. Even in that case, if we use T replicates

and increasing “segment” length (number of inner loops is t
do

1−do ·L) with a total of O(T
1

1−do ·L)

stochastic gradient steps, [CLTZ16] guarantees O(L−
1−do

2 +T−
1
2 +Tmax{ 1

2
− do

4(1−do)
,0}− 1

2 ·L− do4 +

Tmax{ 1−2do
2(1−do)

,0}− 1
2 · L 1−2do

2 ) , whereas our method guarantees O(T−
do
2 ). Further, [CLTZ16] is

inconsistent, whereas our scheme guarantees consistency of computing the statistical error

covariance.

Chapter 3 [LLKC18] uses fixed step size SGD for statistical inference, and discards

iterates between different “segments” to reduce correlation, whereas we do not discard any

iterates in our computations. Although [LLKC18] states empirically constant step SGD

performs well in statistical inference, it has been empirically shown [DDB17] that averaging

consecutive iterates in constant step SGD does not guarantee convergence to the optimal –

the average will be “wobbling” around the optimal, whereas decreasing step size stochastic

approximation methods ([PJ92, Rup88] and our work) will converge to the optimal, and

averaging consecutive iterates guarantees “fast” rates.

1.1.3 Stochastic gradient methods for Bayesian inference

First and second order iterative optimization algorithms –including SGD, gradient

descent, and variants– naturally define a Markov chain. Based on this principle, most related

to this work is the case of stochastic gradient Langevin dynamics (SGLD) for Bayesian

inference – namely, for sampling from the posterior distributions – using a variant of SGD

4



[WT11, BEL15, MHB16, MHB17]. We note that, here as well, the vast majority of the results

rely on using a decreasing step size. Very recently, [MHB17] uses a heuristic approximation

for Bayesian inference, and provides results for fixed step size.

Our problem is different in important ways from the Bayesian inference problem. In

such parameter estimation problems, the covariance of the estimator only depends on the

gradient of the likelihood function. This is not the case, however, in general frequentist

M -estimation problems (e.g., linear regression). In these cases, the covariance of the estimator

depends both on the gradient and Hessian of the empirical risk function. For this reason,

without second order information, SGLD methods are poorly suited for general M -estimation

problems in frequentist inference. In contrast, our method exploits properties of averaged

SGD, and computes the estimator’s covariance without second order information. Another

key difference between our methods and SGLD methods, is that we use averages of consecutive

iterates, whereas SGLD does not use averaging.

SGLD can be viewed as a discretization of the following stochastic differential equation

in d-dimensional space

dz = f(z)dt+
√

2D(z)dW(t),

where f(z) is a deterministic drift, W(t) is a standard Brownian motion process, and D(z)

is a positive semidefinite diffusion matrix. [MCF15] shows that its stationary distribution

exp(−H(z)), when

f(z) = − [D(z) + Q(z)]∇H(z) + Γ(z), Γi(z) =
d∑
j=1

∂

∂zj
[Dij(z) + Qij(z)] ,

where Q(z) is a skew symmetric curl matrix.
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1.1.4 Related optimization algorithms

1.1.4.1 Connection with stochastic approximation methods

It has been long observed in stochastic approximation that under certain conditions,

SGD displays asymptotic normality for both the setting of decreasing step size, e.g., [LPW12,

PJ92], and more recently, [TA14, CLTZ16]; and also for fixed step size, e.g., [BPM90], Chapter

4. All of these results, however, provide their guarantees with the requirement that the

stochastic approximation iterate converges to the optimum. For decreasing step size, this is

not an overly burdensome assumption, since with mild assumptions it can be shown directly.

As far as we know, however, it is not clear if this holds in the fixed step size regime. To

side-step this issue, [BPM90] provides results only when the (constant) step-size approaches

0 (see Section 4.4 and 4.6, and in particular Theorem 7 in [BPM90]). Similarly, while [KY03]

has asymptotic results on the average of consecutive stochastic approximation iterates with

constant step size, it assumes convergence of iterates (assumption A1.7 in Ch. 10) – an

assumption we are unable to justify in even simple settings.

Beyond the critical difference in the assumptions, the majority of the “classical”

subject matter seeks to prove asymptotic results about different flavors of SGD, but does not

properly consider its use for inference. Key exceptions are the recent work in [TA14] and

[CLTZ16], which follow up on [PJ92]. Both of these rely on decreasing step size, for reasons

mentioned above. The work in [CLTZ16] uses SGD with decreasing step size for estimating

an M -estimate’s covariance. Work in [TA14] studies implicit SGD with decreasing step size

and proves results similar to [PJ92], however it does not use SGD to compute confidence

intervals.

Overall, to the best of our knowledge, there are no prior results establishing asymptotic

normality for SGD with fixed step size for general M-estimation problems (that do not rely

on overly restrictive assumptions, as discussed).
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1.1.4.2 Connections to stochastic Newton methods

Our method is similar to stochastic Newton methods (e.g. [ABH17]); however,

our method only uses first-order information to approximate a Hessian vector product

(∇2f(θ)v ≈ ∇f(θ+δv)−∇f(θ)
δ

). Algorithm 1’s outer loops are similar to stochastic natural

gradient descent [Ama98]. Also, we demonstrate an intuitive view of SVRG [JZ13] as a

special case of approximate stochastic Newton steps using first order information (Chapter 7).

1.1.5 Statistical inference in high dimensional linear regression

[CLTZ16]’s high dimensional inference algorithm is based on [ANW12], and only

guarantees that optimization error is at the same scale as the statistical error. However,

proper de-biasing of the LASSO estimator requires the optimization error to be much less

than the statistical error, otherwise the optimization error introduces additional bias that

de-biasing cannot handle. Our optimization objective is strongly convex with high probability:

this permits the use of linearly convergent proximal algorithms [XZ14, LSS14] towards the

optimum, which guarantees the optimization error to be much smaller than the statistical

error.

Our method of de-biasing the LASSO Chapter 5 is similar to [ZZ14, vdGBRD14,

JM14, JM15]. Our method uses a new `1 regularized objective for high dimensional linear

regression, and we have different de-biasing terms, because we also need to de-bias the

covariance estimation. In Algorithm 3, our covariance estimate is similar to the classic

sandwich estimator [Hub67, Whi80]. Previous methods require O(p2) space which unsuitable

for large scale problems, whereas our method only requires O(p) space. Similar to our `1-

norm regularized objective, [YLR14, JD11] shows similar point estimate statistical guarantees

for related estimators; however there are no confidence interval results. Further, although

[YLR14] is an elementary estimator in closed form, it still requires computing the inverse of the

thresholded covariance, which is challenging in high dimensions, and may not computationally
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outperform optimization approaches.

Finally, for feature selection, we do not assume that absolute values of the true

parameter’s non-zero entries are lower bounded. [FGLS18, Wai09, BvdG11].

Time series analysis. Our approach of sampling contiguous blocks of indices to compute

stochastic gradients for statistical inference in time series analysis is similar to resampling

procedures in moving block or circular bootstrap [Car86, Kun89, Büh02, DH97, ET94, Lah13,

PR92, PR94, KL12], and conformal prediction [BHV14, SV08, VGS05]. Also, our procedure

is similar to Driscoll-Kraay standard errors [DK98, KD99, Hoe07], but does not waste

computational resources to explicitly store entire matrices, and is suited for large scale time

series analysis.
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Chapter 2

Statistical inference in M-estimation

Here, we give a brief overview of statistical inference in unregularized M -estimation.
Consider the problem of estimating a set of parameters θ? ∈ Rp using n samples {Xi}ni=1,
drawn from some distribution P on the sample space X. In frequentist inference, we are
interested in estimating the minimizer θ? of the population risk:

θ? = argmin
θ∈Rp

EP [f(θ;X)] = argmin
θ∈Rp

∫
x
f(θ;x) dP (x), (2.1)

where we assume that f(·;x) : Rp → R is real-valued and convex; further, we will use E ≡ EP ,

unless otherwise stated. In practice, the distribution P is unknown. We thus estimate θ? by

solving an empirical risk minimization (ERM) problem, where we use the estimate θ̂:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

f(θ;Xi). (2.2)

Statistical inference consists of techniques for obtaining information beyond point

estimates θ̂, such as confidence intervals. These can be performed if there is an asymptotic

limiting distribution associated with θ̂ [Was13]. Indeed, under standard and well-understood

regularity conditions, the solution to M -estimation problems satisfies asymptotic normality.

That is, the distribution
√
n(θ̂ − θ?) converges weakly to a normal distribution:

√
n(θ̂ − θ?) −→ N(0, H?−1G?H?−1), (2.3)

where

H? = E[∇2f(θ?;X)],

This chapter also appears in [LKLC18, LLKC18]. It was written by Tianyang Li, and edited by Anastasios
Kyrillidis and Constantine Caramanis.
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and

G? = E[∇f(θ?;X) · ∇f(θ?;X)>];

see also Theorem 5.21 in [vdV00]. We can therefore use this result, as long as we have a good

estimate of the covariance matrix: H?−1G?H?−1. The central goal of this paper is obtaining

accurate estimates for H?−1G?H?−1.

A naive way to estimate H?−1G?H?−1 is through the empirical estimator Ĥ−1ĜĤ−1

where:

Ĥ =
1

n

n∑
i=1

∇2f(θ̂;Xi) and

Ĝ =
1

n

n∑
i=1

∇f(θ̂;Xi)∇f(θ̂;Xi)
>. (2.4)

Beyond calculating1 Ĥ and Ĝ, this computation requires an inversion of Ĥ and matrix-matrix

multiplications in order to compute Ĥ−1ĜĤ−1—a key computational bottleneck in high

dimensions. Instead, our method uses SGD to directly estimate Ĥ−1ĜĤ−1.

1In the case of maximum likelihood estimation, we have H? = G?—which is called Fisher information.
Thus, the covariance of interest is H?−1 = G?−1. This can be estimated either using Ĥ or Ĝ.
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Chapter 3

Statistical inference using SGD

Here, we describe our procedure for statistical inference in unregularized M -estimation

using SGD.

3.1 Statistical inference using SGD

Consider the optimization problem in (2.2). For instance, in maximum likelihood

estimation (MLE), f(θ;Xi) is a negative log-likelihood function. For simplicity of notation,

we use fi(θ) and f(θ) for f(θ;Xi) and 1
n

∑n
i=1 f(θ;Xi), respectively, for the rest of the paper.

The SGD algorithm with a fixed step size η, is given by the iteration

θt+1 = θt − ηgs(θt), (3.1)

where gs(·) is an unbiased estimator of the gradient, i.e., E[gs(θ) | θ] = ∇f(θ), where the

expectation is w.r.t. the stochasticity in the gs(·) calculation. A classical example of an

unbiased estimator of the gradient is gs(·) ≡ ∇fi(·), where i is a uniformly random index

over the samples Xi.

Our inference procedure uses the average of t consecutive SGD iterations. In particular,

the algorithm proceeds as follows: Given a sequence of SGD iterates, we use the first SGD

This chapter also appears in [LLKC18]. The theoretical analysis was written by Tianyang Li, and
the experiments were conducted in collaboration with Liu Liu. It was edited by Anastasios Kyrillidis and
Constantine Caramanis.
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t+2, · · · , θ(R)

t+d

Figure 3.1: Our SGD inference procedure

iterates θ−b, θ−b+1, . . . , θ0 as a burn in period; we discard these iterates. Next, for each

“segment” of t+d iterates, we use the first t iterates to compute θ̄
(i)
t = 1

t

∑t
j=1 θ

(i)
j and discard

the last d iterates, where i indicates the i-th segment. This procedure is illustrated in Figure

3.1. As the final empirical minimum θ̂, we use in practice θ̂ ≈ 1
R

∑R
i=1 θ̄

(i)
t [Bub15b].

Some practical aspects of our scheme are discussed below.

Step size η selection and length t: Theorem 1 below is consistent only for SGD with

fixed step size that depends on the number of samples taken. Our experiments, however,

demonstrate that choosing a constant (large) η gives equally accurate results with significantly

reduced running time. We conjecture that a better understanding of t’s and η’s influence

requires stronger bounds for SGD with constant step size. Heuristically, calibration methods

for parameter tuning in subsampling methods ([ET94], Ch.18; [PRW12], Ch. 9) could be

used for hyper-parameter tuning in our SGD procedure. We leave the problem of finding

maximal (provable) learning rates for future work.
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Discarded length d: Based on the analysis of mean estimation in the appendix, if we

discard d SGD iterates in every segment, the correlation between consecutive θ(i) and θ(i+1)

is of the order of C1e
−C2ηd, where C1 and C2 are data dependent constants. This can be used

as a rule of thumb to reduce correlation between samples from our SGD inference procedure.

Burn-in period b: The purpose of the burn-in period b, is to ensure that samples are

generated when SGD iterates are sufficiently close to the optimum. This can be determined

using heuristics for SGD convergence diagnostics. Another approach is to use other methods

(e.g., SVRG [JZ13]) to find the optimum, and use a relatively small b for SGD to reach

stationarity, similar to Markov Chain Monte Carlo burn-in.

Statistical inference using θ̄
(i)
t and θ̂: Similar to ensemble learning [OM99], we use

i = 1, 2, . . . , R estimators for statistical inference:

θ(i) = θ̂ +

√
Ks · t
n

(
θ̄

(i)
t − θ̂

)
. (3.2)

Here, Ks is a scaling factor that depends on how the stochastic gradient gs is computed.

We show examples of Ks for mini batch SGD in linear regression and logistic regression

in the corresponding sections. Similar to other resampling methods such as bootstrap and

subsampling, we use quantiles or variance of θ(1), θ(2), . . . , θ(R) for statistical inference.

3.1.1 Theoretical guarantees

Next, we provide the main theorem of our paper. Essentially, this provides conditions

under which our algorithm is guaranteed to succeed, and hence has inference capabilities.

Theorem 1. For a differentiable convex function f(θ) = 1
n

∑n
i=1 fi(θ), with gradient ∇f(θ),

let θ̂ ∈ Rp be its minimizer, according to (2.2), and denote its Hessian at θ̂ by H := ∇2f(θ̂) =

1
n
·∑n

i=1∇2fi(θ̂). Assume that ∀θ ∈ Rp, f satisfies:

(F1) Weak strong convexity: (θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖2
2, for constant α > 0,
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(F2) Lipschitz gradient continuity: ‖∇f(θ)‖2 ≤ L‖θ − θ̂‖2, for constant L > 0,

(F3) Bounded Taylor remainder: ‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖2
2, for constant E > 0,

(F4) Bounded Hessian spectrum at θ̂: 0 < λL ≤ λi(H) ≤ λU <∞, ∀i.

Furthermore, let gs(θ) be a stochastic gradient of f , satisfying:

(G1) E [gs(θ) | θ] = ∇f(θ),

(G2) E [‖gs(θ)‖2
2 | θ] ≤ A‖θ − θ̂‖2

2 +B,

(G3) E [‖gs(θ)‖4
2 | θ] ≤ C‖θ − θ̂‖4

2 +D,

(G4)
∥∥E [gs(θ)gs(θ)> | θ]−G∥∥2

≤ A1‖θ − θ̂‖2 + A2‖θ − θ̂‖2
2 + A3‖θ − θ̂‖3

2 + A4‖θ − θ̂‖4
2,

where G = E[gs(θ̂)gs(θ̂)
> | θ̂] and, for positive, data dependent constants A,B,C,D,Ai, for

i = 1, . . . , 4.

Assume that ‖θ1 − θ̂‖2
2 = O(η); then for sufficiently small step size η > 0, the average

SGD sequence, θ̄t, satisfies:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2

.
√
η +

√
1
tη

+ tη2. (3.3)

We provide the full proof in the appendix, and also we give precise (data-dependent)

formulas for the above constants. For ease of exposition, we leave them as constants in the

expressions above. Further, in the next section, we relate a continuous approximation of SGD

to Ornstein-Uhlenbeck process [RM51] to give an intuitive explanation of our results.

Discussion. For linear regression, assumptions (F1), (F2), (F3), and (F4) are satisfied

when the empirical risk function is not degenerate. In mini batch SGD using sampling with
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replacement, assumptions (G1), (G2), (G3), and (G4) are satisfied. Linear regression’s result

is presented in Corollary 2 in the appendix.

For logistic regression, assumption (F1) is not satisfied because the empirical risk

function in this case is strictly but not strongly convex. Thus, we cannot apply Theorem 1

directly. Instead, we consider the use of SGD on the square of the empirical risk function

plus a constant; see eq. (3.7) below. When the empirical risk function is not degenerate,

(3.7) satisfies assumptions (F1), (F2), (F3), and (F4). We cannot directly use vanilla SGD

to minimize (3.7), instead we describe a modified SGD procedure for minimizing (3.7) in

Section 3.1.3, which satisfies assumptions (G1), (G2), (G3), and (G4). We believe that this

result is of interest by its own. We present the result specialized for logistic regression in

Corollary 1.

Note that Theorem 1 proves consistency for SGD with fixed step size, requiring η → 0

when t→∞. However, we empirically observe in our experiments that a sufficiently large

constant η gives better results. We conjecture that the average of consecutive iterates in SGD

with larger constant step size converges to the optimum and we consider it for future work.

3.1.2 Intuitive interpretation via the Ornstein-Uhlenbeck process approxima-
tion

Here, we describe a continuous approximation of the discrete SGD process and relate

it to the Ornstein-Uhlenbeck process [RM51], to give an intuitive explanation of our results.

In particular, under regularity conditions, the stochastic process ∆t = θt − θ̂ asymptotically

converges to an Ornstein-Uhlenbeck process ∆(t), [KH81, Pfl86, BPM90, KY03, MHB16]

that satisfies:

d∆(T ) = −H∆(T ) dT +
√
ηG

1
2 dB(T ), (3.4)

where B(T ) is a standard Brownian motion. Given (3.4),
√
t(θ̄t − θ̂) can be approximated as
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√
t(θ̄t − θ̂) = 1√

t

t∑
i=1

(θi − θ̂)

= 1
η
√
t

t∑
i=1

(θi − θ̂)η ≈ 1
η
√
t

∫ tη

0

∆(T ) dT,

(3.5)

where we use the approximation that η ≈ dT . By rearranging terms in (3.4) and

multiplying both sides by H−1, we can rewrite the stochastic differential equation (3.4) as

∆(T ) dT = −H−1 d∆(T ) +
√
ηH−1G

1
2 dB(T ). Thus, we have∫ tη

0

∆(T ) dT =

−H−1(∆(tη)−∆(0)) +
√
ηH−1G

1
2B(tη). (3.6)

After plugging (3.6) into (3.5) we have

√
t
(
θ̄t − θ̂

)
≈

− 1
η
√
t
H−1 (∆(tη)−∆(0)) + 1√

tη
H−1G

1
2B(tη).

When ∆(0) = 0, the variance Var
[
− 1/η

√
t · H−1(∆(tη) − ∆(0))

]
= O (1/tη). Since 1/√tη ·

H−1G
1
2B(tη) ∼ N(0, H−1GH−1), when η → 0 and ηt→∞, we conclude that

√
t(θ̄t − θ̂) ∼ N(0, H−1GH−1).

3.1.3 Logistic regression

We next apply our method to logistic regression. We have n samples (X1, y1), (X2, y2), . . . (Xn, yn)

where Xi ∈ Rp consists of features and yi ∈ {+1,−1} is the label. We estimate θ of a linear

classifier sign(θTX) by:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

log
(
1 + exp(−yiθ>Xi)

)
.
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We cannot apply Theorem 1 directly because the empirical logistic risk is not strongly
convex; it does not satisfy assumption (F1). Instead, we consider the convex function

f(θ) =
1

2

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))2

,

where c > 0 (e.g., c = 1). (3.7)

The gradient of f(θ) is a product of two terms

∇f(θ) =

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Ψ

×

∇
(

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Υ

.

Therefore, we can compute gs = ΨsΥs, using two independent random variables satisfying

E[Ψs | θ] = Ψ and E[Υs | θ] = Υ. For Υs, we have Υs = 1
SΥ

∑
i∈IΥ

t
∇ log(1 + exp(−yiθ>Xi)),

where IΥ
t are SΥ indices sampled from [n] uniformly at random with replacement. For Ψs, we

have Ψs = c+ 1
SΨ

∑
i∈IΨ

t
log(1 + exp(−yiθ>Xi)), where IΨ

t are SΨ indices uniformly sampled

from [n] with or without replacement. Given the above, we have ∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖2
2

for some constant α by the generalized self-concordance of logistic regression [Bac10, Bac14],

and therefore the assumptions are now satisfied.

For convenience, we write k(θ) = 1
n

∑n
i=1 ki(θ) where ki(θ) = log(1 + exp(−yiθ>Xi)).

Thus f(θ) = (k(θ) + c)2, E[Ψs | θ] = k(θ) + c, and E[Υs | θ] = ∇k(θ).

Corollary 1. Assume ‖θ1− θ̂‖2
2 = O(η); also SΨ = O(1), SΥ = O(1) are bounded. Then, we

have ∥∥∥tE [(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

√
1
tη + tη2,

where H = ∇2f(θ̂) = (c + k(θ̂))∇2k(θ̂). Here, G = 1
SΥ
KG(θ̂) 1

n

∑n
i=1∇ki(θ̂)ki(θ̂)> with

KG(θ) = E[Ψ(θ)2] depending on how indexes are sampled to compute Ψs:
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Figure 3.2: Estimation in univariate models.

� with replacement: KG(θ) = 1
SΨ

( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

(c+ k(θ))2 ,

� no replacement: KG(θ) =
1−SΨ−1

n−1

SΨ
( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

n
n−1(c+ k(θ))2.

Quantities other than t and η are data dependent constants.

As with the results above, in the appendix we give data-dependent expressions for the

constants. Simulations suggest that the term tη2 in our bound is an artifact of our analysis. Be-

cause in logistic regression the estimate’s covariance is
(∇2k(θ̂))

−1

n

(∑n
i=1∇ki(θ̂)∇ki(θ̂)>

n

)(
∇2k(θ̂)

)−1

,

we set the scaling factor Ks = (c+k(θ̂))2

KG(θ̂)
in (3.2) for statistical inference. Note that Ks ≈ 1 for

sufficiently large SΨ.

η t = 100 t = 500 t = 2500

0.1 (0.957, 4.41) (0.955, 4.51) (0.960, 4.53)
0.02 (0.869, 3.30) (0.923, 3.77) (0.918, 3.87)
0.004 (0.634, 2.01) (0.862, 3.20) (0.916, 3.70)

(a) Bootstrap (0.941, 4.14), normal approximation (0.928, 3.87)

η t = 100 t = 500 t = 2500

0.1 (0.949, 4.74) (0.962, 4.91) (0.963, 4.94)
0.02 (0.845, 3.37) (0.916, 4.01) (0.927, 4.17)
0.004 (0.616, 2.00) (0.832, 3.30) (0.897, 3.93)

(b) Bootstrap (0.938, 4.47), normal approximation (0.925, 4.18)

Table 3.1: Linear regression. Left : Experiment 1, Right : Experiment 2.
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η t = 100 t = 500 t = 2500

0.1 (0.872, 0.204) (0.937, 0.249) (0.939, 0.258)
0.02 (0.610, 0.112) (0.871, 0.196) (0.926, 0.237)
0.004 (0.312, 0.051) (0.596, 0.111) (0.86, 0.194)

(a) Bootstrap (0.932, 0.253), normal approximation (0.957, 0.264)

η t = 100 t = 500 t = 2500

0.1 (0.859, 0.206) (0.931, 0.255) (0.947, 0.266)
0.02 (0.600, 0.112) (0.847, 0.197) (0.931, 0.244)
0.004 (0.302, 0.051) (0.583, 0.111) (0.851, 0.195)

(b) Bootstrap (0.932, 0.245), normal approximation (0.954, 0.256)

Table 3.2: Logistic regression. Left : Experiment 1, Right : Experiment 2.

3.2 Experiments

3.2.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ?i ∈ Ĉi] where θ? = argminθ E[f(θ,X)] ∈ Rp,

and Ĉi is the estimated confidence interval for the ith coordinate. The average confidence

interval width is defined as 1
p

∑p
i=1(Ĉ

u
i − Ĉ l

i) where [Ĉ l
i , Ĉ

u
i ] is the estimated confidence

interval for the ith coordinate. In our experiments, coverage probability and average confi-

dence interval width are estimated through simulation. We use the empirical quantile of our

SGD inference procedure and bootstrap to compute the 95% confidence intervals for each

coordinate of the parameter. For results given as a pair (α, β), it usually indicates (coverage

probability, confidence interval length).

3.2.1.1 Univariate models

In Figure 3.2, we compare our SGD inference procedure with (i) Bootstrap and (ii)

normal approximation with inverse Fisher information in univariate models. We observe that

our method and Bootstrap have similar statistical properties. Figure 1.1 in the appendix

shows Q-Q plots of samples from our SGD inference procedure.

Normal distribution mean estimation: Figure 3.2a compares 500 samples from SGD

inference procedure and Bootstrap versus the distribution N(0, 1/n), using n = 20 i.i.d.

samples from N(0, 1). We used mini batch SGD described in Section 3.4. For the parameters,

we used η = 0.8, t = 5, d = 10, b = 20, and mini batch size of 2. Our SGD inference procedure
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gives (0.916 , 0.806), Bootstrap gives (0.926 , 0.841), and normal approximation gives (0.922 ,

0.851).

Exponential distribution parameter estimation: Figure 3.2b compares 500 samples from

inference procedure and Bootstrap, using n = 100 samples from an exponential distribution

with PDF λe−λx where λ = 1. We used SGD for MLE with mini batch sampled with

replacement. For the parameters, we used η = 0.1, t = 100, d = 5, b = 100, and mini batch

size of 5. Our SGD inference procedure gives (0.922, 0.364), Bootstrap gives (0.942 , 0.392),

and normal approximation gives (0.922, 0.393).

Poisson distribution parameter estimation: Figure 3.2c compares 500 samples from

inference procedure and Bootstrap, using n = 100 samples from a Poisson distribution with

PDF λxe−λx where λ = 1. We used SGD for MLE with mini batch sampled with replacement.

For the parameters, we used η = 0.1, t = 100, d = 5, b = 100, and mini batch size of 5. Our

SGD inference procedure gives (0.942 , 0.364), Bootstrap gives (0.946 , 0.386), and normal

approximation gives (0.960 , 0.393).

3.2.1.2 Multivariate models

In these experiments, we set d = 100, used mini-batch size of 4, and used 200 SGD

samples. In all cases, we compared with Bootstrap using 200 replicates. We computed the

coverage probabilities using 500 simulations. Also, we denote 1p =
[
1 1 . . . 1

]> ∈ Rp.

Additional simulations comparing covariance matrix computed with different methods are

given in Sec. 1.1.1.1.

Linear regression: Experiment 1: Results for the case where X ∼ N(0, I) ∈ R10,

Y = w∗TX + ε, w∗ = 1p/
√
p, and ε ∼ N(0, σ2 = 102) with n = 100 samples is given in

Table 3.1a. Bootstrap gives (0.941, 4.14), and confidence intervals computed using the error

covariance and normal approximation gives (0.928, 3.87). Experiment 2: Results for the case
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where X ∼ N(0,Σ) ∈ R10, Σij = 0.3|i−j|, Y = w∗TX+ ε, w∗ = 1p/
√
p, and ε ∼ N(0, σ2 = 102)

with n = 100 samples is given in Table 3.1b. Bootstrap gives (0.938, 4.47), and confidence

intervals computed using the error covariance and normal approximation gives (0.925, 4.18).

Logistic regression: Here we show results for logistic regression trained using vanilla

SGD with mini batch sampled with replacement. Results for modified SGD (Sec. 3.1.3) are

given in Sec. 1.1.1.1. Experiment 1: Results for the case where P[Y = +1] = P[Y = −1] = 1/2,

X | Y ∼ N(0.01Y 1p/
√
p, I) ∈ R10 with n = 1000 samples is given in Table 3.2a. Bootstrap

gives (0.932, 0.245), and confidence intervals computed using inverse Fisher matrix as the

error covariance and normal approximation gives (0.954, 0.256). Experiment 2: Results

for the case where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼ N(0.01Y 1p/
√
p,Σ) ∈ R10,

Σij = 0.2|i−j| with n = 1000 samples is given in Table 3.2b. Bootstrap gives (0.932, 0.253),

and confidence intervals computed using inverse Fisher matrix as the error covariance and

normal approximation gives (0.957, 0.264).

3.2.2 Real data

Here, we compare covariance matrices computed using our SGD inference procedure,

bootstrap, and inverse Fisher information matrix on the LIBSVM Splice data set, and we

observe that they have similar statistical properties.

3.2.2.1 Splice data set

The Splice data set 1 contains 60 distinct features with 1000 data samples. This is a

classification problem between two classes of splice junctions in a DNA sequence. We use a

logistic regression model trained using vanilla SGD.

In Figure 3.3, we compare the covariance matrix computed using our SGD inference

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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procedure and bootstrap n = 1000 samples. We used 10000 samples from both bootstrap

and our SGD inference procedure with t = 500, d = 100, η = 0.2, and mini batch size of 6.
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(b) SGD inference covariance

Figure 3.3: Splice data set
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(a) Original “0”: logit -46.3,
CI (-64.2, -27.9)
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(b) Adversarial “0”: logit 16.5,
CI (-10.9, 30.5)

Figure 3.4: MNIST
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3.2.2.2 MNIST

Here, we train a binary logistic regression classifier to classify 0/1 using a noisy MNIST

data set, and demonstrate that adversarial examples produced by gradient attack [GSS14]

(perturbing an image in the direction of loss function’s gradient with respect to data) can be

detected using prediction intervals. We flatten each 28× 28 image into a 784 dimensional

vector, and train a linear classifier using pixel values as features. To add noise to each image,

where each original pixel is either 0 or 1, we randomly changed 70% pixels to random numbers

uniformly on [0, 0.9]. Next we train the classifier on the noisy MNIST data set, and generate

adversarial examples using this noisy MNIST data set. Figure 3.4 shows each image’s logit

value (log P[1|image]
P[0|image]

) and its 95% confidence interval (CI) computed using quantiles from our

SGD inference procedure.

3.2.3 Discussion

In our experiments, we observed that using a larger step size η produces accurate

results with significantly accelerated convergence time. This might imply that the η term in

Theorem 1’s bound is an artifact of our analysis. Indeed, although Theorem 1 only applies

to SGD with fixed step size, where ηt→∞ and η2t→ 0 imply that the step size should be

smaller when the number of consecutive iterates used for the average is larger, our experiments

suggest that we can use a (data dependent) constant step size η and only require ηt→∞.

In the experiments, our SGD inference procedure uses (t + d) · S · p operations to

produce a sample, and Newton method uses n · (matrix inversion complexity = Ω(p2)) ·
(number of Newton iterations t) operations to produce a sample. The experiments therefore

suggest that our SGD inference procedure produces results similar to Bootstrap while using

far fewer operations.
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3.3 Linear Regression

In linear regression, the empirical risk function satisfies:

f(θ) =
1

n

n∑
i=1

1
2
(θ>xi − yi)2,

where yi denotes the observations of the linear model and xi are the regressors. To find an

estimate to θ?, one can use SGD with stochastic gradient give by:

gs[θt] =
1

S

∑
i∈It

∇fi(θt),

where It are S indices uniformly sampled from [n] with replacement.

Next, we state a special case of Theorem 1. Because the Taylor remainder ∇f(θ)−
H(θ − θ̂) = 0, linear regression has a stronger result than general M -estimation problems.

Corollary 2. Assume that ‖θ1 − θ̂‖2
2 = O(η), we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

1√
tη
,

where H = 1
n

∑n
i=1 xix

>
i and G = 1

S
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i .

We assume that S = O(1) is bounded, and quantities other than t and η are data

dependent constants.

As with our main theorem, in the appendix we provide explicit data-dependent

expressions for the constants in the result. Because in linear regression the estimate’s

covariance is 1
n
( 1
n

∑n
i=1 xix

>
i )−1)( 1

n
(x>i θ̂− yi)(x>i θ̂− yi)>)( 1

n

∑n
i=1 xix

>
i )−1), we set the scaling

factor Ks = S in (3.2) for statistical inference.

24



3.4 Exact analysis of mean estimation

In this section, we give an exact analysis of our method in the least squares, mean

estimation problem. For n i.i.d. samples X1, X2, . . . , Xn, the mean is estimated by solving

the following optimization problem

θ̂ = argmax
θ∈Rp

1

n

n∑
i=1

1
2
‖Xi − θ‖2

2 =
1

n

n∑
i=1

Xi.

In the case of mini-batch SGD, we sample S = O(1) indexes uniformly randomly with

replacement from [n]; denote that index set as It. For convenience, we write Yt = 1
S

∑
i∈It Xi,

Then, in the tth mini batch SGD step, the update step is

θt+1 = θt − η(θt − Yt) = (1− η)θt + ηYt, (3.8)

which is the same as the exponential moving average. And we have

√
tθ̂t = − 1

η
√
t
(θt+1 − θ1) +

1√
t

n∑
i=1

Yi. (3.9)

Assume that ‖θ1− θ̂‖2
2 = O(η), then from Chebyshev’s inequality − 1

η
√
t
(θt+1− θ1)→ 0 almost

surely when tη →∞. By the central limit theorem, 1√
t

∑n
i=1 Yi converges weakly to N(θ̂, 1

S
Σ̂)

with Σ̂ = 1
n

∑n
i=1(Xi − θ̂)(Xi − θ̂)>. From (3.8), we have ‖Cov(θa, θb)‖2 = O(η(1− η)|a−b|)

uniformly for all a, b, where the constant is data dependent. Thus, for our SGD inference

procedure, we have ‖Cov(θ(i), θ(j))‖2 = O(η(1−η)d+t|i−j|). Our SGD inference procedure does

not generate samples that are independent conditioned on the data, whereas replicates are

independent conditioned on the data in bootstrap, but this suggests that our SGD inference

procedure can produce “almost independent” samples if we discard sufficient number of SGD

iterates in each segment.

When estimating a mean using our SGD inference procedure where each mini batch is

S elements sampled with replacement, we set Ks = S in (3.2).
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Chapter 4

Approximate Newton-based statistical inference using

only stochastic gradients

In unregularized, low-dimensional M -estimation problems, we estimate a parameter

of interest:

θ? = arg min
θ∈Rp

EX∼P [`(X; θ)] , where P (X) is the data distribution,

using empirical risk minimization (ERM) on n > p i.i.d. data points {Xi}ni=1:

θ̂ = arg min
θ∈Rp

1
n

n∑
i=1

`(Xi; θ).

Statistical inference, such as computing one-dimensional confidence intervals, gives us infor-

mation beyond the point estimate θ̂, when θ̂ has an asymptotic limit distribution [Was13].

E.g., under regularity conditions, the M -estimator satisfies asymptotic normality [vdV98,

Theorem 5.21]. I.e.,
√
n(θ̂ − θ?) weakly converges to a normal distribution:

√
n
(
θ̂ − θ?

)
→ N

(
0, H?−1G?H?−1

)
,

where H? = EX∼P [∇2
θ`(X; θ?)] and G? = EX∼P [∇θ`(X; θ?)∇θ`(X; θ?)>]. We can perform

statistical inference when we have a good estimate of H?−1G?H?−1. In this work, we use the

This chapter also appears in [LKLC18]. The theoretical analysis was written by Tianyang Li, and
the experiments were conducted in collaboration with Liu Liu. It was edited by Anastasios Kyrillidis and
Constantine Caramanis.
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plug-in covariance estimator Ĥ−1ĜĤ−1 for H?−1G?H?−1, where:

Ĥ = 1
n

n∑
i=1

∇2
θ`(Xi; θ̂), and Ĝ = 1

n

n∑
i=1

∇θ`(Xi; θ̂)∇θ`(Xi; θ̂)
>.

Observe that, in the naive case of directly computing Ĝ and Ĥ−1, we require both high

computational- and space-complexity. Here, instead, we utilize approximate stochastic

Newton motions from first order information to compute the quantity Ĥ−1ĜĤ−1.

4.1 Statistical inference with approximate Newton steps using
only stochastic gradients

Based on the above, we are interested in solving the following p-dimensional optimiza-

tion problem:

θ̂ = arg min
θ∈Rp

f(θ) := 1
n

n∑
i=1

fi(θ), where fi(θ) = `(Xi; θ).

Notice that Ĥ−1ĜĤ−1 can be written as 1
n

∑n
i=1

(
Ĥ−1∇θ`(Xi; θ̂)

) (
Ĥ−1∇θ`(Xi; θ̂)

)>
, which

can be interpreted as the covariance of stochastic –inverse-Hessian conditioned– gradients at

θ̂. Thus, the covariance of stochastic Newton steps can be used for statistical inference.

Algorithm 1 approximates each stochastic Newton Ĥ−1∇θ`(Xi; θ̂) step using only first

order information. We start from θ0 which is sufficiently close to θ̂, which can be effectively

achieved using SVRG [JZ13]; a description of the SVRG algorithm can be found in Chapter 7.

Lines 4, 5 compute a stochastic gradient whose covariance is used as part of statistical

inference. Lines 6 to 12 use SGD to solve the Newton step,

min
g∈Rp

〈
1
So

∑
i∈Io

∇fi(θt), g
〉

+ 1
2ρt

〈
g,∇2f(θt)g

〉
, (4.1)

which can be seen as a generalization of SVRG; this relationship is described in more detail

in Chapter 7. In particular, these lines correspond to solving (4.1) using SGD by uniformly
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Algorithm 1 Unregularized M-estimation statistical inference

1: Parameters: So, Si ∈ Z+; ρ0, τ0 ∈ R+; do, di ∈
(

1
2
, 1
)

Initial state: θ0 ∈ Rp

2: for t = 0 to T − 1 do // approximate stochastic Newton descent
3: ρt ← ρ0(t+ 1)−do

4: Io ← uniformly sample So indices with replacement from [n]

5: g0
t ← −ρt

(
1
So

∑
i∈Io ∇fi(θt)

)
6: for j = 0 to L− 1 do // solving (4.1) approximately using SGD
7: τj ← τ0(j + 1)−di and δjt ← O(ρ4

t τ
4
j )

8: Ii ← uniformly sample Si indices without replacement from [n]

9: gj+1
t ← gjt − τj

(
1
Si

∑
k∈Ii

∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt

)
+ τjg

0
t

10: end for
11: Use

√
So · ḡtρt for statistical inference, where ḡt = 1

L+1

∑L
j=0 g

j
t

12: θt+1 ← θt + gLt
13: end for

sampling a random fi, and approximating:

∇2f(θ)g ≈ ∇f(θ+δjt g)−∇f(θ)

δjt
= E

[
∇fi(θ+δjt g)−∇fi(θ)

δjt
| θ
]
. (4.2)

Finally, the outer loop (lines 2 to 13) can be viewed as solving inverse Hessian conditioned

stochastic gradient descent, similar to stochastic natural gradient descent [Ama98].

In terms of parameters, similar to [PJ92, Rup88], we use a decaying step size in Line

8 to control the error of approximating H−1g. We set δjt = O(ρ4
t τ

4
j ) to control the error

of approximating Hessian vector product using a finite difference of gradients, so that it is

smaller than the error of approximating H−1g using stochastic approximation. For similar

reasons, we use a decaying step size in the outer loop to control the optimization error.

The following theorem characterizes the behavior of Algorithm 1.

Theorem 2. For a twice continuously differentiable and convex function f(θ) = 1
n

∑n
i=1 fi(θ)

where each fi is also convex and twice continuously differentiable, assume f satisfies

� strong convexity: ∀θ1, θ2, f(θ2) ≥ f(θ1) + 〈∇f(θ1), θ2 − θ1〉+ 1
2
α‖θ2 − θ1‖2

2;
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� ∀θ, each ‖∇2fi(θ)‖2 ≤ βi, which implies that fi has Lipschitz gradient: ∀θ1, θ2, ‖∇fi(θ1)−
∇fi(θ2)‖2 ≤ βi‖θ1 − θ2‖2;

� each ∇2fi is Lipschitz continuous: ∀θ1, θ2, ‖∇2fi(θ2)−∇2fi(θ1)‖2 ≤ hi‖θ2 − θ1‖2.

In Algorithm 1, we assume that batch sizes So—in the outer loop—and Si—in the

inner loops—are O(1). The outer loop step size is

ρt = ρ0 · (t+ 1)−do , where do ∈
(

1
2
, 1
)

is the decaying rate. (4.3)

In each outer loop, the inner loop step size is

τj = τ0 · (j + 1)−di , where di ∈
(

1
2
, 1
)

is the decaying rate. (4.4)

The scaling constant for Hessian vector product approximation is

δjt = δ0 · ρ4
t · τ 4

j = o
(

1
(t+1)2(j+1)2

)
. (4.5)

Then, for the outer iterate θt we have

E
[
‖θt − θ̂‖2

2

]
. t−do , (4.6) and E

[
‖θt − θ̂‖4

2

]
. t−2do . (4.7)

In each outer loop, after L steps of the inner loop, we have:

E
[∥∥∥ ḡtρt − [∇2f(θt)]

−1g0
t

∥∥∥2

2
| θt
]
. 1

L

∥∥g0
t

∥∥2

2
, (4.8)

and at each step of the inner loop, we have:

E
[∥∥gj+1

t − [∇2f(θt)]
−1g0

t

∥∥4

2
| θt
]
. (j + 1)−2di

∥∥g0
t

∥∥4

2
. (4.9)

After T steps of the outer loop, we have a non-asymptotic bound on the “covariance”:

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ>t
ρ2
t

∥∥∥∥∥
2

]
. T−

do
2 + L−

1
2 , (4.10)

where H = ∇2f(θ̂) and G = 1
n

∑n
i=1∇fi(θ̂)∇fi(θ̂)>.
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Some comments on the results in Theorem 2. The main outcome is that (4.10) provides

a non-asymptotic bound and consistency guarantee for computing the estimator covariance

using Algorithm 1. This is based on the bound for approximating the inverse-Hessian

conditioned stochastic gradient in (4.8), and the optimization bound in (4.6). As a side

note, the rates in Theorem 2 are very similar to classic results in stochastic approximation

[PJ92, Rup88]; however the nested structure of outer and inner loops is different from standard

stochastic approximation algorithms. Heuristically, calibration methods for parameter tuning

in subsampling methods ([ET94], Ch.18; [PRW12], Ch. 9) can be used for hyper-parameter

tuning in our algorithm.

In Algorithm 1, {ḡt/ρt}ni=1 does not have asymptotic normality. I.e., 1√
T

∑T
t=1

ḡt
ρt

does

not weakly converge to N
(

0, 1
So
H−1GH−1

)
; we give an example using mean estimation in

Section 4.4.1. For a similar algorithm based on SVRG (Algorithm 2 in Section 4.4), we show

that we have asymptotic normality and improved bounds for the “covariance”; however, this

requires a full gradient evaluation in each outer loop. In Section 4.3, we present corollaries

for the case where the iterations in the inner loop increase, as the counter in the outer loop

increases (i.e., (L)t is an increasing series). This guarantees consistency (convergence of the

covariance estimate to H−1GH−1), although it is less efficient than using a constant number

of inner loop iterations. Our procedure also serves as a general and flexible framework for

using different stochastic gradient optimization algorithms [TA17, HAV+15, LH15, DLH16]

in the inner and outer loop parts.

Finally, we present the following corollary that states that the average of consecutive

iterates, in the outer loop, has asymptotic normality, similar to [PJ92, Rup88].

Corollary 3. In Algorithm 1’s outer loop, the average of consecutive iterates satisfies

E
[∥∥∥∑T

t=1 θt
T
− θ̂
∥∥∥2

2

]
. 1

T
, (4.11) and 1√

T

(∑T
t=1 θt
T
− θ̂
)

= W + ∆, (4.12)

where W weakly converges to N(0, 1
So
H−1GH−1), and ∆ = oP (1) when T →∞ and L→∞(

E[‖∆‖2
2] . T 1−2do + T do−1 + 1

L

)
.
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Corollary 3 uses 2nd , 4th moment bounds on individual iterates (eqs. (4.6), (4.7) in

the above theorem), and the approximation of inverse Hessian conditioned stochastic gradient

in (4.9).

4.2 Experiments

4.2.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ?i ∈ Ĉi], where Ĉi is the estimated

confidence interval for the ith coordinate. The average confidence interval length is defined as

1
p

∑p
i=1(Ĉu

i − Ĉ l
i), where [Ĉ l

i , Ĉ
u
i ] is the estimated confidence interval for the ith coordinate.

In our experiments, coverage probability and average confidence interval length are estimated

through simulation. Result given as a pair (α, β) indicates (coverage probability, confidence

interval length).

Approximate Newton Bootstrap Inverse Fisher information Averaged SGD

Lin1 (0.906, 0.289) (0.933, 0.294) (0.918, 0.274) (0.458, 0.094)
Lin2 (0.915, 0.321) (0.942, 0.332) (0.921,0.308) (0.455 0.103)

(a) Linear regression

Approximate Newton Jackknife Inverse Fisher information Averaged SGD

Log1 (0.902, 0.840) (0.966 1.018) (0.938, 0.892) (0.075 0.044)
Log2 (0.925, 1.006) (0.979, 1.167) (0.948, 1.025) (0.065 0.045)

(b) Logistic regression

Table 4.1: Synthetic data average coverage & confidence interval length for low dimensional
problems.

Table 4.1 shows 95% confidence interval’s coverage and length of 200 simulations

for linear and logistic regression. The exact configurations for linear/logistic regression

examples are provided in Appendix 2.1.1.1. Compared with Bootstrap and Jackknife [ET94],

Algorithm 1 uses less numerical operations, while achieving similar results. Compared with the
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Approximate Newton Bootstrap Inverse Fisher information

(0.951, 0.224) (0.946 0.205) (0.966, 0.212)

Table 4.2: Average 95% confidence interval (coverage, length) after calibration

averaged SGD method [LLKC18, CLTZ16], our algorithm performs much better, while using

the same amount of computation, and is much less sensitive to the choice hyper-parameters.

And we observe that calibrated approximate Newton confidence intervals [ET94, PRW12]

are better than bootstrap and inverse Fisher information (Table 4.2).

4.2.2 Real data

Neural network adversarial attack detection. Here we use ideas from statistical in-

ference to detect certain adversarial attacks on neural networks. A key observation is that

neural networks are effective at representing low dimensional manifolds such as natural images

[BJ16, CM16], and this causes the risk function’s Hessian to be degenerate [SEG+17]. From

a statistical inference perspective, we interpret this as meaning that the confidence intervals

in the null space of H+GH+ is infinity, where H+ is the pseudo-inverse of the Hessian (see

Chapter 4). When we make a prediction Ψ(x; θ̂) using a fixed data point x as input (i.e.,

conditioned on x), using the delta method [vdV98], the confidence interval of the prediction

can be derived from the asymptotic normality of Ψ(x; θ̂)

√
n
(

Ψ(x; θ̂)−Ψ(x; θ?)
)
→ N

(
0,∇θΨ(x; θ̂)>

[
Ĥ−1ĜĤ−1

]
∇θΨ(x; θ̂)

)
.

To detect adversarial attacks, we use the score

‖(I−PH+GH+)∇θΨ(x;θ̂)‖
2

‖∇θΨ(x;θ̂)‖
2

,

to measure how much ∇θΨ(x; θ̂) lies in null space of H+GH+, where PH+GH+ is the projection

matrix onto the range of H+GH+. Conceptually, for the same image, the randomly perturbed
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image’s score should be larger than the original image’s score, and the adversarial image’s

score should be larger than the randomly perturbed image’s score.

We train a binary classification neural network with 1 hidden layer and softplus

activation function, to distinguish between “Shirt” and “T-shirt/top” in the Fashion MNIST

data set [XRV17]. Figure 4.1 shows distributions of scores of original images, adversarial

images generated using the fast gradient sign method [GSS14], and randomly perturbed images.

Adversarial and random perturbations have the same `∞ norm. The adversarial perturbations

and example images are shown in Appendix 2.1.2.1. Although the scores’ values are small,

they are still significantly larger than 64-bit floating point precision (2−53 ≈ 1.11× 10−16).

We observe that scores of randomly perturbed images is an order of magnitude larger than

scores of original images, and scores of adversarial images is an order of magnitude larger

than scores of randomly perturbed images.

0.2 0.4 0.6 0.8 1.0 1.2
score 1e 14

0.00

0.25

0.50

0.75

1.00
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1e15
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score 1e 12
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1e12
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random

Figure 4.1: Distribution of scores for original, randomly perturbed, and adversarially perturbed
images
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4.3 Statistical inference via approximate stochastic Newton steps
using first order information with increasing inner loop counts

Here, we present corollaries when the number of inner loops increases in the outer loops

(i.e., (L)t is an increasing series). This guarantees convergence of the covariance estimate to

H−1GH−1, although it is less efficient than using a constant number of inner loops.

4.3.1 Unregularized M-estimation

Similar to Theorem 2’s proof, we have the following result when the number of inner

loop increases in the outer loops.

Corollary 4. In Algorithm 1, if the number of inner loop in each outer loop (L)t increases

in the outer loops, then we have

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. T−

do
2 +

√√√√ 1

T

T∑
i=1

1

(L)t
.

For example, when we choose choose (L)t = L(t + 1)dL for some dL > 0, then√
1
T

∑T
i=1

1
(L)t

= O( 1√
L
T−

dL
2 ).

4.4 SVRG based statistical inference algorithm in unregularized
M-estimation

Here we present a SVRG based statistical inference algorithm in unregularized M-

estimation, which has asymptotic normality and improved bounds for the “covariance”.

Although Algorithm 2 has stronger guarantees than Algorithm 1, Algorithm 2 requires a full

gradient evaluation in each outer loop.

Corollary 5. In Algorithm 2, when L ≥ 20
max1≤i≤n βi

α
and η = 1

10 max1≤i≤n βi
, after T steps of
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Algorithm 2 SVRG based statistical inference algorithm in unregularized M-estimation

1: for t← 0; t < T ; + + t do
2: d0

t ← −η∇f(θt) = −η
(

1
n

∑n
i=1∇fi(θ)

)
// point estimation via SVRG

3: Io ← uniformly sample So indices with replacement from [n]

4: g0
t ← −ρt

(
1
So

∑
i∈Io ∇fi(θt)

)
// statistical inference

5: for j ← 0; j < L; + + j do // solving (4.1) approximately using SGD
6: Ii ← uniformly sample Si indices without replacement from [n]

7: dj+1
t ← djt − η

(
1
Si

∑
k∈Ii(∇fk(θt + djt)−∇fk(θt)

)
+ d0

t // point estimation via

SVRG
8: gj+1

t ← gjt − τj
(

1
Si

∑
k∈Ii

1

δjt
[∇fk(θt + δjt g

j
t )−∇fk(θt)]

)
+ τjg

0
t // statistical infer-

ence
9: end for

10: Use
√
So · ḡtρt for statistical inference // ḡt = 1

L+1

∑L
j=0 g

j
t

11: θt+1 ← θt + d̄t // d̄t = 1
L+1

∑L
j=0 d

j
t

12: end for

the outer loop, we have a non-asymptotic bound on the “covariance”

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. L−

1
2 , (4.13)

and asymptotic normality

1√
T

(
T∑
t=1

ḡt
ρt

) = W + ∆,

where W weakly converges to N(0, 1
So
H−1GH−1) and ∆ = oP (1) when T →∞ and L→∞

(E[‖∆‖2] . 1√
T

+ 1
L

).

When the number of inner loops increases in the outer loops (i.e., (L)t is an increasing

series), we have a result similar to Corollary 4.

A better understanding of concentration, and Edgeworth expansion of the average

consecutive iterates averaged (beyond [Dip08a, Dip08b]) in stochastic approximation, would
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give stronger guarantees for our algorithms, and better compare and understand different

algorithms.

4.4.1 Lack of asymptotic normality in Algorithm 1 for mean estimation

In mean estimation, we solve the following optimization problem

θ̂ = arg min
θ

1

n

n∑
i=1

1

2
‖θ −X(i)‖2

2,

where we assume that {X(i)}ni=1 are constants.

For ease of explanation we use So = 1, ρt = ρ, and θ0 = 0,and we have

ḡt
ρt

= −θt +Xt,

where Xt is uniformly sampled from {X(i)}ni=1.

And for t ≥ 1 we have

θt =
t−1∑
i=0

ρ(1− ρ)t−1−iXi.

Then, we have

1√
T

(
T∑
i=1

ḡt
ρt

)

=
1√
T

(
T∑
t=1

Xt −
T∑
t=1

t−1∑
i=0

ρ(1− ρ)t−1−iXi)

=
1√
T

(
T∑
t=1

Xt −
T−1∑
i=0

(
T∑

t=i+1

ρ(1− ρ)t−1−i)Xi)

=
1√
T

(
T∑
t=1

Xt −
T−1∑
i=0

(1− (1− ρ)T−i)Xi)
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=
1√
T

(XT −X0 +
T−1∑
i=1

(1− ρ)T−iXi),

whose `2 norm’s expectation converges to 0 when T →∞, which implies that it converges

to 0 with probability 1. Thus, in this setting 1√
T

(∑T
t=1

ḡt
ρt

)
does not weakly converge to

N
(

0, 1
So
H−1GH−1

)
.
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Chapter 5

High dimensional linear regression

In this chapter, we focus on the case of high-dimensional linear regression. Statistical

inference in such settings, where p� n, is arguably a more difficult task: the bias introduced

by the regularizer is of the same order with the estimator’s variance. Recent works [ZZ14,

vdGBRD14, JM15] propose statistical inference via de-biased LASSO estimators. Here, we

present a new `1-norm regularized objective and propose an approximate stochastic proximal

Newton algorithm, using only first order information.

We consider the linear model yi = 〈θ?, xi〉 + εi, for some sparse θ? ∈ Rp. For each

sample, εi ∼ N(0, σ2) is i.i.d. noise. And each data point xi ∼ N(0,Σ) ∈ Rp.

� Assumptions on θ: (i)(i)(i) θ? is s-sparse; (ii)(ii)(ii) ‖θ?‖2 = O(1), which implies that ‖θ?‖1 .
√
s.

� Assumptions on Σ: (i)(i)(i) Σ is sparse, where each column (and row) has at most b non-zero

entries;1 (ii)(ii)(ii) Σ is well conditioned: all of Σ’s eigenvalues are Θ(1); (iii)(iii)(iii) Σ is diagonally

dominant (Σii −
∑

j 6=i|Σij| ≥ DΣ > 0 for all 1 ≤ i ≤ p), and this will be used to bound

the `∞ norm of Ŝ−1 [Var75]. A commonly used design covariance that satisfies all of our

assumptions is I.

This chapter also appears in [LKLC18]. The theoretical analysis was written by Tianyang Li, and
the experiments were conducted in collaboration with Liu Liu. It was edited by Anastasios Kyrillidis and
Constantine Caramanis.

1This is satisfied when Σ is block diagonal or banded. Covariance estimation under this sparsity assumption
has been extensively studied [BL08, BRT09, CZ12], and soft thresholding is an effective yet simple estimation
method [RLZ09].
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We estimate θ? using:

θ̂ = arg min
θ∈Rp

1
2

〈
θ,

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ

〉
+ 1

n

n∑
i=1

1
2

(
x>i θ − yi

)2
+ λ‖θ‖1, (5.1)

where Ŝjk = sign
( (

1
n

∑n
i=1xix

>
i

)
jk

)( ∣∣∣( 1
n

∑n
i=1xix

>
i

)
jk

∣∣∣ − ω
)

+
is an estimate of Σ by soft-

thresholding each element of 1
n

∑n
i=1xix

>
i with ω = Θ

(√
log p
n

)
[RLZ09]. Under our assump-

tions, Ŝ is positive definite with high probability when n � b2 log p (Lemma 9), and this

guarantees that the optimization problem (5.1) is well defined. I.e., we replace the degenerate

Hessian in regular LASSO regression with an estimate, which is positive definite with high

probability under our assumptions.

We set the regularization parameter

λ = Θ

(
(σ + ‖θ?‖1)

√
log p
n

)
,

which is similar to LASSO regression [BvdG11, NRWY12] and related estimators using

thresholded covariance [YLR14, JD11].

Point estimate. Theorem 3 provides guarantees for our proposed point estimate (5.1).

Theorem 3. When n� b2 log p, the solution θ̂ in (5.1) satisfies∥∥∥θ̂ − θ?∥∥∥
1
. s (σ + ‖θ?‖1)

√
log p
n
. s

(
σ +
√
s
)√

log p
n
, (5.2)∥∥∥θ̂ − θ?∥∥∥

2
.
√
s (σ + ‖θ?‖1)

√
log p
n
.
√
s
(
σ +
√
s
)√

log p
n
, (5.3)

with probability at least 1− p−Θ(1).

Confidence intervals. We next present a de-biased estimator θ̂d (5.4), based on our

proposed estimator. θ̂d can be used to compute confidence intervals and p-values for each
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coordinate of θ̂d, which can be used for false discovery rate control [JJ18]. The estimator

satisfies:

θ̂d = θ̂ + Ŝ−1

[
1
n

n∑
i=1

(
yi − x>i θ̂

)
xi

]
. (5.4)

Our de-biased estimator is similar to [ZZ14, vdGBRD14, JM14, JM15]. however,

we have different terms, since we need to de-bias covariance estimation. Our estimator

assumes n� b2 log p, since then Ŝ is positive definite with high probability (Lemma 9). The

assumption that Σ is diagonally dominant guarantees that the `∞ norm ‖Ŝ−1‖∞ is bounded

by O
(

1
DΣ

)
with high probability when n� 1

DΣ
2 log p.

Theorem 4 shows that we can compute valid confidence intervals for each coordinate

when n � ( 1
DΣ
s (σ + ‖θ?‖1) log p)2. This is satisfied when n � ( 1

DΣ
s (σ +

√
s) log p)2. And

the covariance is similar to the sandwich estimator [Hub67, Whi80].

Theorem 4. Under our assumptions, when n� max{b2, 1
DΣ

2} log p, we have:

√
n(θ̂d − θ?) = Z +R, (5.5)

where the conditional distribution satisfies Z | {xi}ni=1 ∼ N
(

0, σ2 ·
[
Ŝ−1

(
1
n

∑n
i=1 xix

>
i

)
Ŝ−1

])
,

and ‖R‖∞ . 1
DΣ
s (σ + ‖θ?‖1) log p√

n
. 1

DΣ
s (σ +

√
s) log p√

n
with probability at least 1− p−Θ(1).

Our estimate in (5.1) has similar error rates to the estimator in [YLR14]; however,

no confidence interval guarantees are provided, and the estimator is based on inverting a

large covariance matrix. Further, although it does not match minimax rates achieved by

regular LASSO regression [RWY11], and the sample complexity in Theorem 4 is slightly

higher than other methods [vdGBRD14, JM14, JM15], our criterion is strongly convex

with high probability: this allows us to use linearly convergent proximal algorithms [XZ14,

LSS14], whereas provable linearly convergent optimization bounds for LASSO only guarantees

convergence to a neighborhood of the LASSO solution within statistical error [ANW10]. This

40



is crucial for computing the de-biased estimator, as we need the optimization error to be

much less than the statistical error.

We present our algorithm for statistical inference in high dimensional linear regression

using stochastic gradients below. It estimates the statistical error covariance using the plug-in

estimator:

Ŝ−1

(
1
n

n∑
i=1

(x>i θ̂ − yi)2xix
>
i

)
Ŝ−1,

which is related to the empirical sandwich estimator [Hub67, Whi80]. Algorithm 3 computes

the statistical error covariance. Similar to Algorithm 1, Algorithm 3 has an outer loop part and

an inner loop part, where the outer loops correspond to approximate proximal Newton steps,

and the inner loops solve each proximal Newton step using proximal SVRG [XZ14]. To control

the variance, we use SVRG and proximal SVRG to solve the Newton steps. This is because in

the high dimensional setting, the variance is too large when we use SGD [MB11] and proximal

SGD [AFM17] for solving Newton steps. However, since we have p� n , instead of sampling

by sample, we sample by feature. When we set Lto = Θ(log(p) · log(t)), we can estimate

the statistical error covariance with element-wise error less than O
(

max{1,σ}polylog(n,p)√
T

)
with

high probability, using O (T · n · p2 · log(p) · log(T )) numerical operations. And Algorithm 4

calculates the de-biased estimator θ̂d (5.4) via SVRG.

5.1 Experiments

5.1.1 Synthetic data

We use 600 i.i.d. samples from a model with Σ = I, σ = 0.7, θ? = [1/
√

8, · · · , 1/
√

8, 0, · · · , 0]> ∈
R1000 which is 8-sparse. Figure 5.1 shows 95% confidence intervals for the first 20 coordinates.

The average confidence interval length is 0.14 and average coverage is 0.83. Additional

experimental results, including p-value distribution under the null hypothesis, are presented

in Appendix 3.1.1.1.
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Figure 5.1: 95% confidence intervals

Figure 5.2 shows p-value distribution under the null hypothesis for our method and

the de-biased LASSO estimator with known covariance, using 600 i.i.d. samples generated

from a model with Σ = I, σ = 0.7, and we can see that it is close to a uniform distribution,

similar results are observed for other high dimensional statistical inference procedures such

as [CFJL18].

5.1.2 Real data

HIV drug resistance mutations dataset. We apply our high dimensional inference

procedure to the dataset in [RTW+06] to detect mutations related to HIV drug resistance,

where we randomly sub-sample the dataset so that the number of features is larger than the

number of samples. When we control the family-wise error rate (FWER) at 0.05 using the

Bonferroni correction [Bon36], our procedure is able to detect verified mutations in an expert

dataset [JBVC+05] (Table 5.1), and the details are given in Appendix 3.1.2.1.
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Figure 5.2: Distribution of two-sided Z-test p-values under the null hypothesis (high dimen-
sional)

43



Drug Mutations

PI

APV 10F
ATV 33F, 43T, 84V
IDV 48V, 84A
LPV 46I
NFV 46L
RTV 10I, 54V
SQV 20R, 84V

NRTI

3TC 184V
ABC 41L
AZT 41L, 210W
D4T 41L, 215Y
DDI 62V, 151M
TDF 41L, 75M

NNRTI
DLV 228R
EFV 74V, 103N
NVP 103N, 181C

Table 5.1: HIV drug resistance related mutations detected by our high dimensional inference
procedure

Riboflavin (vitamin B2) production rate data set. We apply our high dimensional

linear regression statistical inference procedure to a high-throughput genomic data set

concerning riboflavin (vitamin B2) production rate [BKM14], which contains n = 71 samples

of p = 4088 genes. We set λ = 4.260 and ω = 0.5. In Appendix 3.1.2.1, we show that our

point estimate is similar to the vanilla LASSO estimate, and compare our statistical inference

results with those of [JM14, BKM14, Büh13, MMB09].

5.2 Statistical inference using approximate proximal Newton steps
with stochastic gradients

Here, we present a statistical inference procedure for high dimensional linear regression

via approximate proximal Newton steps using stochastic gradients. It uses the plug-in
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estimator:

Ŝ−1

(
1
n

n∑
i=1

(x>i θ̂ − yi)2xix
>
i

)
Ŝ−1,

which is related to the empirical sandwich estimator [Hub67, Whi80]. Lemma 1 shows this is

a good estimate of the covariance when n� 1
DΣ

4 max{1, σ2}s2(σ + ‖θ?‖1)2.

Algorithm 3 performs statistical inference in high dimensional linear regression (5.1),

by computing the statistical error covariance in Theorem 4, based on the plug-in estimate

in Lemma 1. We denote the soft thresholding of A by ω as an element-wise procedure

(Sω(A))e = sign(Ae)(|Ae| − ω)+. For a vector v, we write v’s ith coordinate as v(i). The

optimization objective (5.1) is denoted as:

1
2
θ>
(
Ŝ − 1

n

∑n
i=1xix

>
i

)
θ + 1

n

∑n
i=1fi,

where fi = 1
2

(
x>i − yi

)2
. Further,

gŜ(v) = ∇v

[
1
2
v>Ŝv

]
= Ŝv =

p∑
j=1

v(j) · Sω
(

1
n

n∑
i=1

[∇fi(θ + ej)−∇fi(θ)]
)
,

where ei ∈ Rp is the basis vector where the ith coordinate is 1 and others are 0, and Ŝv is

computed in a column-wise manner.

For point estimate optimization, the proximal Newton step [LSS14] at θ solves the

optimization problem

min
∆

1
2ρ

∆>Ŝ∆ +

〈
(Ŝ − 1

n

∑n
i=1xix

>
i )θ + 1

n

n∑
i=1

∇fi(θ),∆
〉

+ λ‖θ + ∆‖1,

to determine a descent direction. For statistical inference, we solve a Newton step:

min
∆

1
2ρ

∆>Ŝ∆ +

〈
1
So

∑
k∈Io

∇fk(θt),∆
〉

to compute −Ŝ−1 1
So

∑
i∈Io ∇fi(θ), whose covariance is the statistical error covariance.
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To control variance, we solve Newton steps using SVRG and proximal SVRG [XZ14],

because in the high dimensional setting, the variance using SGD [MB11] and proximal

SGD [AFM17] for solving Newton steps is too large. However because p � n, instead of

sampling by sample, we sample by feature. We start from θ0 sufficiently close to θ̂ (see

Theorem 5 for details), which can be effectively achieved using proximal SVRG (Section 5.4).

Line 7 corresponds to SVRG’s outer loop part that computes the full gradient, and line 12

corresponds to SVRG’s inner loop update. Line 8 corresponds to proximal SVRG’s outer

loop part that computes the full gradient, and line 13 corresponds to proximal SVRG’s inner

loop update.

The covariance estimate bound, asymptotic normality result, and choice of hyper-

parameters are described in Section 5.5. When Lto = Θ(log(p) · log(t)), we can estimate the

covariance with element-wise error less than O
(

max{1,σ}polylog(n,p)√
T

)
with high probability, using

O (T · n · p2 · log(p) · log(T )) numerical operations. Calculation of the de-biased estimator θ̂d

(5.4) via SVRG is described in Section 5.3.

5.3 Computing the de-biased estimator (5.4) via SVRG

To control variance, we solve each proximal Newton step using SVRG, in stead of

SGD as in Algorithm 1. Because However because the number of features is much larger

than the number of samples, instead of sampling by sample, we sample by feature.

The de-biased estimator is

θ̂d =θ̂ + Ŝ−1

[
1

n

n∑
i=1

yixi −
(

1

n

n∑
i=1

xix
>
i

)
θ̂

]

=θ̂ + Ŝ−1

(
− 1

n

n∑
i=1

∇fi(θ̂)
)
.

And we compute Ŝ−1 1
n

∑n
i=1∇fi(θ̂) using SVRG [JZ13] by solving the following optimization
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Algorithm 3 High dimensional linear regression statistical inference

1: Parameters: So, Si ∈ Z+; η, τ ∈ R+; Initial state: θ0 ∈ Rp

2: for t = 0 to T − 1 do
3: Io ← uniformly sample So indices with replacement from [n]
4: g0

t ← − 1
So

∑
k∈Io ∇fk(θt)

5: d0
t ← −

(
gŜ(θt)− 1

n

∑n
i=1 [∇fi(θt + θt)−∇fi(θt)] + 1

n

∑n
i=1∇fi(θt)

)
6: for j = 1 to Lto− do // solving Newton steps using SVRG
7: ujt ← gŜ(gj−1

t )− g0
t

8: vjt ← gŜ(dj−1
t )− d0

t

9: gjt ← gj−1
t , djt ← dj−1

t

10: for l = 1 to Li do
11: Ii ← uniformly sample Si indices without replacement from [p]

12: gjt ← gjt − τ
[
ujt + p

Si

∑
k∈Si

[
gjt (k)− gj−1

t (k)
]
· Sω (∇fk(θt + ek)−∇fk(θt))

]
13: djt ← Sηλ

(
djt − η

[
vjt + p

Si

∑
k∈Si

[
djt (k)− dj−1

t (k)
]
· Sω (∇fk(θt + ek)−∇fk(θt))

])
14: end for
15: end for
16: Use

√
So · ḡtρt for statistical inference, where ḡt = 1

Lto+1

∑Lto
j=0 g

j
t

17: θt+1 = θt + d̄t, where d̄t = 1
Lo+1

∑Lto
j=0 d

j
t // point estimation (optimization)

18: end for
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problem using SVRG and sampling by feature

min
u

1

2
u>Ŝu+

〈
1

n

n∑
i=1

∇fi(θ̂), u
〉
.

Algorithm 4 Computing the de-biased estimator (5.4) via SVRG

1: for i = 0 to Lo − 1 do
2: d0

i ← −η[gŜ(ui) + 1
n

∑n
k=1∇fk(θ̂)]

3: for j = 0 to Li − 1 do
4: I ← sample S indices uniformly from [p] without replacement

5: dj+1
i ← dji + d0

t − η
(

1
S

∑
k∈I d

j
i (k) · Sω(∇fk(θ̂ + ek)− fk(θ̂))

)
6: end for
7: ui+1 ← ui + d̄i, where d̄i = 1

Li+1

∑Li
j=0 d

j
i

8: end for

Similar to Algorithm 3, we choose η = Θ
(

1
p

)
and Li = Θ(p).

5.4 Solving the high dimensional linear regression optimization
objective (5.1) using proximal SVRG

We solve our high dimensional linear regression optimization problem using proximal

SVRG [XZ14]

θ̂ = arg min
θ

1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1. (5.6)

Similar to Algorithm 3, we choose η = Θ
(

1
p

)
and Li = Θ(p).

5.5 Non-asymptotic covariance estimate bound and asymptotic
normality in Algorithm 3

We have a non-asymptotic covariance estimate bound and an asymptotic normality

result.

48



Algorithm 5 Solving the high dimensional linear regression optimization objective (5.1)
using proximal SVRG

1: for i = 0 to Lo − 1 do
2: u0

i ← θi
3: dt ← gŜ(θi)− 1

n

∑n
k=1[∇fk(θi + θi)−∇fk(θi)] + 1

n

∑n
k=1∇fk(θi)

4: for j = 0 to Li − 1 do
5: uj+1

i ← Sηλ(u
j
i − η[dt + 1

S

∑
k∈I
(
uji (k)− θi(k)

)
· Sω (∇fk(θt + ek)−∇fk(θt))])

6: end for
7: θt+1 ← 1

Li+1

∑Li
j=0 u

j
i

8: end for

Theorem 5. Under our assumptions, when n� max{b2, 1
DΣ

2} log p, So = O(1), Si = O(1),

and conditioned on {xi}ni=1 and following events which simultaneously with probability at least

1− p−Θ(1) − n−Θ(1)

� [A]: max1≤i≤n |εi| . σ
√

log n,

� [B]: max1≤i≤n ‖xi‖∞ .
√

log p+ log n,

� [C]: ‖Ŝ−1‖∞ . 1
DΣ

,

we choose Li = Θ(p), τ = Θ(1
p
), η = Θ(1

p
) in Algorithm 3.

Here, we denote the objective function as

P (θ) =
1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1.

Then, we have a non-asymptotic covariance estimate bound∥∥∥SoT ∑T
t=1ḡtḡ

>
t − Ŝ−1

(
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1

∥∥∥
max

.
√(

(log p+logn)‖θ̂−θ?‖1+σ
√

(log p+logn) logn
) log p

T

+
1
u

[
1√
T

∑T

t=1
0.95L

t
o (1+
√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto )+
√
p(log p+logn)

√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto

]
,
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where ‖A‖max = max{1 ≤ j, k ≤ p}|Ajk| is the matrix max norm, with probability at least

1− p−Θ(−1) − u.

And we have asymptotic normality

1√
t

(∑T
t=1

√
Soḡt + 1

n

∑n
i=1xi(x

>
i θ̂ − yi)

)
= W +R,

where W weakly converges to N
(

0,Ŝ−1
[

1
n

∑n
i=1(x>i θ̂−yi)2xix

>
i −( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))

>]
Ŝ−1

)
,

and E[‖R‖∞ | {xi}ni=1, [A], [B], [C]] . 1√
T

∑T
t=1 0.95L

t
o(1+

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o)+
√
p(log p+

log n)

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o.

Note that when we choose Lto = Θ(log(p) · log(t)), and start from θ0 satisfying

P (θ0) − P (θ̂) . 1
p(log p+logn)2 which can be effectively achieved using proximal SVRG (Sec-

tion 5.4), we can estimate the statistical error covariance with element-wise error less than

O
(

max{1,σ}polylog(n,p)√
T

)
with high probability, using O (T · n · p2 · log(p) · log(T )) numerical

operations.

5.6 Plug-in statistical error covariance estimate

Algorithm 3 is similar to using plug-in estimator 1
n

∑n
i=1(x>i θ̂−yi)2xix

>
i for σ2

(
1
n

∑n
i=1 xix

>
i

)
in Theorem 4, similar to the sandwich estimator [Hub67, Whi80]. Lemma 1 gives a bound on

using this plug-in estimator in the statistical error covariance (Theorem 4) for coordinate-wise

confidence intervals.

Lemma 1. Under our assumptions, when n� max{b2, 1
DΣ

2} log p, we have∥∥∥Ŝ−1
(

1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1 − σ2Ŝ−1

(
1
n

∑n
i=1xix

>
i

)
Ŝ−1

∥∥∥
max

. 1
DΣ

2

(
σ
√

log n+ s (σ + ‖θ?‖1)
√

log p+ log n
√

log p
n

)
s (σ + ‖θ?‖1) (log p+ log n)

3
2

√
log p
n
,

where ‖A‖max = max1≤j,k≤p |Ajk| is the matrix max norm, with probability at least 1−p−Θ(1)−
n−Θ(1).
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Chapter 6

Time series analysis

6.1 Time series analysis

In this section, we present a sampling scheme for statistical inference in time series

analysis using M -estimation, where we sample contiguous blocks of indices, instead of

uniformly.

We consider a linear model yi = 〈xi, θ?〉 + εi, where E[εixi] = 0, but {xi, yi}ni=1

may not be i.i.d. as this is a time series. And we use ordinary least squares (OLS) θ̂ =

arg minθ
∑n

i=1
1
2

(〈xi, θ〉 − yi)2 to estimate θ?. Applications include multifactor financial

models for explaining returns [BBMS13, RM73]. For non-i.i.d. time series data, OLS may not

be the optimal estimator, as opposed to the maximum likelihood estimator [SS11], but OLS

is simple yet often robust, compared to more sophisticated models that take into account

time series dynamics. And it is widely used in econometrics for time series analysis [Ber91].

To perform statistical inference, we use the asymptotic normality

√
n
(
θ̂ − θ?

)
→ N

(
0, H?−1G?H?−1

)
, (6.1)

where H? = limn→∞
1
n

(
∑n

i=1∇2fi(θ
?)) and G? = limn→∞

1
n

(∑n
i=1

∑n
j=1∇fi(θ?)∇fj(θ?)>

)
,

with fi(θ) = 1
2

(〈xi, θ〉 − yi)2. The difference compared with the i.i.d. case (Chapter 4) is that

G? now includes autocovariance terms. We use the plug-in estimate Ĥ = 1
n

∑n
i=1∇2fi(θ̂) as

This chapter also appears in [LKLC18]. The theoretical analysis was written by Tianyang Li, and
the experiments were conducted in collaboration with Liu Liu. It was edited by Anastasios Kyrillidis and
Constantine Caramanis.
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before, and we estimate G? using the Newey-West covariance estimator [NW86] for HAC

(heteroskedasticity and autocorrelation consistent) covariance estimation

Ĝ = 1
n

n∑
i=1

∇fi(θ̂) fi(θ̂)> +
l∑

j=1

w(j, l)
n∑

i=j+1

(
∇fi(θ̂)∇fi−j(θ̂)> +∇fi−j(θ̂)∇fi(θ̂)>

)
, (6.2)

where w(j, l) is sample autocovariance weight, such as Bartlett weight w(j, l) = 1− j/(l + 1)

[Bar46], and l is the lag parameter, which captures data dependence across time. Note that

this is an essential building block in time series statistical inference procedures, such as

Driscoll-Kraay standard errors [DK98, KD99], moving block bootstrap [Kun89], and circular

bootstrap [PR92, PR94].

In our framework, we solve OLS using our approximate Newton procedure with a

slight modification to Algorithm 1. Instead of uniformly sampling indices as in line 4 of

Algorithm 1, we uniformly select some io ∈ [n], and set the outer mini-batch indexes Io to

the random contiguous block {io, io + 1, . . . , io + l − 1} mod n, where we let the indexes

circularly wrap around, as in line 4 of Algorithm 6, and this sampling scheme is similar

to circular bootstrap. Here l is the lag parameter, similar to the Newey-West estimator.

And the stochastic gradient’s expectation is still the full gradient. The complete algorithm

is in Algorithm 6, and its guarantees are given in Corollary 6. Our approximate Newton

statistical inference procedure is equivalent to using weight w(j, l) = 1− j/l in the Newey-West

covariance estimator (6.2), with negligible terms for blocks that wrap around, and this is

the same as circular bootstrap. Note that the connection between sampling scheme and

Newey-West estimator was also observed in [Kun89]. Following [PR92], we can set the lag

parameter such that l · n−1/3 → 0, and run at least n outer loops. In practice, other methods

for tuning the lag parameter can be used, such as [NW94]. For more details, we refer the

reader to Section 6.2.

52



6.2 Time series statistical inference with approximate Newton
steps using only stochastic gradients (Section 6.1)

Here, we give the complete approximate Newton-based time series statistical inference

algorithm using only stochastic gradients.

Algorithm 6 Unregularized M-estimation statistical inference

1: Parameters: l, Si ∈ Z+; ρ0, τ0 ∈ R+; do, di ∈
(

1
2
, 1
)

Initial state: θ0 ∈ Rp

2: for t = 0 to T − 1 do // approximate stochastic Newton descent
3: ρt ← ρ0(t+ 1)−do

4: Uniformly select some io ∈ [n], then set Io to the random contiguous block {io, io +
1, . . . , io + l− 1} mod n, which circularly wraps around

5: g0
t ← −ρt

(
1
l

∑
i∈Io ∇fi(θt)

)
6: for j = 0 to L− 1 do // solving (4.1) approximately using SGD
7: τj ← τ0(j + 1)−di and δjt ← O(ρ4

t τ
4
j )

8: Ii ← uniformly sample Si indices without replacement from [n]

9: gj+1
t ← gjt − τj

(
1
Si

∑
k∈Ii

∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt

)
+ τjg

0
t

10: end for
11: Use

√
l · ḡt

ρt
for statistical inference, where ḡt = 1

L+1

∑L
j=0 g

j
t

12: θt+1 ← θt + gLt
13: end for

Corollary 6 gives guarantees for Algorithm 6, and is similar to the i.i.d. case (Theo-

rem 2).

Corollary 6. Under the same assumptions as Theorem 2, in Algorithm 6, for the outer

iterate θt we have

E
[
‖θt − θ̂‖2

2

]
. t−do , (6.3)

E
[
‖θt − θ̂‖4

2

]
. t−2do . (6.4)

In each outer loop, after L steps of the inner loop, we have:

E
[∥∥∥ ḡtρt − [∇2f(θt)]

−1g0
t

∥∥∥2

2
| θt
]
. 1

L

∥∥g0
t

∥∥2

2
, (6.5)
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and at each step of the inner loop, we have:

E
[∥∥gj+1

t − [∇2f(θt)]
−1g0

t

∥∥4

2
| θt
]
. (j + 1)−2di

∥∥g0
t

∥∥4

2
. (6.6)

After T steps of the outer loop, we have a non-asymptotic bound on the “covariance”:

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ>t
ρ2
t

∥∥∥∥∥
2

]
. T−

do
2 + L−

1
2 , (6.7)

where H = ∇2f(θ̂), and

G = 1
n

n∑
i=1

∇fi(θ̂) fi(θ̂)> +
l∑

j=1

w(j, l)
n∑

i=j+1

(
∇fi(θ̂)∇fi−j(θ̂)> +∇fi−j(θ̂)∇fi(θ̂)>

)
, (6.8)

with w(j, l) = 1− j
l
.

Also, in Algorithm 6’s outer loop, the average of consecutive iterates satisfies

E
[∥∥∥∑T

t=1 θt
T
− θ̂
∥∥∥2

2

]
. 1

T
, (6.9)

1√
T

(∑T
t=1 θt
T
− θ̂
)

= W + ∆, (6.10)

where W weakly converges to N(0, 1
So
H−1GH−1), and ∆ = oP (1) when T →∞ and L→∞

(E[‖∆‖2
2] . T 1−2do + T do−1 + 1

L
).

Our approximate Newton time series statistical inference procedure estimatesH−1GH−1,

where G is the Newey-West covariance estimator (6.2) with weight

w(j, l) = 1− j
l
, (6.11)

which is because when we estimate the variance in Algorithm 6, for j > 0, terms ∇fi∇f>i+j
and ∇fi+j∇f>i appear l − j times, and the term ∇fi∇f>i appears l times. Note that

the connection between sampling scheme and Newey-West estimator was also observed in

54



[Kun89]. Thus, our stochastic approximate Newton statistical inference procedure for time

series analysis has similar statistical properties compared circular bootstrap [PR92, PR94].

Because expectation of the stochastic gradient in line 5 of Algorithm 6 is the full gra-

dient 1
n

∑n
i=1 fi(θ̂), we have the same optimization guarantees as the i.i.d. case (Corollary 3).

6.3 Experiments

6.3.1 Synthetic data

In our linear regression simulation, we generate i.i.d. random explanatory variables,

and the observation noise is a 0-mean moving average (MA) process independent of the

explanatory variables. Results on average 95% confidence interval coverage and length are

given in Appendix 4.1.1, and they validate our theory.

6.3.2 Real data

Using monthly equities returns data from [FP14], we use our approximate Newton

statistical inference procedure to show that the correlation between US equities market

returns and non-US global equities market returns is statistically significant, which validates

the capital asset pricing model (CAPM) [Sha64, Lin65, FF04]. The details are given in

Appendix 4.1.2.
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Figure 6.1: Exposure of US equities market to equities markets of other countries
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Chapter 7

An intuitive view of SVRG as approximate stochastic

Newton descent

Here we present an intuitive view of stochastic variance reduced gradient (SVRG)

[JZ13] as approximate stochastic Newton descent, which is the inspiration behind our work.

Gradient descent solves the optimization problem θ̂ = arg minθ f(θ), where the function

is a sum of n functions f(θ) = 1
n

∑n
i=1 fi(θ), using

θt+1 = θt − η∇f(θt),

and stochastic gradient descent uniformly samples a random index at each step

θt+1 = θt − ηt∇fi(θt).

� Outer loop:

� g ← ∇f(θt) =
∑n

i=1∇fi(θt)

� Let d be the descent direction

� – Inner loop:

– Choose a random index k

– d← d−η(∇fk(θt+d)−∇fk(θt)+g)

� θt+1 = θt + d

This chapter also appears in [LKLC18]. It was written by Tianyang Li, and edited by Anastasios Kyrillidis
and Constantine Caramanis.
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SVRG [JZ13] improves gradient descent and SGD by having an outer loop and an

inner loop.

Here, we give an intuitive explanation of SVRG as stochastic proximal Newton descent,

by arguing that

� each outer loop approximately computes the Newton direction −(∇2f)−1∇f

� the inner loops can be viewed as SGD steps solving a proximal Newton step mind〈∇f, d〉+
1
2
d>(∇2f)d

First, it is well known [Bub15a] that the Newton direction is exactly the solution of

min
d
〈∇f(θ), d〉+

1

2
d>[∇2f(θ)]d. (7.1)

Next, let’s consider solving (7.1) using gradient descent on a function of d, and notice

that its gradient with respect to d is

∇f(θ) + [∇2f(θ)]d,

which can be approximated through f ’s Taylor expansion ([∇2f(θ)]d ≈ ∇f(θ + d)−∇f(θ))

as

∇f(θ) + [∇f(θ + d)−∇f(θ)].

Thus, SVRG’s inner loops can be viewed as using SGD to solve proximal Newton

steps in outer loops. And it can be viewed as the power series identity for matrix inverse

H−1 =
∑∞

i=0(I − ηH), which corresponds to unrolling the gradient descent recursion for the

optimization problem H−1 = arg minΩ Tr
(

1
2
Ω>HΩ− Ω

)
.
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Chapter 8

Chapter 3 proofs

8.1 Proof of Theorem 1

We first assume that θ1 = θ̂. For ease of notation, we denote

∆t = θt − θ̂, (8.1)

and, without loss of generality, we assume that θ̂ = 0. The stochastic gradient descent

recursion satisfies:

θt+1 = θt − η · gs(θt)

= θt − η · (gs(θt)−∇f(θt) +∇f(θt))

= θt − η · ∇f(θt)− η · et,

where et = gs(θt)−∇f(θt). Note that e1, e2, . . . is a martingale difference sequence. We use

gi = ∇fi(θ̂) and, Hi = ∇2fi(θ̂) (8.2)

to denote the gradient component at index i, and the Hessian component at index i, at

optimum θ̂, respectively. Note that
∑
gi = 0 and 1

n

∑
Hi = H.

For each fi, its Taylor expansion around θ̂ is

fi(θ) = fi(θ̂) + g>i (θ − θ̂) +
1

2
(θ − θ̂)>Hi(θ − θ̂) +Ri(θ, θ̂), (8.3)

This chapter also appears in [LLKC18]. It was written by Tianyang Li, and edited by Anastasios Kyrillidis
and Constantine Caramanis.
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where Ri(θ, θ̂) is the remainder term. For convenience, we write R = 1
n

∑
Ri.

For the proof, we require the following lemmata. The following lemma states that

E[‖∆t‖2
2] = O(η) as t→∞ and η → 0.

Lemma 2. For data dependent, positive constants α,A,B according to assumptions (F1)

and (G2) in Theorem 1, and given assumption (G1), we have

E
[
‖∆t‖2

2

]
≤ (1− 2αη + Aη2)t−1‖∆1‖2

2 +
Bη

2α− Aη , (8.4)

under the assumption η < 2α
A

.

Proof. As already stated, we assume without loss of generality that θ̂ = 0. This further

implies that: gs(θt) = gs(θt − θ̂) = gs(∆t), and

∆t+1 = ∆t − η · gs(∆t).

Given the above and assuming expectation E[·] w.r.t. the selection of a sample from {Xi}ni=1,

we have:

E
[
‖∆t+1‖2

2 | ∆t

]
= E

[
‖∆t − ηgs(∆t)‖2

2 | ∆t

]
= E

[
‖∆t‖2

2 | ∆t

]
+ η2 · E

[
‖gs(∆t)‖2

2 | ∆t

]
− 2η · E

[
gs(∆t)

>∆t | ∆t

]
= ‖∆t‖2

2 + η2 · E
[
‖gs(∆t)‖2

2 | ∆t

]
− 2η · ∇f(∆t)

>∆t

(i)

≤ ‖∆t‖2
2 + η2 ·

(
A · ‖∆t‖2

2 +B
)
− 2η · α‖∆t‖2

2

= (1− 2αη + Aη2)‖∆t‖2
2 + η2B. (8.5)

where (i) is due to assumptions (F1) and (G2) of Theorem 1. Taking expectations for every

step t = 1, . . . over the whole history, we obtain the recursion:

E
[
‖∆t+1‖2

2

]
≤ (1− 2αη + Aη2)t−1‖∆1‖2

2 + η2B ·
t−1∑
i=0

(1− 2αη + Aη2)i
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= (1− 2αη + Aη2)t−1‖∆1‖2
2 + η2B · 1−(1−2αη+Aη2)t

2αη−Aη2

≤ (1− 2αη + Aη2)t−1‖∆1‖2
2 + ηB

2α−Aη .

The following lemma states that E [‖∆t‖4
2] = O(η2) as t→∞ and η → 0.

Lemma 3. For data dependent, positive constants α,A,B,C,D according to assumptions

(F1), (G1), (G2) in Theorem 1, we have:

E[‖∆t‖4
2] ≤(1− 4αη + A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖4

2

+
B(3η2 + η3) +D(2η2 + η3)

4α− A(6η + 2η2)−B(3 + η)− C(2η2 + η3)
. (8.6)

Proof. Given ∆t, we have the following sets of (in)equalities:

E
[
‖∆t+1‖4

2 | ∆t

]
=E

[
‖∆t − ηgs(∆t)‖4

2 | ∆t

]
=E

[
(‖∆t‖2

2 − 2η · gs(∆t)
>∆t + η2‖gs(∆t)‖2

2)2 | ∆t

]
=E
[
‖∆t‖4

2 + 4η2(gs(∆t)
>∆t)

2 + η4‖gs(∆t)‖4
2 − 4η · gs(∆t)

>∆t‖∆t‖2
2

+ 2η2 · ‖gs(∆t)‖2
2‖∆t‖2

2 − 4η3 · gs(∆t)
>∆t‖gs(∆t)‖2

2 | ∆t

]
(i)

≤E
[
‖∆t‖4

2 + 4η2 · ‖gs(∆t)‖2
2 · ‖∆t‖2

2 + η4‖gs(∆t)‖4
2 − 4η · gs(∆t)

>∆t‖∆t‖2
2

+ 2η2 · ‖gs(∆t)‖2
2 · ‖∆t‖2

2 + 2η3 · (‖gs(∆t)‖2
2 + ‖∆t‖2

2) · ‖gs(∆t)‖2
2 | ∆t

]
(ii)

≤E
[
‖∆t‖4

2 + (2η3 + η4)‖gs(∆t)‖4
2 + (6η2 + 2η3)‖gs(∆t)‖2

2‖∆t‖2
2 | ∆t

]
− 4αη‖∆t‖4

2

(iii)

≤ (1− 4αη)‖∆t‖4
2 + (6η2 + 2η3)(A‖∆t‖2

2 +B)‖∆t‖2
2 + (2η3 + η4)(C‖∆t‖4

2 +D)

=(1− 4αη + A(6η2 + 2η3) + C(2η3 + η4))‖∆t‖4
2 +B(6η2 + 2η3)‖∆t‖2

2 +D(2η3 + η4)

(iv)

≤ (1− 4αη + A(6η2 + 2η3) + C(2η3 + η4)) · ‖∆t‖4
2 +B(3η + η2)(η2 + ‖∆t‖4

2) +D(2η3 + η4)

=(1− 4αη + A(6η2 + 2η3) +B(3η + η2)
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+ C(2η3 + η4)) · ‖∆t‖4
2 +Bη2(3η + η2) +D(2η3 + η4), (8.7)

where (i) is due to (gs(∆t)
>∆t)

2 ≤ ‖gs(∆t)‖2
2 · ‖∆t‖2

2 and −2gs(∆t)
>∆t ≤ ‖gs(∆t)‖2

2 + ‖∆t‖2
2,

(ii) is due to assumptions (G1) and (F1) in Theorem 1, (iii) is due to assumptions (G2) and

(G3) in Theorem 1, and (iv) is due to 2η‖∆t‖2
2 ≤ η2 + ‖∆t‖4

2. Similar to the proof of the

previous lemma, applying the above rule recursively and w.r.t. the whole history of estimates,

we obtain:

E
[
‖∆t+1‖4

2

]
≤(1− 4αη + A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖4

2

+
(
Bη2(3η + η2) +D(2η3 + η4)

)
·
t−1∑
i=0

(
1− 4αη + A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)

)i
≤(1− 4αη + A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖4

2

+
Bη2(3η + η2) +D(2η3 + η4)

4αη − A(6η2 + 2η3)−B(3η + η2)− C(2η3 + η4)
,

which is the target inequality, after simple transformations.

We know that:

∆t = ∆t−1 − ηgs(∆t−1)

Using the Taylor expansion formula around the point ∆t−1 and using the assumption that

θ̂ = 0, we have:

f(∆t−1) = f(θ̂) +∇f(θ̂)>∆t−1 +
1

2
∆>t−1H∆t−1 +R(∆t−1)

Taking further the gradient w.r.t. ∆t−1 in the above expression, we have:

∇f(∆t−1) = H∆t−1 +∇R(∆t−1)
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Using the identity gs(∆t−1) = ∇f(∆t−1) + et−1, our SGD recursion can be re-written as:

∆t = (I − ηH) ∆t−1 − η (∇R(∆t−1) + et−1)

= (I − ηH)t−1 ∆1 − η
t−1∑
i=1

(I − ηH)t−1−i (ei +∇R(∆i)) . (8.8)

For t ≥ 2 and since: θ̄ = θ̄ − θ̂ = ∆̄t = 1
t

∑t
i=1(θi − θ̂) = 1

t

∑t
i=1 ∆i, we get:

t(θ̄ − θ̂) =
t∑
i=1

∆i =
t∑
i=1

(I − ηH)i−1 ∆1 − η
t∑

j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i))

(i)
=
(
I − (I − ηH)t

)
H−1

η
∆1 − η

t∑
j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i)). (8.9)

where (i) holds due to the assumption that the eigenvalues of I− ηH satisfy |λi(I− ηH)| < 1,

and thus, the geometric series of matrices:
∑n−1

k=0 T
k = (I − T )−1(I − T n), is utilized above.

In our case, T = (I − ηH).

For the latter term in (8.9), using a variant of Abel’s sum formula, we have:

η
t∑

j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i))

= η
t−1∑
j=0

j∑
i=1

(I − ηH)j−i(ei +∇R(∆i)) (8.10)

= η
t−1∑
i=1

(
t−i−1∑
j=0

(I − ηH)j

)
(ei +∇R(∆i))

=
t−1∑
i=1

(
I − (I − ηH)t−i

)
H−1(ei +∇R(∆i))

= H−1

t−1∑
i=1

ei +H−1

t−1∑
i=1

∇R(∆i)−H−1

t−1∑
i=1

(I − ηH)t−i(ei +∇R(∆i))

(i)
=H−1

t−1∑
i=1

ei +H−1

t−1∑
i=1

∇R(∆i) + H−1

η
(I − ηH)(∆t − (I − ηH)t−1∆1), (8.11)
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where (i) follows from the fact
∑t−1

i=1(I−ηH)t−i(ei+∇R(∆i)) = (I−ηH) 1
η
(∆t−(I−ηH)t−1∆1),

based on the expression (8.8).

The above combined lead to:

√
t∆̄t

= 1√
t
(I − (I − ηH)t)H

−1

η
∆1︸ ︷︷ ︸

ϕ1

− 1√
t
H−1

t−1∑
i=1

ei︸ ︷︷ ︸
ϕ2

− 1√
t
H−1

t−1∑
i=1

∇R(∆i)︸ ︷︷ ︸
ϕ3

− 1√
t
H−1

η
(I − ηH)(∆t − (I − ηH)t−1∆1)︸ ︷︷ ︸

ϕ4

. (8.12)

For the main result of the theorem, we are interested in the following quantity:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
=
∥∥tE[∆̄t∆̄

>
t ]−H−1GH−1

∥∥
2

Using the ϕi notation, we have E[t∆̄t∆̄t] = E[(ϕ1 +ϕ2 +ϕ3 +ϕ4)(ϕ1 +ϕ2 +ϕ3 +ϕ4)>].

Thus, we need to bound:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2

=
∥∥E[(ϕ1 + ϕ2 + ϕ3 + ϕ4)(ϕ1 + ϕ2 + ϕ3 + ϕ4)>]−H−1GH−1

∥∥
2

= ‖E[ϕ2ϕ
>
2 ]−H−1GH−1

+ E[ϕ2(ϕ1 + ϕ4 + ϕ3)> + (ϕ1 + ϕ4 + ϕ3)ϕ>2 + (ϕ1 + ϕ4 + ϕ3)(ϕ1 + ϕ4 + ϕ3)>]‖2

≤
∥∥E [ϕ2ϕ

>
2

]
−H−1GH−1

∥∥
2

+
∥∥E[ϕ2(ϕ1 + ϕ4 + ϕ3)>]

∥∥
2

+
∥∥E[(ϕ1 + ϕ4 + ϕ3)ϕ>2 ]

∥∥
2
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+
∥∥E[(ϕ1 + ϕ4 + ϕ3)(ϕ1 + ϕ4 + ϕ3)>]

∥∥
2

(i)

. ‖E[ϕ2ϕ
>
2 ]−H−1GH−1‖2 +

√
E[‖ϕ2‖2

2](E[‖ϕ1‖2
2] + E[‖ϕ4‖2

2] + E[‖ϕ3‖2
2])

+ E[‖ϕ1‖2
2] + E[‖ϕ4‖2

2] + E[‖ϕ3‖2
2] (8.13)

where (i) is due to the successive use of the AM-GM rule:

‖E[ab>]‖2 ≤
√

E[‖a‖2
2]E[‖b‖2

2] ≤ 1

2
E[‖a‖2

2] + E[‖b‖2
2]. (8.14)

for two p-dimensional random vectors a and b. Indeed, for any fixed unit vector u we have

‖E[ab>]u‖2 = ‖E[a(b>u)]‖2 ≤ E[‖a‖2|b>u|] ≤ E[‖a‖2‖b‖2] ≤
√

E[‖a‖2
2]E[‖b‖2

2]. We used

the fact ‖E[x]‖2 ≤ E[‖x‖2] because ‖x‖2 is convex. Here also, the . hides any constants

appearing from applying successively the above rule.

Therefore, to proceed bounding the quantity of interest, we need to bound the terms

E[‖ϕi‖2
2]. In the statement of the theorem we have ∆1 = 0—however similar bounds will hold

if ‖∆1‖2
2 = O(η); thus, for each of the above ϕi terms we have the following.

ϕ1 := 1√
t
(I − (I − ηH)t)

H−1

η
∆1 = 0, (due to ∆1 = 0) (8.15)

E[‖ϕ4‖2
2] := E

[∥∥∥− 1√
t
H−1

η
(I − ηH)(∆t − (I − ηH)t−1∆1)

∥∥∥2

2

]
≤ E

[
‖H−1‖2

2 · ‖I − ηH‖2
2 · 1

η2t
‖∆t‖2

2

] (i)

≤ 1− ηλU
λL

· 1
η2t
· E[‖∆t‖2

2]

(ii)

≤ 1− ηλU
λL

1

η2t

(
(1− 2αη + Aη2)t−1‖∆1‖2

2 +
Bη

2α− Aη

)
=

1− ηλU
λL

B

tη(2α− Aη)

= O

(
1

tη

)
(8.16)
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where (i) is due to Assumption (F4), (ii) is due to Lemma 2, and we used in several places

the fact that ∆1 = 0.

E[‖ϕ3‖2
2] := E

∥∥∥∥∥− 1√
t
H−1

t−1∑
i=1

∇R(∆i)

∥∥∥∥∥
2

2


≤ E

1
t
· ‖H−1‖2

2 ·
∥∥∥∥∥
t−1∑
i=1

∇R(∆i)

∥∥∥∥∥
2

2

 (i)

≤ E

 1
λL

1
t

(
t−1∑
i=1

‖∇R(∆i)‖2

)2


(ii)

≤ E

 E2

λL·t

(
t−1∑
i=1

‖∆i‖2
2

)2
 (iii)

≤ E2

λL·t
(t− 1) · E

[
t−1∑
i=1

‖∆i‖4
2

]

≤ E2

λL·t
(t− 1)

t−1∑
i=1

((1− 4αη + A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖4
2

+
B(3η2 + η3) +D(2η2 + η3)

4α− A(6η + 2η2)− C(2η2 + η3)
)

(iv)
= E2

λL

(t−1)2

t

B(3η2 + η3) +D(2η2 + η3)

4α− A(6η + 2η2)− C(2η2 + η3)

(v)
= O(tη2). (8.17)

where (i) is due to Assumption (F4) and due to |∑i χi|2 ≤
∑

i |χi|2, (ii) is due to Assump-

tion (F3) on bounded remainder, (iii) is due to the inequality (
∑n

i=1 χ
2
i )

2 ≤ n ·∑n
i=1 χ

2
i ,

(iv) is due to ∆1 = 0, (v) is due to η being an small constant compared to α and thus
B(3η2+η3)+D(2η2+η3)

4α−A(6η+2η2)−C(2η2+η3)
= O(η2)

O(1)
.

E[‖ϕ2‖2
2] := E

∥∥∥∥∥− 1√
t
H−1

t−1∑
i=1

ei

∥∥∥∥∥
2

2

 (i)
=

1

t

t−1∑
i=1

E[‖H−1ei‖2
2]

(ii)

≤ λU
t

t−1∑
i=1

E[‖ei‖2
2]

= λU
t

t−1∑
i=1

E[‖gs(∆i)−∇f(∆i)‖2
2] ≤ 2λU

t

(
t−1∑
i=1

E[‖gs(∆i)‖2
2] +

t−1∑
i=1

E[‖∇f(∆i)‖2
2]

)
(iii)

≤ 2λU
t

(
(t− 1)B + (A+ L2)

t−1∑
i=1

E[‖∆i‖2
2]

)
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(iv)

≤ 2λU
t

(
(t− 1)B + (A+ L2)

t−1∑
i=1

(
(1− 2αη + Aη2)t−1‖∆1‖2

2 +
Bη

2α− Aη

))

= 2λU (t−1)
t

(
B + (A+ L2)

Bη

2α− Aη

)
= O(1), (8.18)

where (i) is due to E[(H−1ei)
>H−1ej] = 0 for i 6= j, (ii) is due to Assumption (F4), (iii) is

due to Assumptions (F2) and (G2), (iv) is due to Lemma 2.

Finaly, for the term E[ϕ2ϕ
>
2 ], we have

E[ϕ2ϕ
>
2 ] = E

(− 1√
t
H−1

t−1∑
i=1

ei

)(
− 1√

t
H−1

t−1∑
i=1

ei

)> = 1
t
H−1

(
t−1∑
i=1

E[eie
>
i ]

)
H−1. (8.19)

and thus:

∥∥E[ϕ2ϕ
>
2 ]−H−1GH−1

∥∥
2

=

∥∥∥∥∥1
t
H−1

(
t−1∑
i=1

E[eie
>
i ]

)
H−1 −H−1GH−1

∥∥∥∥∥
2

=

∥∥∥∥∥1
t
H−1

(
t−1∑
i=1

E[eie
>
i ]−G+G

)
H−1 −H−1GH−1

∥∥∥∥∥
2

=

∥∥∥∥∥1
t
H−1

(
t−1∑
i=1

E[eie
>
i ]−G

)
H−1 − t−1

t
·H−1GH−1

∥∥∥∥∥
2

≤ 1
t
H−1

(
t−1∑
i=1

∥∥E[eie
>
i ]−G

∥∥
2

)
H−1 + t−1

t

∥∥H−1GH−1
∥∥

2

For each term
∥∥E[eie

>
i ]−G

∥∥
2
,∀i, we have

‖E[eie
>
i ]−G‖2

=
∥∥∥E[gs(∆i)gs(∆i)

>]− E[∇f(∆i)∇f(∆i)
>]−G

∥∥∥
2

=
∥∥∥E[(gs(∆i)−∇f(∆i))(gs(∆i)−∇f(∆i))

>]−G
∥∥∥

2

=
∥∥∥E[gs(∆i)gs(∆i)

>]− E[gs(∆i)∇f(∆i)
>]− E[∇f(∆i)gs(∆i)

>] + E[∇f(∆i)∇f(∆i)
>]−G

∥∥∥
2
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(i)
=
∥∥∥E[gs(∆i)gs(∆i)

>]− 2E[∇f(∆i)∇f(∆i)
>] + E[∇f(∆i)∇f(∆i)

>]−G
∥∥∥

2

(ii)

≤ E[‖∇f(∆i)‖22] + E
[
A1‖∆i‖2 +A2‖∆i‖22 +A3‖∆i‖32 +A4‖∆i‖42

]
(iii)

≤ L2E
[
‖∆i‖22

]
+A1

√
E
[
‖∆i‖22

]
+A2E

[
‖∆i‖22

]
+
A3

2
E
[
‖∆i‖22 + ‖∆i‖42

]
+A4E

[
‖∆i‖42

]
= A1

√
E[‖∆i‖22] +

(
L2 +A2 + A3

2

)
E[‖∆i‖22] +

(
A3
2 +A4

)
E[‖∆i‖42]

(iv)

≤ A1

√
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη

+

(
L2 +A2 +

A3

2

)(
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη

)
+
(
A3
2

+A4

)(
(1−4αη+A(6η2+2η3)+C(2η3+η4))t−1‖∆1‖42+

B(3η2+η3)+D(2η2+η3)

4α−A(6η+2η2)−C(2η2+η3)

)

= A1

√
Bη

2α−Aη +

(
L2 +A2 +

A3

2

)
Bη

2α−Aη +

(
A3

2
+A4

)
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
.

(8.20)

where (i) is due to Assumption (G1), (ii) is due to Cauchy-Schwartz inequality and Assump-

tion (G4), (iii) is due to Assumption (F2), (iv) is due to Lemmas 2-3.

Then, we have:∥∥∥E[ϕ2ϕ
>
2 ]−H−1GH−1

∥∥∥
2

(i)

≤ t−1
t

∥∥H−1GH−1
∥∥

2

+
t−1
λ2
L·t

(
A1

√
Bη

2α−Aη+
(
L2+A2+

A3
2

)
Bη

2α−Aη+
(
A3
2 +A4

)
B(3η2+η3)+D(2η2+η3)

4α−A(6η+2η2)−C(2η2+η3)

)
= O(

√
η). (8.21)

where (i) is due to Assumption, and (ii) is after removing constants and observing that the

dominant term in the second part is O(
√
η). Combining all the above in (8.13), we obtain:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1

tη
+ tη2.

�
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8.2 Proof of Corollary 2

Proof of Corollary 2. Here we use the same notations as the proof of Theorem 1. Because

linear regression satisfies ∇f(θ) − H(θ − θ̂) = 0, we do not have to consider the Taylor

remainder term in our analysis. And we do not need 4-th order bound for SGD. Due to the

fact that the quadratic function is strongly convex, we have ∆>∇f(∆ + θ̂) ≥ λL‖∆‖2
2.

By sampling with replacement, we have

E[‖gs(θt)‖2
2 | θt] = ‖∇f(θt)‖2

2 + E[‖et‖2
2 | θt]

= ‖∇f(θt)‖2
2 + 1

S

(
1
n

∑
‖∇fi(θt)‖2

2 − ‖∇f(θt)‖2
2

)
≤ L2(1− 1

S
)‖∆t‖2

2 + 1
S

1
n

∑
‖xi(x>i θt − yi)‖2

2

= L2(1− 1
S

)‖∆t‖2
2 + 1

S
1
n

∑
‖xix>i ∆t + xix

>
i θ̂ − yixi‖2

2

≤ L2(1− 1
S

)‖∆t‖2
2 + 2 1

S
1
n

∑
(‖xix>i ∆t‖2

2 + ‖xix>i θ̂ − yixi‖2
2)

≤
(
L2(1− 1

S
) + 2 1

S
1
n

∑
‖xi‖4

2

)
‖∆t‖2

2 + 2 1
S

1
n

∑
‖xix>i θ̂ − yixi‖2

2. (8.22)

We also have∥∥E[gs(θ)gs(θ)
> | θ]−G

∥∥
2

=
∥∥∥ 1
S

1
n

∑
∇fi(θ)fi(θ)> −∇f(θ)∇f(θ)> −G

∥∥∥
2

≤ ‖∇f(θ)‖2
2 + 1

S

∥∥∥ 1
n

∑
∇fi(θ)fi(θ)> −G

∥∥∥
2

≤ ‖∇f(θ)‖2
2 + 1

S

∥∥∥ 1
n

∑
(gi +Hi∆)(gi +Hi∆)> −G

∥∥∥
2

≤ ‖∇f(θ)‖2
2 + 1

S

∥∥∥ 1
n

∑
Hi∆g

>
i + gi∆

>Hi +Hi∆∆>Hi

∥∥∥
2

≤ ‖∇f(θ)‖2
2 + 1

S

(
2
n
‖Hi‖2‖gi‖2

)
‖∆‖2 + 1

S

(
1
n

∑
‖Hi‖2

2

)
‖∆‖2

2

≤ 1
S

(
2
n
‖Hi‖2‖gi‖2

)
‖∆‖2 +

(
L2 + 1

S
1
n

∑
‖Hi‖2

2

)
‖∆‖2

2, (8.23)

where gi = xi(x
>
i θ̂ − yi) and Hi = xix

>
i .

Following Theorem 1’s proof, we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

1√
tη
. (8.24)
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8.3 Proof of Corollary 1

Proof of Corollary 1. Here we use the same notations as the proof of Theorem 1. Because

∇2f(θ) = ∇k(θ)∇k(θ)> + (k(θ) + c)∇2k(θ), f(θ) is convex. The following lemma shows that

∇f(θ) = (k(θ) + c)∇k(θ) is Lipschitz.

Lemma 4.

‖∇f(θ)‖2 ≤ L‖∆‖2 (8.25)

for some data dependent constant L.

Proof. First, because

∇k(θ) = 1
n

∑
− −yixi

1 + exp(yiθ>xi)
, (8.26)

we have

‖∇k(θ)‖2 ≤ 1
n

∑
‖xi‖2. (8.27)

Also, we have

‖∇2k(θ)‖2 =

∥∥∥∥ 1
n

∑ exp(yiθ
>xi)

(1 + exp(yiθ>xi))2
xix
>
i

∥∥∥∥
2

≤ 1
4n

∑
‖xi‖2

2, (8.28)

which implies

‖∇k(θ)‖2 ≤ 1
4n

∑
‖xi‖2

2‖∆‖2. (8.29)

Further:

k(θ) = 1
n

∑
log(1 + exp(−yi∆>xi − yiθ̂>xi))
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≤ 1
n

∑
log(1 + exp(‖xi‖2‖∆‖2 − yiθ̂>xi))

(i)

≤ 1
n

∑
(log(1 + exp(−yiθ̂>xi)) + ‖xi‖2‖∆‖2) (8.30)

where step (i) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|. Thus, we have

‖∇f(θ)‖2 = ‖(k(θ) + c)∇k(θ)‖2 ≤ k(θ)‖∇k(θ)‖2 + c‖∇k(θ)‖2

≤
(
c+ 1

n

∑
log(1 + exp(−yiθ̂>xi))

)
‖∇k(θ)‖2 +

(
1
n

∑
‖xi‖2

)2

‖∆‖2, (8.31)

and we can conclude that ‖∇f(θ)‖2 ≤ L‖∆‖2 for some data dependent constant L.

Next, we show that f(θ) has a bounded Taylor remainder.

Lemma 5.

‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖2
2, (8.32)

for some data dependent constant E.

Proof. Because ∇f(θ) = (k(θ) + c)∇k(θ), we know that ‖∇f(θ)‖2 = O(‖∆‖2) when ‖∆‖2 =

Ω(1) where the constants are data dependent. Because f(θ) is infinitely differentiable, by

the Taylor expansion we know that ‖∇f(θ) − H(θ − θ̂)‖2 = O(‖θ − θ̂‖2
2) when ‖∆‖2 =

O(1) where the constants are data dependent. Combining the above, we can conclude

‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖2
2 for some data dependent constant E.

In the following lemma, we will show that ∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖2
2 for some data

dependent constant α.

Lemma 6.

∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖2
2, (8.33)

for some data dependent constant α.

71



Proof. We know that

∇f(θ)>∆ = (k(θ) + c)∇k(θ)>∆. (8.34)

First, notice that locally (when ‖∆‖2 = O(λL
E

)) we have

∇k(θ)>∆ & ∆>H∆ & λL‖∆‖2
2, (8.35)

because of the optimality condition. This lower bounds ∇f(θ)>(θ − θ̂) when ‖∆‖2 = O(λL
E

).

Next we will lower bound it when ‖∆‖2 = Ω(λL
E

).

Consider the function for t ∈ [0,∞), we have

g(t) = ∇f(θ̂ + ut)>ut

= (k(θ̂ + ut) + c)∇k(θ̂ + ut)>ut

= k(θ̂ + ut)∇k(θ̂ + ut)>ut+ c∇k(θ̂ + ut)>ut, (8.36)

where u = ∆
‖∆‖2 . Because k(θ) is convex, ∇k(θ̂ + ut)>u is an increasing function in t, thus we

have ∇k(θ̂ + ut)>u = Ω(
λ2
L

E
) when t = Ω(λL

E
). And we can deduce ∇k(θ̂ + ut)>ut = Ω(

λ2
L

E
t)

when t = Ω(λL
E

).

Similarly, because k(θ) is convex, k(θ̂+ut) is an increasing function in t. Its derivative

∇k(θ̂ + ut)>u = Ω(
λ2
L

E
) when t = Ω(λL

E
). So we have k(θ̂ + ut) = Ω(

λ2
L

E
t) when t = Ω(λL

E
).

Thus, we have

k(θ̂ + ut)∇k(θ̂ + ut)>ut = Ω

(
λ4
L

E2
t2
)
, (8.37)

when t = Ω( E
λL

).

And we can conclude that ∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖2
2 for some data dependent

constant α = Ω(min{λL, λ
4
L

E2}).
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Next, we will prove properties about gs = ΨsΥs.

E[‖Υ‖2
2 | θ] =

1

SΥ

(
1
n

∑
‖∇ki(θ)‖2

2 − ‖∇k(θ)‖2
2

)
+ ‖∇k(θ)‖2

2 .
1
n
‖xi‖2

2 (8.38)

E[Ψ2
s]

(i)

≤ 1
n

∑
(c+ ki(θ))

2

= 1
n

∑(
c+ log(1 + exp(−yiθ̂>xi − yi∆xi))

)2

(ii)

. 1
n

∑
‖xi‖2‖∆‖2

2 + 1
n

∑
(c+ log(1 + exp(−yiθ̂>xi)))2, (8.39)

where (i) follows from E

[(∑S
j=1Xj

S

)2
]
≤ E

[∑S
j=1 X

2
j

S

]
and (ii) follows from log(1+exp(a+b))

≤ log(1 + eb) + |a|.

Thus, we have

E[‖gs‖2
2(θ) | θ] = E[Ψ2 | θ] · E[‖Υ‖2

2 | θ] . A‖∆‖2
2 +B (8.40)

for some data dependent constants A and B.

For the fourth-moment quantities, we have:

E[‖Υ‖4
2 | θ] = E

∥∥∥∥∥∥ 1

SΥ

∑
i∈IΥ

t

∇ log(1 + exp(−yiθ>xi))

∥∥∥∥∥∥
4

2


≤ E

 1

SΥ

∑
i∈IΥ

t

‖∇ log(1 + exp(−yiθ>xi))‖2

4
≤ E

 1

SΥ

∑
i∈IΥ

t

‖xi‖2

4 ≤ 1
n

∑
‖xi‖4

2. (8.41)
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E[Ψ4
s]

(i)

≤ 1
n

∑
(c+ ki(θ))

4 = 1
n

∑(
c+ log(1 + exp(−yiθ̂>xi − yi∆xi))

)4

(ii)

. 1
n

∑
‖xi‖4‖∆‖4

2 + 1
n

∑(
c+ log(1 + exp(−yiθ̂>xi))

)4

, (8.42)

where (i) follows from E

[(∑S
j=1Xj

S

)4
]
≤ E

[∑S
j=1 X

4
j

S

]
and (ii) follows from log(1+exp(a+b))

≤ log(1 + eb) + |a|.

Combining the above, we get:

E[‖gs‖4
2(θ) | θ] = E

[
Ψ4 | θ

]
· E
[
‖Υ‖4

2 | θ
]
. C‖∆‖4

2 +D, (8.43)

for some data dependent constants C and D.

Finally, we need a bound for the quantity ‖E[∇gs(θ)∇gs(θ)>]−G‖2. We observe:∥∥E[∇gs(θ)∇gs(θ)>]−G
∥∥

2

≤
∥∥∥KG(θ)

n

∑
∇ki(θ)∇ki(θ)> − KG(θ̂)

n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2

≤
∥∥∥KG(θ)

n

∑
∇ki(θ)∇ki(θ)> − KG(θ)

n

∑
∇ki(θ̂)∇ki(θ̂)>

+ KG(θ)
n

∑
∇ki(θ̂)∇ki(θ̂)> − KG(θ̂)

n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2

≤ KG(θ)
n

∥∥∥∑(
∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>

)∥∥∥
2

+ |KG(θ)−KG(θ̂)| ·
∥∥∥ 1
n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2
. (8.44)

Because

KG(θ) = O(1 + ‖∆‖2 + ‖∆‖2
2), (8.45)

1
n

∥∥∥∑(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)
∥∥∥

2
= O(‖∆‖2 + ‖∆‖2

2), (8.46)

|KG(θ)−KG(θ̂)| = O(‖∆‖2 + ‖∆‖2
2), (8.47)
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we may conclude that

‖E[gs(θ)gs(θ)
> | θ]−G‖2 ≤ A1‖θ − θ̂‖2 + A2‖θ − θ̂‖2

2 + A3‖θ − θ̂‖3
2 + A4‖θ − θ̂‖4

2, (8.48)

for some data dependent constants A1, A2, A3, and A4.

Combining above results and using Theorem 1, we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

√
1

tη
+ tη2. (8.49)
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Chapter 9

Chapter 4 proofs

9.1 Proof of Theorem 2

Given assumptions about strong convexity, Lipschitz gradient continuity and Hessian

Lipschitz continuity in Theorem 2, we denote:

β̄ = βi
n
, h̄ = hi

n
.

Then, ∀θ1, θ2 we have:

‖∇f(θ2)−∇f(θ1)‖2 ≤ β̄‖θ2 − θ1‖2, and ‖∇2f(θ2)−∇2f(θ1)‖2 ≤ h̄‖θ2 − θ1‖2.

and ∀θ:

‖∇2f(θ)‖2 ≤ β̄.

In our proof, we also use the following:

h̄2 = 1
n

n∑
i=1

h2
i , β̄2 = 1

n

n∑
i=1

β2
i , and β = sup

θ
‖∇2f(θ)‖2.

Observe that:

h̄ ≤
√
h̄2, and α ≤ β ≤ β̄ ≤

√
β̄2.

This chapter also appears in [LKLC18]. It was written by Tianyang Li, and edited by Anastasios Kyrillidis
and Constantine Caramanis.
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9.1.1 Proof of (4.8)

We first prove (4.8); the proof is similar to standard SGD convergence proofs (e.g.

[LLKC18, CLTZ16, PJ92]). For the rest of our discussion, we assume that

δjt · h̄ ≤ δjt ·
√
h̄2 � 1, ∀t, j.

Using ∇f(θ)’s Taylor series expansion with a Lagrange remainder, we have the

following lemma, which bounds the Hessian vector product approximation error.

Lemma 7. ∀, θ, g, δ ∈ Rp, we have:∥∥∥∇fi(θ+δg)−∇fi(θ)δ
−∇2fi(θ)g

∥∥∥
2
≤ hi · |δ| · ‖g‖2,∥∥∥∇f(θ+δg)−∇f(θ)

δ
−∇2f(θ)g

∥∥∥
2
≤ h̄ · |δ| · ‖g‖2.

Denote Ht = ∇2f(θt) and

ejt =

(
1
Si
·
∑
k∈Ii

∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt

)
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
,

then we have

gj+1
t −H−1

t g0
t = gjt −H−1

t g0
t − τj · ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t − τjejt . (9.1)

Because E[etj | gtj, θt] = 0, we have

E
[∥∥gj+1

t −H−1
t g0

t

∥∥2

2
| θt
]

= E

[∥∥gjt −H−1
t g0

t

∥∥2

2
− τj

〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
− g0

t

〉
︸ ︷︷ ︸

[1]

+ τ 2
j

∥∥∥∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
− g0

t

∥∥∥2

2︸ ︷︷ ︸
[2]

+τ 2
j

∥∥ejt∥∥2

2︸ ︷︷ ︸
[3])

| θt
]
. (9.2)
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For term [1], we have〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
− g0

t

〉
=
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+
〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Ht

〉
≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
−
∣∣∣〈gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Ht〉

∣∣∣
by Hessian approximation

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt · h̄ ·

∥∥gjt −H−1
t g0

t

∥∥
2
·
∥∥gjt∥∥2

by AM-GM inequality

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt ·h̄

2
·
∥∥gjt −H−1

t g0
t

∥∥2

2
− δjt ·h̄

2
·
∥∥gjt∥∥2

2

=
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt ·h̄

2
·
∥∥gjt −H−1

t g0
t

∥∥2

2
− δjt ·h̄

2
·
∥∥gjt −H−1

t g0
t +H−1

t g0
t

∥∥2

2

‖x+ u‖2
2 ≤ 2‖x‖2

2 + 2‖y‖2
2

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− 3δjt ·h̄

2
·
∥∥gjt −H−1

t g0
t

∥∥2

2
− δjt h̄ ·

∥∥H−1
t g0

t

∥∥2

2

by strong convexity

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− 3δjt ·h̄

2
·
∥∥gjt −H−1

t g0
t

∥∥2

2
− δjt h̄

α2 ·
∥∥g0

t

∥∥2

2
. (9.3)

For term [2], by repeatedly applying AM-GM inequality, using f ’s smoothness and

strong convexity, and assuming δjt h̄� 1, we have:∥∥∥∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
− g0

t

∥∥∥2

2

=
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t +Htg

j
t − g0

t

∥∥∥2

2

≤
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥2

2

+ 2
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥
2
·
∥∥Htg

j
t − g0

t

∥∥
2

+
∥∥Htg

j
t − g0

t

∥∥2

2

≤
(
δjt h̄
)2 ‖gjt‖2

2 + 2δjt h̄
∥∥gjt∥∥2

·
∥∥Htg

j
t − g0

t

∥∥
2

+
∥∥Htg

j
t − g0

t

∥∥2

2

≤
(
δjt h̄+

(
δjt h̄
)2
)
·
∥∥gjt∥∥2

2
+
(
1 + δjt h̄

)
· ‖Htg

j
t − g0

t ‖2
2

78



≤ 2
(
δjt h̄+

(
δjt h̄
)2
)
·
(∥∥gjt −H−1

t g0
t

∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2

)
+
(
1 + δjt h̄

)
·
∥∥Htg

j
t − g0

t

∥∥2

2

≤ 2
(
δjt h̄+(δjt h̄)

2
)

α2 ·
∥∥g0

t

∥∥2

2
+
(

1 + 3δjt h̄+ 2
(
δjt h̄
)2
)
·
∥∥Htg

j
t − g0

t

∥∥2

2

≤ 4δjt h̄

α2 ·
∥∥g0

t

∥∥2

2
+
(
1 + 5δjt h̄

)
· ‖Htg

j
t − g0

t ‖2
2.

For term [3], because we sample uniformly without replacement, we obtain:

EIi
[∥∥ejt∥∥2

2
| gjt , θt

]
= 1

Si

(
1− Si−1

n−1

)
· Ek

[∥∥∥∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt

∥∥∥2

2

]
,

where k is uniformly sampled from [n]. Denote Hk
t = ∇2fk(θt), and by Lipschitz gradient we

have ‖Hk
t ‖2 ≤ βk. We can bound the above∥∥∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt

∥∥∥∥∥
2

2

=
∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
−Hk

t g
j
t +Hk

t g
j
t − ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t −Htg

j
t

∥∥∥2

2

≤ 3

(∥∥(Ht −Hk
t

)
gjt
∥∥2

2
+
∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
−Hk

t g
j
t

∥∥∥2

2
+
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥2

2

)
≤ 3

(∥∥Ht −Hk
t

∥∥2

2
+ (δjt )

2
(
h̄2 + h2

k

))
·
∥∥gjt∥∥2

2

‖Ht −Hk
t ‖2

2 ≤ 2(β̄2 + β2
k)

≤ 3
(
2
(
β̄2 + β2

k

)
+ (δjt )

2(h̄2 + h2
k)
)
·
∥∥gjt∥∥2

2

≤ 6
(
2
(
β̄2 + β2

k

)
+ (δjt )

2(h̄2 + h2
k)
)
·
(∥∥gjt −H−1

t g0
t

∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2

)
.

Taking the expectation over inner loop’s random indices, for term [3], we have

EIi
[∥∥ejt∥∥2

2
| gjt , θt

]
≤ 6

(
1
Si
·
(
1− Si−1

n−1

))((
δjt h̄
)2

+ 2β̄2 + (δjt )
2h̄2 + 2β̄2

)
·
(∥∥gjt −H−1

t g0
t

∥∥2

2
+ 1

α2 ·
∥∥g0

t

∥∥2

2

)
≤ 18

(
1
Si

(
1− Si−1

n−1

))
·
(
(δjt )

2h̄2 + β̄2

)
·
(∥∥gjt −H−1

t g0
t

∥∥2

2
+ 1

α2

∥∥g0
t

∥∥2

2

)
. (9.4)
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Combining all above, we have

E
[∥∥gj+1

t −H−1
t g0

t

∥∥2

2
| gjt , θt

]
≤
∥∥gjt −H−1

t g0
t

∥∥2

2

− τj
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+

3τjδ
j
t h̄

2

∥∥gjt −H−1
t g0

t

∥∥2

2
+

τjδ
j
t h̄

α2

∥∥g0
t

∥∥2

2

+
4τ2
j δ
j
t h̄

α2 ·
∥∥g0

t

∥∥2

2
+ τ 2

j

(
1 + 5δjt h̄

)
·
∥∥Htg

j
t − g0

t

∥∥2

2

+ 18τ 2
j

(
1
Si

(
1− Si−1

n−1

))
·
(
(δjt )

2h̄2 + β̄2

)
·
(∥∥gjt −H−1

t g0
t

∥∥2

2
+ 1

α2‖g0
t ‖2

2

)
.

When we choose the Hessian vector product approximation scaling constant δjt to be

sufficiently small

δjt h̄ ≤ δjt
√
h̄2 ≤ 0.01,

3δjt h̄

2
≤ 0.01α,

δjt h̄ ≤ δjt
√
h̄2 ≤ 0.01

Si

(
1− Si−1

n−1

)
β̄2 ≤ 0.01

Si

(
1− Si−1

n−1

)
β̄2,

δjt h̄ ≤ δjt
√
h̄2 ≤ 0.01τj

Si

(
1− Si−1

n−1

)
β̄2 ≤ 0.01τj

Si

(
1− Si−1

n−1

)
β̄2,

δjt h̄ ≤ δjt
√
h̄2 ≤ 0.01α ≤ 0.01β̄ ≤ 0.01

√
β̄2,

we have

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| gjt , θt

]
≤
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
−τj

(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+ 1.05τ2

j ‖Htg
j
t − g0

t ‖22︸ ︷︷ ︸
[4]

+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2

∥∥∥gjt −H−1
t g0

t

∥∥∥2

2

+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2

α2 ·
∥∥g0

t

∥∥2

2
.

For term [4], let us consider the α strongly convex and β smooth quadratic function

F (g) = 1
2
g>Htg − 〈g0

t , g〉,
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who attains its minimum at g = H−1
t g0

t . Using a well known property of α strongly convex
and β smooth functions (Lemma 10), we have

−
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+ 1

2β‖Htg
j
t − g0

t ‖22

≤−
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+ 1

α+β‖Htg
j
t − g0

t ‖22
≤− αβ

α+β‖g
j
t −H−1

t g0
t ‖22

≤− α
2 ‖g

j
t −H−1

t g0
t ‖22.

Thus, when we choose

τj ≤ 0.476
β
,

we have

− τj
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+ 1.05τ2

j ·
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

≤ −τj
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+

τj
2β

∥∥∥Htg
j
t − g0

t

∥∥∥2

2
,

≤ − τjα
2 · ‖g

j
t −H−1

t g0
t ‖22,

and we have

E
[∥∥gj+1

t −H−1
t g0

t

∥∥2

2
| gjt , θt

]
≤
(

1− τjα + 18.5τ 2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2

)
·
∥∥gjt −H−1

t g0
t

∥∥2

2

+ 18.5τ 2
j

(
1
Si

(
1− Si−1

n−1

))
· β̄2

α2 · ‖g0
t ‖2

2.

Next, we set

τ0 = min

{
0.476
β
, 0.025·α

1
Si

(
1−Si−1

n−1

)
β̄2

}
, Dj = (j + 1)−di , τj = τ0Dj, (9.5)

where di is inner loop’s step size decay rate, and we have:

E
[∥∥gj+1

t −H−1
t g0

t

∥∥2

2
| θt
]
≤
(

1−min

{
α
2β
, 0.013·α2

1
Si

(
1−Si−1

n−1

)
β̄2

}
Dj

)
· E
[∥∥gjt −H−1

t g0
t

∥∥2

2
| θt
]
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+ 18.5D2
j τ

2
0

(
1
Si

(
1− Si−1

n−1

))
β̄2

α2 ·
∥∥g0

t

∥∥2

2
.

To satisfy the above requirements, for the Hessian vector product approximation

scaling constant, we choose:

δjt = o

(
min

{
1, 1

h̄

}
·min

{
1, α,min

{
1, τ 4

0

(
τj
τ0

)4
}

1
Si

(
1− Si−1

n−1

)})
· δ0

t = o
(
(j + 1)−2) · δ0

t ,

δ0
t = O(ρ4

t ) = o((t+ 1)−2) = o(1). (9.6)

which is trivially satisfied for quadratic functions because all hi = 0.

Note that:

18.5τ 2
0

(
1
Si

(
1− Si−1

n−1

))
· β̄2

α2 = Θ

(
min

{(
1
Si

(
1− Si−1

n−1

))
· β̄2

β2α2 ,
1

1
Si

(
1−Si−1

n−1

)
·β̄2

})
.

Applying Lemma 11, we have:

E
[∥∥gjt −H−1

t g0
t

∥∥2

2
| θt
]

= O
(
t−di · ‖g0

t ‖2
2

)
, (9.7)

where we have assumed that α, β, Si, etc. are (data dependent) constants. Further, (9.7)

implies:

E
[∥∥gjt∥∥2

2

]
≤ 2E

[∥∥gjt −H−1
t g0

t

∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2
| θt
]
. ‖g0

t ‖2
2, for all j. (9.8)

In Algorithm 1, we have

gj+1
t −H−1

t g0
t = (I − τjHt)(g

j
t −H−1

t g0
t ) + τj

(
−ejt − ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t

)
.

By unrolling the recursion we have:

gj+1
t −H−1

t g0
t =

j∑
k=0

(
j∏

l=k+1

(I − τlHt)

)
· τk ·

(
−ekt − ∇f(θt+δkt g

k
t )−∇f(θt)

δkt
+Htg

k
t

)
. (9.9)
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For the average ḡt, we have:

ḡt −H−1
t g0

t = 1
L+1

L∑
j=0

(gjt −H−1
t g0

t )

= 1
L+1

L∑
j=0

j−1∑
k=0

(
j−1∏
l=k+1

(I − τlHt)

)
· τk
(
−ekt − ∇f(θt+δkt g

k
t )−∇f(θt)

δkt
+Htg

k
t

)
= 1

L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)︸ ︷︷ ︸
[5]

(
−ekt − ∇f(θt+δkt g

k
t )−∇f(θt)

δkt
+Htg

k
t

)

= 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−ekt

)
︸ ︷︷ ︸

[6]

+ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−∇f(θt+δkt g

k
t )−∇f(θt)

δkt
+Htg

k
t

)
︸ ︷︷ ︸

[7]

. (9.10)

For the term [5], we have:∥∥∥∥∥τk
L∑

j=k+1

j−1∏
l=k+1

(I − τlHt)

∥∥∥∥∥
2

≤ τk

L∑
j=k+1

j−1∏
l=k+1

‖I − τlHt‖2

I − τlHt is positive definite by our choice of τl (9.5) and ‖I − τlHt‖2 ≤ 1− τlα

≤ τk

L∑
j=k+1

j−1∏
l=k+1

(1− τlα)

≤ τk

L∑
j=k+1

j−1∏
l=k+1

(
1− 1

2
τlα

)2

τk

j−1∏
l=k+1

(1− 1

2
τlα) ≤ τk exp(−1

2
α

j−1∑
l=k+1

τl) . k−di exp(Θ(−j1−di + k1−di)) . j−di . τj
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because for a fixed di x
−dieΘ(x1−di ) is an increasing function when x is sufficiently large

.
L∑

j=k+1

τj

j−1∏
l=k+1

(
1− τlα

2

)
= 2

α

L∑
j=k+1

1

2
τjα

j−1∏
l=k+1

(
1− τlα

2

)
= 2

α

(
1−

L∏
j=k+1

(
1− τlα

2

))
= O(1), (9.11)

where we have assumed that α, β, Si, etc. are (data-dependent) constants.

For the term [6], its norm is bounded by:

E

∥∥∥∥∥ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )
∥∥∥∥∥

2

2

| θt


= 1

(L+1)2E

L−1∑
k=0

∥∥∥∥∥τk
L∑

j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )
∥∥∥∥∥

2

2

| θt


using (9.11)

. 1
(L+1)2E

[
L−1∑
k=0

‖ekt ‖2
2 | θt

]
using (9.4) and (9.7)

. 1
L
‖g0

t ‖2
2. (9.12)

where the first equality is due to a < b, E[eat
>ebt | θt] = 0, when we first condition on b.

For the term [7], its norm is bounded by:

E

∥∥∥∥∥ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−∇f(θt+δkt g

k
t )−∇f(θt)

δkt
+Htg

k
t

)∥∥∥∥∥
2

2

| θt


= 1

(L+1)2E

[ ∑
0≤a,b,≤L−1

〈
τa

L∑
j=a+1

j−1∏
l=a+1

(I − τlHt)
(
−∇f(θt+δat g

a
t )−∇f(θt)

δat
+Htg

a
t

)
,

τb

L∑
j=b+1

j−1∏
l=b+1

(I − τlHt)
(
−∇f(θt+δbt g

b
t )−∇f(θt)

δbt
+Htg

b
t

)〉
| θt
]
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≤ 1
(L+1)2E

[ ∑
0≤a,b,≤L−1

∥∥∥∥∥τa
L∑

j=a+1

j−1∏
l=a+1

(I − τlHt)
(
−∇f(θt+δat g

a
t )−∇f(θt)

δat
+Htg

a
t

)∥∥∥∥∥
2

·
∥∥∥∥∥τb

L∑
j=b+1

j−1∏
l=b+1

(I − τlHt)
(
−∇f(θt+δbt g

b
t )−∇f(θt)

δbt
+Htg

b
t

)∥∥∥∥∥
2

| θt
]

using (9.11) and Lemma 7

. 1
(L+1)2E

[ ∑
0≤a,b,≤L−1

δat h̄‖gat ‖2δ
b
t h̄‖gbt‖2 | θt

]
≤ 2h̄2

(L+1)2

∑
0≤a,b,≤L−1

δat δ
b
t · E

[
‖gat ‖2

2 + ‖gbt‖2
2 | θt

]
. ‖g0

t ‖22
(L+1)2

∑
0≤a,b,≤L−1

δat δ
b
t .

‖g0
t ‖22
L2

(
L∑
k=0

δkt

)2

(9.13)

using (9.8) and our choice of δkt (9.6)

. 1
L2 δ

0
t

2

(
L∑
k=0

τk

)2

· ‖g0
t ‖2

2 .
1
L2 δ

0
t

2

(
L∑
k=0

(k + 1)−di

)2

· ‖g0
t ‖2

2

because

(
L∑
k=0

(k + 1)−di

)2

= O
(
L1−di

)
and di ∈

(
1
2
, 1
)

� 1
L
‖g0

t ‖2
2. (9.14)

Combining (9.12) and (9.14), we have

‖ḡt −H−1
t g0

t ‖2
2 = O

(
1
L
‖g0

t ‖2
2

)
.

9.1.2 Proof of (4.9)

Using (9.1), we have

E[‖gj+1
t −H−1

t g0
t ‖4

2 | gjt ]

= E[‖gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t − τjejt‖4

2 | gjt ]
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= E[(‖gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖2

2

− 2〈τjejt , gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉+ τ 2

j ‖ejt‖2
2)2 | gjt ]

= E[‖gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖4

2

+ 4(〈τjejt , gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉)2 + τ 4

j ‖ejt‖4
2

+ 2‖gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖2

2τ
2
j ‖ejt‖2

2

− 4〈τjejt , gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉‖gjt −H−1

t g0
t − τj ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖2

2

− 4〈τjejt , gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉τ 2

j ‖ejt‖2
2 | gjt ]. (9.15)

Because we have

E[ejt | gjt ] = 0,

‖gjt −H−1
t g0

t − τj ∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖4

2

= ‖(I − τjHt)(g
j
t −H−1

t g0
t ) + τj(−∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t )‖4

2

= (‖(I − τjHt)(g
j
t −H−1

t g0
t )‖2

2

+ 2τj〈(I − τjHt)(g
j
t −H−1

t g0
t ),−∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t 〉

+ τ 2
j ‖ − ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t‖2

2)2

using Lemma 7

≤(‖(I − τjHt)(g
j
t −H−1

t g0
t )‖2

2 + 2τj‖I − τjHt‖2‖gjt −H−1
t g0

t ‖2δ
j
t‖gjt‖2 + τ 2

j δ
j
t

2‖gjt‖2
2)2

= ‖(I − τjHt)(g
j
t −H−1

t g0
t )‖4

2

+ 2τj‖(I − τjHt)(g
j
t −H−1

t g0
t )‖2

2(2δjt‖I − τjHt‖2‖gjt −H−1
t g0

t ‖2‖gjt‖2 + τjδ
j
t

2‖gjt‖2
2)

+ τ 2
j (2δjt‖I − τjHt‖2‖gjt −H−1

t g0
t ‖2‖gjt‖2 + τjδ

j
t

2‖gjt‖2
2)2

by our choice of τj = Θ((j + 1)−di) = o(1) (9.5)

and using ‖gjt‖2 ≤ ‖gjt −H−1
t g0

t ‖2 + ‖H−1
t g0

t ‖2 . ‖gjt −H−1
t g0

t ‖2 +4 ‖g0
t ‖2
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= (1−Θ(τj))‖gjt −H−1
t g0

t ‖4
2

+O(τjδ
j
t (‖gjt −H−1

t g0
t ‖4

2 + ‖gjt −H−1
t g0

t ‖3
2‖g0

t ‖2)

+ 2τ 2
j δ

j
t

3
(‖gjt −H−1

t g0
t ‖4

2 + ‖gjt −H−1
t g0

t ‖2
2‖g0

t ‖2
2)

+ τ 2
j δ

j
t

2
(‖gjt −H−1

t g0
t ‖4

2 + ‖gjt −H−1
t g0

t ‖2
2‖g0

t ‖2
2

+ τjδ
j
t (‖gjt −H−1

t g0
t ‖4

2 + ‖g0
t ‖4

2))),

E[‖ejt‖4
2 | gjt ]

=E[‖
(

1

Si

1

δjt

∑
k∈Ii

(∇fk(θt + δjt g
j
t )−∇fk(θt))

)
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
‖4

2 | gjt ]

=E[‖
(

1

Si

1

δjt

∑
k∈Ii

((∇fk(θt + δjt g
j
t )−∇fk(θt))−Hk

t g
j
t +Hk

t g
j
t )

)

− (
1

δjt
(∇f(θt + δjt g

j
t )−∇f(θt))−Htg

j
t +Htg

j
t )‖4

2 | gjt ]

using Lemma 7 and repeatedly applying the AM-GM inequality

.(1 + δjt
4
)‖gjt‖4

2

.(1 + δjt
4
)δjt

4
(‖gjt −H−1

t g0
t ‖4

2 + ‖g0
t ‖4

2),

and by our choice of τj = Θ((j + 1)−di) = o(1) (9.5) and δjt = O(τ 4
j ) (9.6), after repeatedly

applying the AM-GM inequality, Lemma 7, triangle inequality, and (9.7), we can bound

(9.15) by

E[‖gj+1
t −H−1

t g0
t ‖4

2 | gjt ]

≤(1−Θ(τj))‖gjt −H−1
t g0

t ‖4
2 +O(τ 3

j ‖g0
t ‖4

2)). (9.16)

Applying Lemma 11, we have

E[‖gj+1
t −H−1

t g0
t ‖4

2 | θt] = O((j + 1)−2di‖g0
t ‖4

2), (9.17)

and using the AM-GM in equality we have

E[‖gj+1
t ‖4

2 | θt] = O(‖g0
t ‖4

2). (9.18)
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9.1.3 Proof of (4.6)

To prove bounds on ‖θt − θ̂‖2
2, we will use the following lemma

Lemma 8.

E[〈∇f(θt),−gLt 〉 | θt] &ρt‖∇f(θt)‖2
2 − δ0

t ‖∇f(θt)‖2‖g0
t ‖2

&ρt‖∇f(θt)‖2
2 − δ0

t
2‖g0

t ‖2
2.

Proof. Using (9.9), and because E[ejt | θt = 0], we have

E[〈∇f(θt),−gLt 〉 | θt]

=ρt∇f(θt)>H
−1
t ∇f(θt)−E

[〈
∇f(θt),

∑L−1
k=0 (

∏L−1
l=k+1(I−τlHt))τk(

∇f(θt+δkt g
k
t )−∇f(θt)

δkt
−Htgkt )

〉∣∣∣∣∣ θt
]

using strong convexity and Lemma 7

≥ 1

β
ρt‖∇f(θt)‖2

2 − ‖∇f(θt)‖2 E

[
L−1∑
k=0

L−1∏
l=k+1

‖I − τlHt‖2τkδ
k
t ‖gkt ‖2

∣∣∣∣∣ θt
]

︸ ︷︷ ︸
[8]

.

By our choice of τj = Θ((j + 1)−di) = o(1) (9.5) and δjt = O(δ0
t τ

4
j ) (9.6), and using

(9.8), term [8] is bounded by

E

[
L−1∑
k=0

L−1∏
l=k+1

‖I − τlHt‖2τkδ
k
t ‖gkt ‖2 | θt

]

.
L−1∑
k=0

τkδ
k
t

.‖g0
t ‖2δ

0
t

L−1∑
k=0

τ 5
k︸ ︷︷ ︸

=O(1)

.

And we can conclude

E[〈∇f(θt),−gLt 〉 | θt]
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≥ C1ρt‖∇f(θt)‖2
2 − C2δ

0
t ‖∇f(θt)‖2‖g0

t ‖2

= C1ρt‖∇f(θt)‖2
2 −

C1

2
δ0
t

2
[
2
‖∇f(θt)‖2

δ0
t

C2

C1

‖g0
t ‖2

]
≥ C1ρt‖∇f(θt)‖2

2 −
C1

2
δ0
t

2

((‖∇f(θt)‖2

δ0
t

)2 + (
C2

C1

‖g0
t ‖2

)2
)

=
C1

2
ρt‖∇f(θt)‖2

2 −
C2

2

2C1

δ0
t

2‖g0
t ‖2

2,

for some (data dependent) positive constants C1, C2.

Now, we continue our proof of (4.6).

In Algorithm 1, because f is β smooth, we have

E[f(θt+1)− f(θ̂) | θt]

= E[f(θt + gLt )− f(θ̂) | θt]

≤f(θt)− f(θ̂) + E
[〈
∇f(θt), g

L
t

〉
+
β

2
‖gLt ‖2

2 | θt
]

using Lemma 8 and (9.8)

≤f(θt)− f(θ̂)− Ω(ρt‖∇f(θt)‖2
2) + E[O(‖g0

t ‖2
2 + δ0

t ‖g0
t ‖2‖∇f(θt)‖2) | θt]. (9.19)

For g0
t , we have

g0
t

ρt
=

1

So

∑
i∈Io

∇fi(θt)

=
1

So

∑
i∈Io

∇fi(θ̂) +
1

So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂)), (9.20)

which implies that

E

[∥∥∥∥g0
t

ρt

∥∥∥∥2

2

| θt
]
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≤2E

∥∥∥∥∥ 1

So

∑
i∈Io

∇fi(θ̂)‖2
2 | θt] + 2E[‖ 1

So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂))
∥∥∥∥∥

2

2

| θt


because we sample uniformly with replacement and ∇f(θ̂) = 0

≤ 2

So

n∑
i=1

‖∇fi(θ̂)‖2
2 + E[‖∇fi(θt)−∇fi(θ̂)‖2

2 | θt]

≤ 2

So

n∑
i=1

‖∇fi(θ̂)‖2
2 + ‖θt − θ̂‖2

2E[β2
i | θt]

.1 + ‖θt − θ̂‖2
2. (9.21)

Thus, continuing (9.19), using (9.21) and strong convexity α2‖θt − θ̂‖2
2 ≤ ‖∇f(θt)‖2

2,

we have

E[f(θt+1)− f(θ̂) | θt]

≤f(θt)− f(θ̂)− C1ρt‖∇f(θt)‖2
2 + C2ρtδ

0
t (1 + ‖∇f(θt)‖2)‖∇f(θt)‖2 + C3ρ

2
t (1 + ‖∇f(θt)‖2

2)

= f(θt)− f(θ̂)− ρt(C1 − C2δ
0
t − C3ρt)‖∇f(θt)‖2

2 + C3ρ
2
t + C2ρtδ

0
t ‖∇f(θt)‖2

because we have C2ρtδ0
t ‖∇f(θt)‖2= 1

2
C1ρtδ0

t
2
2

C2
C1
‖∇f(θt)‖2
δ0t

≤ 1
2
C1ρtδ0

t
2

((
C2
C1

)2+(
‖∇f(θt)‖2

δ0t

)2
)

≤f(θt)− f(θ̂)− ρt(1
2
C1 − C2δ

0
t − C3ρt)‖∇f(θt)‖2

2 + C3ρ
2
t +

C2
2

C1
ρtδ

0
t

2

using strong convexity 1
2α
‖∇f(θt)‖22≥f(θt)−f(θ̂) and smoothness 1

2β
‖∇f(θt)‖22≤f(θt)−f(θ̂)

≤[f(θt)− f(θ̂)]− ρt(1
2
C1 − C2δ

0
t − C3ρt)

1
2α

[f(θt)− f(θ̂)] + C3ρ
2
t +

C2
2

C1
ρtδ

0
t

2

when we set δ0
t=O(ρt) in (9.6)

≤[f(θt)− f(θ̂)]− ρt(1
2
C1 − C2δ

0
t − C3ρt)

1
2α

[f(θt)− f(θ̂)] + (C3 +O(1))ρ2
t , (9.22)

for some (data dependent) positive constants C1, C2, C3.

In (9.22) we choose ρt = Θ((t + 1)−do) for some do ∈ (1
2
, 1), and after applying

Lemma 11 we have

E[‖θt − θ̂‖2
2]
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≤E[ 2
α

(f(θt)− f(θ̂))]

.t−do + e−Θ(t1−do )‖θ0 − θ̂‖2
2, (9.23)

which is O(t−do) when ‖θ0 − θ̂‖2 = O(1).

9.1.4 Proof of (4.7)

In Algorithm 1, because f is β smooth, and ∀θ f(θ)− f(θ̂) ≥ 0, we have

(f(θt+1)− f(θ̂))2

= (f(θt + gLt )− f(θ̂))2

≤(f(θt)− f(θ̂) + 〈∇f(θt), g
L
t 〉+ β

2
‖gLt ‖2

2)2

= (f(θt)− f(θ̂))2 + 2〈∇f(θt), g
L
t 〉(f(θt)− f(θ̂))

+ 〈∇f(θt), g
L
t 〉2 + β2

4
‖gLt ‖4

2 + 2(f(θt)− f(θ̂) + 〈∇f(θt), g
L
t 〉)β2‖gLt ‖2

2.

Because we have

E[〈∇f(θt), g
L
t 〉(f(θt)− f(θ̂)) | θt]

.− ρt‖∇f(θt)‖2
2(f(θt)− f(θ̂)) + δ0

t ‖g0
t ‖2

2(f(θt)− f(θ̂)),

E
[∥∥∥g0

t

ρt

∥∥∥4

2
| θt
]

= E

∥∥∥∥∥ 1
So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂) +∇fi(θ̂))
∥∥∥∥∥

4

2

| θt


.1 + ‖θt − θ̂‖4

2,

f(θt)− f(θ̂) = Θ(‖θt − θ̂‖2
2) = Θ(‖∇f(θt)‖2

2),
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and by our choice of ρt = Θ((t+1)−do) = o(1) and δ0
t = O(ρ4

t ) (9.6), after repeatedly applying

the AM-GM inequality and (9.23), we have

E[(f(θt+1)− f(θ̂))2 | θt]

≤(1−Θ(ρt))(f(θt)− f(θ̂))2 +O(ρ3
t ).

Applying Lemma 11, we have

E[‖θt − θ̂‖4
2]

≤E
[

4
α2 (f(θt)− f(θ̂))2

]
.t−2do . (9.24)

9.1.5 Proof of (4.10)

For ḡt
ρt

, we have

ḡt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]

+H−1 1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θ̂) +H−1
t

1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θt)︸ ︷︷ ︸
[2]

−H−1
t

g0
t

ρt
+
ḡt
ρt︸ ︷︷ ︸

[3]

. (9.25)

Thus, for the “covariance” of our replicates, we have∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

.

∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2
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+

∥∥∥∥∥SoT
T∑
t=1

[1]t([2]t + [3]t)
>

∥∥∥∥∥
2

+

∥∥∥∥∥SoT
T∑
t=1

([2]t + [3]t)[1]>t

∥∥∥∥∥
2

+

∥∥∥∥∥SoT
T∑
t=1

([2]t + [3]t)([2]t + [3]t)
>

∥∥∥∥∥
2

because for two vectors a, b the operator norm ‖ab>‖2 ≤ ‖a‖2‖b‖2

.

∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2

+
1

T

T∑
t=1

‖[1]t‖2(‖[2]t‖2 + ‖[3]t‖2)

+
1

T

T∑
t=1

(‖[2]t‖2
2 + ‖[3]t‖2

2).

Because
∑T

t=1[1]t consists of So · T i.i.d. samples from {H−1∇fi(htheta)}ni=1 and the

mean H−1∇f(θ̂) = 0, using matrix concentration [Tro15], we know that

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2

]
.

1√
T
.

For term [3], using (9.10), because we have

T∑
t=1

[3]t

=
T∑
t=1

1

L+ 1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )︸ ︷︷ ︸
when a 6= b E[〈eat ,ebt〉]=0

+
T∑
t=1

1

L+ 1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−∇f(θt+δkt g
k
t )−∇f(θt)

δkt
+Htg

k
t ),

by using (9.11) and (9.13), we have

E

∥∥∥∥∥ 1√
T

T∑
t=1

[3]t

∥∥∥∥∥
2

2
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.E

[
1

T
(
T∑
t=1

1

L
+ (

T∑
t=1

∑L
k=0 δ

k
t

L
)2)
∥∥∥g0

t

ρt

∥∥∥2

2

]
using (9.21), and by our choice of δkt = δ0

t o((k + 1)−2) and δ0
t = o((t+ 1)−2) (9.6)

.E
[(

1
L

+
∑T
t=1 δ

0
t

2

T

)(
1 + ‖θt − θ̂|‖2

2

)]
.

1

L
+

1

T
. (9.26)

And because we have

E[‖[1]t‖2] = E[‖ −H−1 1

So

∑
i∈Io

∇fi(θ̂)‖2] = O(1),

E[‖[2]t‖2
2 | θt]

.E

∥∥∥∥∥(H−1 −H−1
t )

1

So

∑
i∈Io

∇fi(θ̂)
∥∥∥∥∥

2

2

+

∥∥∥∥∥H−1
t

1

So

∑
i∈Io

(∇fi(θ̂)−∇fi(θt))
∥∥∥∥∥

2

2

| θt


because H−1 −H−1

t = H−1(Ht −H)H−1
t and using Lemma 7 (9.27)

.E[‖θt − θ̂|‖2
2 | θt]

.(t+ 1)−do , (9.28)

by repeatedly applying Cauchy-Schwarz inequality and AM-GM inequality, we can conclude

that

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]

.
1√
T

+
1

T

T∑
t=1

(t+ 1)−
do
2 +

1

T

T∑
t=1

(t+ 1)−do +
1√
L

+
1

L

because
T∑
t=1

(t+ 1)−
do
2 = T 1− do

2 for do ∈ (
1

2
, 1)

.
1

T
do
2

+
1√
L
.
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9.2 Proof of Corollary 3

For
gLt
ρt

, we have

gLt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]

+ H−1 1
So

∑
i∈Io ∇fi(θ̂)−H

−1
t

1
So

∑
i∈Io ∇fi(θ̂)+H

−1
t

1
So

∑
i∈Io ∇fi(θ̂)−H

−1
t

1
So

∑
i∈Io ∇fi(θt)+H

−1
t ∇f(θt)︸ ︷︷ ︸

[2]

−H−1
t ∇f(θt) + (θt − θ̂)︸ ︷︷ ︸

[3]

−H−1
t

g0
t

ρt
+
gLt
ρt︸ ︷︷ ︸

[4]

−(θt − θ̂), (9.29)

which gives

θt − θ̂

= (1− ρt−1)(θt−1 − θ̂) + ρt−1([1]t−1 + [2]t−1 + [3]t−1 + [4]t−1)

= (
t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
t−1∑
i=0

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i).

And we have

√
T (

∑T
t=1 θt
T

− θ̂)

=
1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
1√
T

T∑
t=1

t−1∑
i=0

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i)

=
1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
1√
T

T−1∑
i=0

T∑
t=i+1

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i).

(9.30)

For the first term in (9.30), which is non-stochastic, we have∥∥∥∥∥ 1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂)
∥∥∥∥∥

2

.
1√
T
.
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For the second term in (9.30), which is stochastic, we first consider ρi
∑T

t=i+1

∏t−1
j=i+1(1−

ρj), which is O(1) (similar to (9.11)) and satisfies

ρi

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)

=
T∑

t=i+1

ρi
ρt
ρt

t−1∏
j=i+1

(1− ρj)

≤ρi
ρs

s∑
t=i+1

ρt

t−1∏
j=i+1

(1− ρj) + ρi(
s∏

j=i+1

(1− ρj))
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)

= (1 +
ρi − ρs
ρs

)(1−
s∏

t=i+1

(1− ρt)) + ρi(
s∏

j=i+1

(1− ρj))
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)

≤(1 +
ρi − ρs
ρs

)(1− (1− ρs)s−i) + ρi(1− ρs)s−i
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)

≤1 + ((1 +
s− i
i+ 1

)do − 1) + ρie
−(s−i)ρs

∞∑
t=s+1

t−1∏
j=s+1

(1− ρj)

≤1 +
s− i
i

+ ρie
−(s−i)ρs

∞∑
t=s+1

t−1∏
j=s+1

(1− ρj),

for all i ≤ s ≤ T , and

ρi

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)

≥
T∑

t=i+1

(
t−1∏
j=i+1

(1− ρj))ρt

= 1−
T∏

t=i+1

(1− ρt)

≥ 1− exp(−
T∑

t=i+1

ρt)
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≥ 1− exp(− 1

1− do
((T + 2)1−do − (i+ 2)1−do))

When we choose s = i + d(i + 1)
do+1

2 e, we have s−i
i
. i

−1+do
2 , (s − i)ρs & (i + 1)

1−do
2 ,

and ρie
− 1

2
(s−i)ρs . ρs. And these imply |ρi

∑T
t=i+1

∏t−1
j=i+1(1 − ρj) − 1| = O(max{(i +

1)
−1+do

2 , exp(− 1
1−do ((T + 2)1−do − (i+ 2)1−do)}). Thus, for term [1], we have

1√
T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[1]i =
1√
T

T−1∑
i=0

[1]i +
1√
T

T−1∑
i=0

(
T∑

t=i+1

t−1∏
j=i+1

(1− ρj)ρi − 1)[1]i,

where the first term weakly converges to N(0, 1
So
H−1GH−1) by Central Limit Theorem, and

the second term satisfies E[‖ 1√
T

∑T−1
i=0 (

∑T
t=i+1

∏t−1
j=i+1(1−ρj))ρi−1)[1]i‖22] = E[ 1

T

∑T−1
i=0 |(

∑T
t=i+1

∏t−1
j=i+1(1−

ρj))ρi−1)|2‖[1]i‖22].T do−1+ 1
T

.

For term [2], we have

‖[2]t‖2 . ‖θt − θ̂‖2,

and E[〈[2]a, [2]b〉] = 0 when a 6= b. Thus

E

∥∥∥∥∥ 1√
T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[2]i

∥∥∥∥∥
2

2

 . 1

T

T−1∑
i=0

‖θt − θ̂‖2
2 . T−do .

For term [3], we have

‖ −H−1
t ∇f(θt) + (θt − θ̂)‖2 . ‖θt − θ̂‖2

2.

By using (4.7) and Cauchy-Schwarz inequality, we have

E

∥∥∥∥∥ 1√
T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[3]i

∥∥∥∥∥
2

2

 . T 1−2do .

For term [4], similar to similar to (9.26), we have

E

∥∥∥∥∥ 1√
T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[4]i

∥∥∥∥∥
2

2

 . 1

T
+

1

L
.
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9.3 Proof of Corollary 5

Using Theorem 6.5 of [Bub15a], we have

E[‖θt − θ̂‖2
2] . 0.9t.

Similar to (4.8) in Theorem 2 (Section 9.1.1), we have

E

[∥∥∥∥ ḡtρt − [∇2f(θt)]
−1g0

t

∥∥∥∥2

2

| θt
]
. 1

L
‖g0

t ‖2
2.

Similar to the proof of (4.10) in Theorem 2 (Section 9.1.5), using (9.25), we have

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. L−

1
2 .

For
gLt
ρt

, we have

ḡt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]

+H−1 1
So

∑
i∈Io ∇fi(θ̂)−H

−1
t

1
So

∑
i∈Io ∇fi(θ̂)+H

−1
t

1
So

∑
i∈Io ∇fi(θ̂)−H

−1
t

1
So

∑
i∈Io ∇fi(θt)+H

−1
t ∇f(θt)︸ ︷︷ ︸

[2]

−H−1
t ∇f(θt)︸ ︷︷ ︸

[3]

−H−1
t

g0
t

ρt
+
gLt
ρt︸ ︷︷ ︸

[4]

. (9.31)

For term [1], we have

1√
T

T∑
i=1

[1]t =
1√
T

T∑
i=1

(
−H−1 1

So

∑
i∈Io

∇fi(θ̂)
)
t

,
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which consists of So cotT i.i.d samples from 0 mean set {H−1∇fi(θ̂)}ni=1, and weakly converges

to N(0, 1
So
H−1GH−1) by the Central Limit Theorem.

For term [2], similar to (9.27), we have

E

∥∥∥∥∥ 1√
T

T∑
i=1

[2]t

∥∥∥∥∥
2

2

 =
1

T
E[

T∑
i=1

‖[2]t‖2
2] .

1

T

T∑
t=1

E[‖θt − θ̂‖2
2] .

1

T
.

For term [3], we have

E

[∥∥∥∥∥ 1√
T

T∑
i=1

[3]t

∥∥∥∥∥
2

]
.

1√
T
E[‖θt − θ̂‖2] .

1√
T
.

For term [4], similar to (9.26), we have

E

[∥∥∥∥∥ 1√
T

T∑
i=1

[4]t

∥∥∥∥∥
2

]
.

1√
T

+
1√
L
.
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Chapter 10

Chapter 5 proofs

10.1 Proof of Theorem 3

The error bound proof is similar to standard LASSO proofs [BvdG11, NRWY12].

We will use Lemma 9 for the covariance estimate using soft thresholding.

We denote “soft thresholding by ω” as an element-wise procedure Sω(A) = sign(A)(|A|−
ω)+ , where A is an arbitrary number, vector, or matrix, and ω is non-negative.

Lemma 9. Under our assumptions in Chapter 5, we choose soft threshold 1
n

∑n
i=1 XiX

>
i

using

ω = Θ

(√
log p

n

)
.

When n� log p, the matrix max norm of 1
n

∑n
i=1 xix

>
i − Σ is bounded by

max
1≤i,j≤p

∣∣∣∣∣∣
(

1

n

n∑
i=1

xix
>
i

)
ij

− Σij

∣∣∣∣∣∣ .
√

log p

n
,

with probability at least 1− p−Θ(1).

Under this event, `2 operator norm of Ŝ − Σ satisfies

‖Ŝ − Σ‖2 . b

√
log p

n
,

This chapter also appears in [LKLC18]. It was written by Tianyang Li, and edited by Anastasios Kyrillidis
and Constantine Caramanis.
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`1 and `∞ operator norm of Ŝ − Σ satisfies

‖Ŝ − Σ‖∞ = ‖Ŝ − Σ‖1 . b

√
log p

n
.

Proof. The proof is similar to that of Theorem 1, [BL08].

Our assumption that Σ is well conditioned implies that each off diagonal entry is

bounded, and each diagonal entry is Θ(1) and positive.

Omitting the subscript for the ith sample, for each i.i.d. sample x = [x(1), x(2), . . . , x(p)]> ∼
N(0,Σ), each x(j)x(k) satisfies

x(j)x(k) =
1

4
(x(j) + x(k))2 − 1

4
(x(j)− x(k))2,

where x(j) ± x(k) are Gaussian random variables with variance Σjj ± 2Σjk + Σkk = Θ(1),

because all of Σ’s eigenvalues are upper and lower bounded. Thus, x(j)±x(k) are χ2
1 random

variables scaled by Σjj ± 2Σjk + Σkk = Θ(1), and they are sub-exponential with parameters

that are Θ(1) [Wai17]. And this implies that, x(j)x(k)− Σjk is sub-exponential

P[|x(j)x(k)− Σjk| > t] . exp(−Θ(min{t2, t})),

for all 1 ≤ j, k ≤ p.

Using Bernstein inequality [Wai17], we have

P

∣∣∣∣∣∣
(

1

n

n∑
i=1

xix
>
i

)
jk

− Σjk

∣∣∣∣∣∣ > t

 . exp(−nΘ(min{t2, t})),

for all 1 ≤ j, k ≤ p.

Taking a union bound over all matrix entries, and using n� log p, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(

(
1

n

n∑
i=1

xix
>
i

)
jk

− Σjk

∣∣∣∣∣∣ .
√

log p+ log 1
δ

n
,
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with probability at least 1− δ.

Under this event, the soft thresholding estimate Sω( 1
n

∑n
i=1 xix

>
i )ij with ω = Θ(

√
log p
n

)

is 0 when Σij = 0, and |Σij−Sω( 1
n

∑n
i=1 xix

>
i )ij| ≤ ω (even when |Σij| ≤ ω). And this implies

our bounds.

Lemma 9 guarantees that the optimization problem (5.1) is well defined with high

probability when n� b
√

log p
n

. Because the `2 operator norm ‖Ŝ − Σ‖2 . b
√

log p
n
� 1, and

the positive definite matrix Σ’s eigenvalues are all Θ(1), the symmetric matrix Ŝ is positive

definite, and Ŝ’s eigenvalues are all Θ(1), and for all v ∈ Rp we have

0 ≤ v>Ŝv = Θ(‖v‖2
2). (10.1)

Because θ̂ attains the minimum, by definition, we have

1
2
θ̂>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ̂ + 1

n

n∑
i=1

1
2
(x>i θ̂ − yi)2 + λ‖θ̂‖1

≤1
2
θ?>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? + 1

n

n∑
i=1

1
2

(
x>i θ

? − yi
)2

+ λ‖θ?‖1,

which, after rearranging terms, is equivalent to

1
2
(θ̂ − θ?)>Ŝ(θ̂ − θ?) +

〈(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? + 1

n

∑
i=1

εixi, θ̂ − θ?
〉
≤ λ(‖θ?‖1 − ‖θ̂‖1).

(10.2)

Because Ŝ = Sω( 1
n

∑n
i=1 xix

>
i ) soft thresholds each entry of 1

n

∑n
i=1 xix

>
i with ω =

Θ(
√

log p
n

), each entry of Ŝ − 1
n

∑n
i=1 xix

>
i will lie in the interval [−ω, ω]. And this implies ,

with probability at least 1− p−Θ(1), we have∥∥∥∥∥
(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ?

∥∥∥∥∥
∞

.

√
log p

n
‖θ?‖1 .

√
s log p

n
,
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where we used the assumption that θ? is s sparse and ‖θ?‖2 = O(1), which implies ‖θ?‖1 .
√
s.

For the jth coordinate of εixi, because εi and xi are independent Gaussian random

variables, we know that it is sub-exponential [Wai17]

P[|εixi(j)| > t] . exp
(
−Θ

(
min

{
t2

σ2 ,
t
σ

}))
, (10.3)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Using Bernstein inequality, we have

P[| 1
n

n∑
i=1

εixi(j)| > t] . exp
(
−Θ

(
nmin

{
t2

σ2 ,
t
σ

}))
,

for all 1 ≤ j ≤ p.

Taking a union bound over all p coordinates, with probability at least 1− p−Θ(1), we

have

‖ 1

n

n∑
i=1

εixi‖∞ . σ

√
log p

n
, (10.4)

when n� log p.

Thus, we set the regularization parameter

λ =Θ

(
(σ + ‖θ?‖1)

√
log p

n

)

≥2

∥∥∥∥∥
(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? +

1

n

∑
i=1

εixi

∥∥∥∥∥
∞

, (10.5)

which holds under the events in Lemma 9 and (10.4).

For a vector v ∈ Rp, let vS indicate the sub-vector of on the support of θ?, and vS̄ the

sub-vector not on the support of θ?.

(10.2) and (10.5) implies that

−1
2
λ(‖(θ − θ?)S‖1 + ‖θS̄‖1) = −1

2
λ‖θ − θ?‖1 ≤ λ(‖θ?‖1 − ‖θ̂‖1) ≤ λ(‖(θ − θ?)S‖1 − ‖θS̄‖1),
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which is equivalent to

‖θS̄‖1 ≤ 3‖(θ − θ?)S‖1, (10.6)

because λ > 0.

For any vector v ∈ Rp, it satisfies ‖v‖2
2 ≥ ‖vS‖2

2 ≥ 1
s
‖vS‖2

1. Using this in (10.2), we

have

1
s
‖(θ − θ?)S‖2

1 . λ‖(θ − θ?)S‖1,

which implies that

‖(θ − θ?)S‖1 . s(σ + ‖θ?‖1)

√
log p

n
. (10.7)

Combining (10.7) and (10.6), we have proven (5.2)

‖θ − θ?‖1 . s (σ + ‖θ?‖1)

√
log p

n
. s

(
σ +
√
s
)√ log p

n
.

In (10.2) because 〈(Ŝ − 1
n

∑n
i=1 xix

>
i )θ? + 1

n

∑
i=1 εixi, θ̂ − θ?〉 ≥ 0 by convexity, and

using (10.1), we have proven (5.3)

‖θ − θ?‖2
2 . λ‖(θ − θ?)S‖1 . s (σ + ‖θ?‖1)2 log p

n
. s

(
σ +
√
s
)2 log p

n
.

10.1.1 Proof of Theorem 4

At the solution θ̂ of the optimization problem (5.1), using the KKT condition, we

have (
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ̂ +

1

n

n∑
i=1

xi(x
>
i θ̂ − yi) + λĝ = 0, (10.8)
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where ĝ ∈ ∂‖θ̂‖1. And this is equivalent to

Ŝθ̂ − 1

n

n∑
i=1

xi(x
>
i θ

? + εi) + λĝ = 0, . (10.9)

By Lemma 9, we know that Ŝ is invertible when n� b2 log p.

Plugging (5.4) into (10.9), we have

Ŝ(θ̂d − Ŝ−1

[
1

n

n∑
i=1

yixi −
(

1

n

n∑
i=1

xix
>
i

)
θ̂

]
)− 1

n

n∑
i=1

xi(x
>
i θ

? + εi) + λĝ = 0,

which is equivalent to

Ŝ(θ̂d − θ?)− 1

n

n∑
i=1

εixi +

(
1

n

n∑
i=1

xix
>
i − Ŝ

)
(θ̂ − θ?) = 0, (10.10)

where we used the fact that λĝ = −Ŝθ̂ + 1
n

∑n
i=1 xi(x

>
i θ

? + εi).

Rewriting (10.10), we have

θ̂d − θ? = Ŝ−1 1

n

n∑
i=1

εixi +

(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
(θ̂ − θ?). (10.11)

For max1≤j,k≤p

∣∣∣∣(I − Ŝ−1
(

1
n

∑n
i=1 xix

>
i

))
jk

∣∣∣∣, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
jk

∣∣∣∣∣∣
= max

1≤j,k≤p

∣∣∣∣∣∣
(
Ŝ−1

(
S − 1

n

n∑
i=1

xix
>
i

))
jk

∣∣∣∣∣∣
≤‖Ŝ−1‖∞ max

1≤j,k≤p

∣∣∣∣∣∣
(
S − 1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ . (10.12)
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Under the event in Lemma 9, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
S − 1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ .
√

log p

n
. (10.13)

Also under the event in Lemma 9, we have

Ŝii −
∑
j 6=i

|Ŝij| ≥ Σii −Θ

(√
log p
n

)
−
∑
j 6=i

|Σij| ≥ DΣ −Θ

(√
log p
n

)
,

where we used Ŝii > 0 and |Σij| ≥ |Ŝij| by definition of the soft thresholding operation.

Thus, when n� 1
DΣ

2 log p, we have

Ŝii −
∑
j 6=i

|Ŝij| & DΣ,

which implies that Ŝ is also diagonally dominant. Thus, using Theorem 1, [Var75], when

n� 1
DΣ

2 log p, we have

‖Ŝ‖∞ .
1

DΣ

, (10.14)

with probability at least 1− p−Θ(1)

And using (10.13) and (10.14) in (10.12), we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
I − Ŝ−1(

1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ . 1

DΣ

√
log p

n
. (10.15)

Using (10.15) and the bound on ‖θ̂ − θ?‖1 (5.2), in (10.11), we have∥∥∥∥∥
(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
(θ̂ − θ?)

∥∥∥∥∥
∞

.
1

DΣ

s (σ + ‖θ?‖1)
log p

n
.

1

DΣ

s
(
σ +
√
s
) log p

n
.

(10.16)
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Combining (10.16) and (10.11), we have proven Theorem 4, when n� max{b2, 1
DΣ

2} log p,

we have

√
n(θ̂d − θ?) = Z +R,

where Z | {xi}ni=1 ∼ N
(

0, σ2Ŝ−1
(

1
n

∑n
i=1 xix

>
i

)
Ŝ−1

)
, and ‖R‖∞ . 1

DΣ
s (σ + ‖θ?‖1) log p√

n
.

1
DΣ
s (σ +

√
s) log p√

n
with probability at least 1− p−Θ(1).

10.1.2 Proof of Theorem 5

We analyze the optimization problem conditioned on the data set {xi}ni=1, which

satisfies Lemma 9 with probability at least 1− pΘ(−1) when n� b2 log p.

Here, we denote the objective function as

P (θ) =
1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1.

In Algorithm 3, lines 6 to 15 are using SVRG [JZ13] to solve the Newton step

min
∆

1

2
∆>Ŝ∆ +

〈
1

So

∑
k∈Io

∇fk(θt),∆
〉
, (10.17)

and using proximal SVRG [XZ14] to solve the proximal Newton step

min
∆

1

2
∆>Ŝ∆ +

〈
1

n

n∑
k=1

∇fk(θt),∆
〉

+ λ‖θ + ∆‖1. (10.18)

The gradient of (10.17) is

Ŝ∆ +
1

So

∑
k∈Io

∇fk(θt) =
1

p

p∑
k=1

[
pŜk

]
∆(k)︸ ︷︷ ︸

sample by feature in SVRG

+
1

So

∑
k∈Io

∇fk(θt)︸ ︷︷ ︸
compute exactly in SVRG

,

where Ŝk is the kth column of Ŝ and ∆(k) is the kth coordinate of ∆.
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Line 7 corresponds to SVRG’s outer loop part that computes the full gradient. Line

12 corresponds to SVRG’s inner loop update.

By Lemma 9, when n � b2 log p, the `2 operator norm of ‖Ŝ‖2 = O(1). And

this implies ‖Ŝ>Ŝ‖2 = O(1). Because ‖Ŝk‖2
2 is the kth diagonal element of Ŝ>Ŝ, we have

‖Ŝk‖2
2 = O(1) for all 1 ≤ k ≤ p. Thus, each

[
pŜk

]
∆(k) is a O(p)-Lipschitz function.

By Theorem 6.5 of [Bub15a], when conditioned on θt, and choosing

τ = Θ
(

1
p

)
,

Li & p,

after Lto SVRG outer steps, we have

E

∥∥∥∥∥∥ ḡt + Ŝ−1

(
1

So

∑
k∈Io

∇fk(θt)
)∥∥∥∥∥

2

2

∣∣∣∣∣∣ θt, {xi}ni=1

 .0.9L
t
o

∥∥∥∥∥ 1

So

∑
k∈Io

∇fk(θt)
∥∥∥∥∥

2

2

.0.9L
t
o(1 + ‖θt − θ̂‖2),

where ḡt = 1
Lto

∑Lto
j=0 g

j
t .

The gradient of the smooth component 1
2
∆>Ŝ∆ +

〈
1
n

∑n
k=1∇fk(θt),∆

〉
in (10.18) is

Ŝ∆ +
1

n

n∑
k=1

∇fk(θt) =
1

p

p∑
k=1

[
pŜk

]
∆(k)︸ ︷︷ ︸

sample by feature in proximal SVRG

+
1

n

n∑
k=1

∇fk(θt)︸ ︷︷ ︸
compute exactly in proximal SVRG

.

Line 8 corresponds to proximal SVRG’s outer loop part that computes the full gradient.

Line 13 corresponds to proximal SVRG’s inner loop update.

By Theorem 3.1 of [XZ14], when conditioned on θt, and choosing

η = Θ
(

1
p

)
,

Li & p,
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after Lto proximal SVRG outer steps, we have

E[P (θt+1 − P (θ̂)) | θt] =E
[
P (θt + d̄t − θ̂)− P (θ̂)

∣∣∣ θt, {xi}ni=1

]
.0.9L

t
o(P (θt)− P (θ̂)),

where d̄t = 1
Lto

∑Lto
j=0 d

j
t . And this implies

E[‖θt − θ̂‖2
2] . 0.9

∑t−1
i=0 L

t
o(P (θ0)− P (θ̂)).

At each θt, we have

xi(x
>
i θt − yi) = xix

>
i (θt − θ̂) + xi(x

>
i θ̂ − yi).

For the first term, we have

‖xix>i (θt − θ̂)‖∞ ≤|x>i (θt − θ̂)|‖xi‖∞
≤‖xi‖2‖θt − θ̂‖2‖xi‖∞
≤√p‖xi‖2

∞‖θt − θ̂‖2,

which implies that

max
1≤j,k≤p

∣∣∣∣∣
[(
xix
>
i (θt − θ̂)

)(
xix
>
i (θt − θ̂)

)>]
jk

∣∣∣∣∣ ≤‖xix>i (θt − θ̂)‖2
∞

≤p‖xi‖4
∞‖θt − θ̂‖2

2.

For the second term, we have

‖xi(x>i θ̂ − yi)‖∞ ≤‖xix>i (θ̂ − θ?)‖∞ + ‖xiεi‖∞
≤‖xi‖2

∞‖θ̂ − θ?‖1 + |εi|‖xi‖∞

Because when n� log p, from (10.21) we have with probability at least 1− p−Θ(1)

max
1≤i≤n

‖xi‖∞ .
√

log p+ log n,
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and from (10.23) we have with probability at least 1− n−Θ(1)

max
1≤i≤n

|εi| . σ
√

log n,

when conditioned on θt (and the data set {xi}ni=1) we have

max
1≤j,k≤p

∣∣∣∣∣
[(
Ŝ−1g0

t

)(
Ŝ−1g0

t

)>
−
(
Ŝ−1 1

So

∑
k∈Io∇fk(θt)

)(
Ŝ−1 1

So

∑
k∈Io∇fk(θt)

)>]
jk

∣∣∣∣∣
.

1

DΣ
2 (‖xix>i (θt − θ̂)‖2

∞ + 2‖xix>i (θt − θ̂)‖∞‖xi(x>i θ̂ − yi)‖∞)

.
1

DΣ
2 (p(log p+ log n)2‖θt − θ̂‖2

2 +
√
p(log p+ log n)‖θt − θ̂‖2((log p+ log n)‖θ̂ − θ?‖1

+ σ
√

(log p+ log n) log n))

.
1

DΣ
2 (p‖θt − θ̂‖2

2 +
√
p‖θ − θ̂‖2(σ + ‖θ̂ − θ?‖1))polylog(p, n)

under the events of (10.21), (10.14) , and (10.23), where we used the fact (10.14) that the `∞

operator norm ‖Ŝ−1‖∞ . 1
DΣ

with probability at least 1−p−Θ(1) when n� max{b2, 1
DΣ

2} log p.

Thus, we can conclude that, conditioned on the data set {xi}ni=1, and the events

(10.21), (10.23), and (10.14), we have we have an asymptotic normality result

1√
t

(∑T
t=1

√
Soḡt + 1

n

∑n
i=1xi(x

>
i θ̂ − yi)

)
= W +R,

whereW weakly converges to N
(

0,Ŝ−1
[

1
n

∑n
i=1(x>i θ̂−yi)2xix

>
i −( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))

>]
Ŝ−1

)
,

and

‖R‖∞ ≤
1√
t

T∑
t=1

(
‖ḡt − Ŝ−1g0

t ‖∞ + ‖Ŝ−1g0
t − 1

So

∑
k∈Io∇fk(θ̂)‖∞

)
≤ 1√

t

T∑
t=1

(
‖ḡt − Ŝ−1g0

t ‖2 + ‖Ŝ−1g0
t − 1

So

∑
k∈Io∇fk(θ̂)‖∞

)
,

which implies

E [‖R‖∞ | {xi}ni=1, (10.21), (10.23), (10.14)]
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.E
[

1√
t

∑T
t=1 0.95L

t
o (1+‖θt−θ̂‖2)+

√
p(log p+logn)‖θt−θ̂‖2 | {xi}ni=1,(10.21),(10.23),(10.14)

]
. 1√

T

∑T
t=1 0.95L

t
o (1+
√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto )+
√
p(log p+logn)

√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto .

And, because
(

1
So

∑
k∈Io ∇fk(θ̂)

)
t

are i.i.d., and bounded when conditioned on the

data set {xi}ni=1, and the events (10.21), (10.23), and (10.14), using a union bound over all

matrix entries, and sub-Gaussian concentration inequalities [Wai17] similar to Lemma 1’s

proof, when T �
(

(log p+ log n)‖θ̂ − θ?‖1 + σ
√

(log p+ log n) log n
)

log p, we also have∥∥∥SoT ∑T
t=1ḡtḡ

>
t − Ŝ−1

(
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1

∥∥∥
max

.

√(
(log p+ log n)‖θ̂ − θ?‖1 + σ

√
(log p+ log n) log n

)
log p
T

+
1
u

[
1√
T

∑T

t=1
0.95L

t
o (1+
√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto )+
√
p(log p+logn)

√
P (θ0)−P (θ̂)0.95

∑t−1
i=0

Lto

]
,

with probability at least 1− p−Θ(−1) − u, where we used Markov inequality for the remainder

term.

10.1.3 Proof of Lemma 1

We analyze the optimization problem conditioned on the data set {xi}ni=1, which

satisfies Lemma 9 with probability at least 1− pΘ(−1) when n� b2 log p.

Because we have

(x>i θ̂ − yi)2

=(x>i (θ̂ − θ?)− εi)2

=ε2i − 2εix
>
i (θ̂ − θ?) + (x>i (θ̂ − θ?))2,

we can write

σ2 1
n

∑n
i=1xix

>
i − 1

n

∑n
i=1(x>i θ̂ − yi)2xix

>
i
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= 1
n

∑n
i=1(σ2 − ε2i )xix>i + 1

n

∑n
i=1(2εix

>
i (θ̂ − θ?)− (x>i (θ̂ − θ?))2)xix

>
i . (10.19)

Conditioned on {xi}ni=1, because εi ∼ N(0, σ2) are i.i.d., and ε2i is sub-exponential,

using Bernstein inequality [Wai17], we have

P
[∣∣∣ 1
n

∑n
i=1

(
1− ε2i

σ2

)
xi(j)xi(k)

∣∣∣ > t | {xi}ni=1

]
. exp

(
−nmin

{
t

max1≤i≤n |xi(j)xi(k)| ,
(

t
max1≤i≤n |xi(j)xi(k)|

)2
})

, (10.20)

for 1 ≤ j, k ≤ p, where xi(j) is the jth coordinate of xi.

Because each xi(j) is N(0,Θ(1)) by our assumptions, using a union bound over all

samples’ coordinates we have

max
1≤i≤n
1≤j≤p

|xi(j)| .
√

log p+ log n, (10.21)

with probability at least 1− (pn)−Θ(1) .

Combining (10.20) and (10.21), and taking a union bound over all entries of the matrix

1
n

∑n
i=1(σ2 − ε2i )xix>i , when n� log p, we have

max
1≤j,k≤p

|( 1
n

∑n
i=1(σ2 − ε2i )xix>i )|jk . σ2(log p+ log n)

√
log p

n
, (10.22)

with probability at least (1− (pn)−Θ(1))(1− p−Θ(1)) = 1− (pn)−Θ(1) − p−Θ(1).

Because εi ∼ N(0, σ2), by a union bound, we have

max
1≤i≤n

|εi| . σ
√

log n, (10.23)

with probability at least 1− n−Θ(1).

Using (10.21), we have

max
1≤i≤n

|x>i (θ̂ − θ?)|
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≤‖θ̂ − θ?‖1 max
1≤i≤n

max
1≤j≤p

|xi(j)|

.s (σ + ‖θ?‖1)
√

log p
n

(log p+ log n) . s
(
σ +
√
s
)√

log p
n

(log p+ log n), (10.24)

with probability at least 1− p−Θ(1) − (pn)−Θ(1).

Combining (10.21), (10.22), (10.23), (10.24), and using (10.19), when n� log p, we

have

max
1≤j,k≤p

∣∣∣∣( 1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i − σ2 1

n

∑n
i=1xix

>
i

)
jk

∣∣∣∣
.σ2(log p+ log n)

√
log p
n

+ σs (σ + ‖θ?‖1) (log p+ log n)
3
2

√
log p·logn

n

+ s2 (σ + ‖θ?‖1)2 (log p+ log n)2 log p
n
, (10.25)

with probability at least 1− p−Θ(1) − n−Θ(1).

Combining (10.25) and (10.14), when n� max{b2, 1
DΣ

2} log p, we have

max
1≤j,k≤p

∣∣∣∣(Ŝ−1
(

1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1 − σ2Ŝ−1

(
1
n

∑n
i=1xix

>
i

)
Ŝ−1

)
jk

∣∣∣∣
. 1
DΣ

2

(
σ2 + σs (σ + ‖θ?‖1)

√
log p+ log n

√
log n+ s2 (σ + ‖θ?‖1)2 (log p+ log n)

√
log p
n

)
(log p+ log n)

√
log p
n
,

with probability at least 1− p−Θ(1) − n−Θ(1).

10.2 Technical lemmas

10.2.1 Lemma 10

Next lemma is a well known property of convex functions (Lemma 3.11 of [Bub15a]).

Lemma 10. For a α strongly convex and β smooth function F (x), we have

〈∇F (x1)−∇F (x2), x1 − x2〉 ≥
αβ

α + β
‖x1 − x2‖2

2 +
1

β + α
‖∇F (x1)−∇F (x2)‖2

2
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≥1

2
α‖x1 − x2‖2

2 +
1

2β
‖∇F (x1)−∇F (x2)‖2

2.

10.2.2 Lemma 11

Next lemma provides a bound on a geometric-like sequence.

Lemma 11. Suppose we have a sequence

at+1 = (1− κt−d)at + Ct−pd,

where a1 ≥ 0, 0 < κ < 1, p ≥ 2 and d ∈ (1
2
, 1) is the decaying rate.

Then, ∀1 ≤ s ≤ t we have

at ≤ C
1

pd− 1
(1− t1−pd) exp

(
−κ 1

1− d
(
(t+ 1)1−d − (s+ 1)1−d))+ a1s

−(p−1)d 1

κ
.

When we assume that a1, C, κ, p, d are all constants, we have

at = O(t−(p−1)d).

Proof. Unrolling the recursion, we have

at = C
t−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d))i−pd︸ ︷︷ ︸
[1]

+a1

t−1∏
i=1

(1− κi−d)︸ ︷︷ ︸
[2]

.

Splitting term [1] into two parts, we have

t−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d)
)
i−pd

=
s−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d)
)
i−pd +

t−1∑
i=s

(
t−1∏
j=i+1

(1− κj−d)
)
i−pd.
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For the first part, we have

s−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d))i−pd

≤
(
t−1∏
j=s

(1− κj−d)
)

s−1∑
i=1

i−pd

≤ 1

pd− 1
(1− t1−pd) exp

(
−κ 1

1− d((t+ 1)1−d − (s+ 1)1−d)

)
where we used

s∑
i=r

i−pd

≤
∫ s+1

r

u−pd du

≤ 1

pd− 1
(r1−pd − (s+ 1)1−pd).

For term [2], notice that for 1 ≤ r ≤ s, using 1 − x ≤ exp(−x) when x ∈ [0, 1], we

have

s∏
i=r

(1− κi−d) ≤ exp(−κ∑s
i=ri

−d),

and using the fact that

s∑
i=r

i−d ≥
∫ s+1

r

(u+ 1)−d du

=
1

1− d
(
(s+ 2)1−d − (r + 1)1−d) ,

we have

t−1∏
i=1

(1− κi−d) ≤ exp
(
−κ 1

1−d(t1−d − 21−d)
)
.

115



For the second part, we have

t−1∑
i=s

(
t−1∏
j=i+1

(1− κj−d)
)
i−pd

≤s−(p−1)d

t−1∑
i=s

(
t−1∏
j=i+1

(1− κj−d)
)
i−d

=s−(p−1)d 1

κ

t−1∑
i=s

(
t−1∏
j=i+1

(1− κj−d)
)
κi−d

=s−(p−1)d 1

κ

(
1−

t−1∏
i=s

(1− κi−d)
)

≤s−(p−1)d 1

κ
,

where we used the fact that

t−1∑
i=s

κi−d
t−1∏
j=i+1

(1− κj−d)

=1−
t−1∏
i=s

(1− κj−d)

<1.

When we assume that a1, C, κ, p, d are all constants, setting s = bn
2
c, we have

at = O(t−(p−1)d).
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Appendix 1

Chapter 3 appendix

1.1 Experiments

Here we present additional experiments on our SGD inference procedure.

1.1.1 Synthetic data
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(a) Normal.
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(b) Exponential.
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(c) Poisson.

Figure 1.1: Estimation in univariate models: Q-Q plots for samples shown in Figure 3.2

Figure 1.1 shows Q-Q plots for samples shown in Figure 3.2.

1.1.1.1 Multivariate models

Here we show Q-Q plots per coordinate for samples from our SGD inference procedure.

Q-Q plots per coordinate for samples in linear regression experiment 1 is shown in

This chapter also appears in [LLKC18]. The experiments were conducted in collaboration with Liu Liu.
It was edited by Anastasios Kyrillidis and Constantine Caramanis.
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Figure 1.2. Q-Q plots per coordinate for samples in linear regression experiment 2 is shown

in Figure 1.3.
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Figure 1.2: Linear regression experiment 1: Q-Q plots per coordinate
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Figure 1.3: Linear regression experiment 2: Q-Q plots per coordinate

Q-Q plots per coordinate for samples in logistic regression experiment 1 is shown in

Figure 1.4. Q-Q plots per coordinate for samples in logistic regression experiment 2 is shown

in Figure 1.5.

Additional experiments

2-Dimensional Linear Regression. Consider:

y = x1 + x2 + ε, where

[
x1

x2

]
∼ N

(
0,

[
1 0.8

0.8 1

])
and ε ∼ N(0, σ2 = 102).
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Figure 1.4: Logistic regression experiment 1: Q-Q plots per coordinate
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Figure 1.5: Logistic regression experiment 2: Q-Q plots per coordinate

Each sample consists of Y = y and X = [x1, x2]
>. We use linear regression to

estimate w1, w2 in y = w1x1 +w2x2. In this case, the minimizer of the population least square

risk is w?1 = 1, w?2 = 1.

For 300 i.i.d. samples, we plotted 100 samples from SGD inference in Figure 1.6. We

compare our SGD inference procedure against bootstrap in Figure 1.6a. Figure 1.6b and

Figure 1.6c show samples from our SGD inference procedure with different parameters.

10-Dimensional Linear Regression.

Here we consider the following model

y = x>w? + ε,
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where w? = 1√
10

[1, 1, · · · , 1]> ∈ R10, x ∼ N(0,Σ) with Σij = 0.8|i−j|, and ε ∼ N(0, σ2 =

202), and use n = 1000 samples. We estimate the parameter using

ŵ = argmin
w

1

n

n∑
i=1

1
2
(x>i w − yi)2.

Figure 1.7 shows the diagonal terms of of the covariance matrix computed using the

sandwich estimator and our SGD inference procedure with different parameters. 100000

samples from our SGD inference procedure are used to reduce the effect of randomness.

2-Dimensional Logistic Regression.

Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N

(
µ = 1.1 + 0.1Y, σ2 = 1

)
. (1.1)

We use logistic regression to estimate w, b in the classifier sign(wx+ b) where the minimizer

of the population logistic risk is w? = 0.2, b? = −0.22.

For 100 i.i.d. samples, we plot 1000 samples from SGD in Figure 1.8. In our simulations,

we notice that our modified SGD for logistic regression behaves similar to vanilla logistic

regression. T his suggests that an assumption weaker than (θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖2
2
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(a) SGD inference vs. bootstrap

2 1 0 1 2 3
w1

2

1

0

1

2

3

4

w
2

 = .1
 = .05
 = .025
 = .0125

(b) t = 800

2 1 0 1 2 3
w1

2

1

0

1

2

3

4

w
2

t = 100
t = 200
t = 400
t = 400

(c) η = 0.1

Figure 1.6: 2-dimensional linear regression
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Figure 1.7: 11-dimensional linear regression: covariance matrix diagonal terms of SGD
inference and sandwich estimator
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(a) Modified SGD with t = 1000 and
η = 0.1
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(c) Vanilla SGD with t = 1000 and
η = 0.1
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Figure 1.8: 2-dimensional logistic regression

(assumption (F1) in Theorem 1) is sufficient for SGD analysis. Figure 1.8b and Figure 1.8d

suggest that the tη2 term in Corollary 1 is an artifact of our analysis, and can be improved.

11-Dimensional Logistic Regression.

Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N (0.01Y µ,Σ) ,

where Σii = 1 and when i 6= j Σij = ρ|i−j| for some ρ ∈ [0, 1), and µ = 1√
10

[1, 1, · · · , 1]> ∈
R10. We estimate a classifier sign(w>x+ b) using

ŵ, b̂ = argmin
w,b

1

n

n∑
i=1

log
(
1 + exp(−Yi(w>Xi + b))

)
. (1.2)
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Figure 1.9: 11-dimensional logistic regression: ρ = 0
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Figure 1.10: 11-dimensional logistic regression: ρ = 0.6

Figure 1.9 shows results for ρ = 0 with n = 80 samples. We use t = 100, d = 70,

η = 0.8, and mini batch of size 4 in vanilla SGD. Bootstrap and our SGD inference procedure

each generated 2000 samples. In bootstrap, we used Newton method to perform optimization

over each replicate, and 6-7 iterations were used. In figure 1.10, we follow the same procedure

for ρ = 0.6 with n = 80 samples. Here, we use t = 200, d = 70, η = 0.85; the rest of the

setting is the same.
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1.1.2 Real data

Here, we compare covariance matrix computed using our SGD inference procedure,

bootstrap, and inverse Fisher information matrix on the Higgs data set [BSW14] and the

LIBSVM Splice data set, and we observe that they have similar statistical properties.

1.1.2.1 Higgs data set

The Higgs data set 1 [BSW14] contains 28 distinct features with 11,000,000 data

samples. This is a classification problem between two types of physical processes: one

produces Higgs bosons and the other is a background process that does not. We use a logistic

regression model, trained using vanilla SGD, instead of the modified SGD described in Section

3.1.3.

To understand different settings of sample size, we subsampled the data set with

different sample size levels: n = 200 and n = 50000. We investigate the empirical performance

of SGD inference on this subsampled data set. In all experiments below, the batch size of the

mini batch SGD is 10.

In the case n = 200, the asymptotic normality for the MLE is not a good enough

approximation. Hence, in this small-sample inference, we compare the SGD inference

covariance matrix with the one obtained by inverse Fisher information matrix and bootstrap

in Figure 1.11.

For our SGD inference procedure, we use t = 100 samples to average, and discard

d = 50 samples. We use R = 20 averages from 20 segments (as in Figure 3.1). For bootstrap,

we use 2000 replicates, which is much larger than the sample size n = 200.

Figure 1.11 shows that the covariance matrix obtained by SGD inference is comparable

to the estimation given by bootstrap and inverse Fisher information.

1https://archive.ics.uci.edu/ml/datasets/HIGGS
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(c) Bootstrap estimated covariance

Figure 1.11: Higgs data set with n = 200
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Figure 1.12: Higgs data set with n = 50000

In the case n = 50000, we use t = 5000 samples to average, and discard d = 500

samples. We use R = 20 averages from 20 segments (as in Figure 3.1). For this large data

set, we present the estimated covariance of SGD inference procedure and inverse Fisher

information (the asymptotic covariance) in Figure 1.12 because bootstrap is computationally

prohibitive. Similar to the small sample result in Figure 1.11, the covariance of our SGD

inference procedure is comparable to the inverse Fisher information.

In Figure 1.13, we compare the covariance matrix computed using our SGD inference

procedure and inverse Fisher information with n = 90000 samples . We used 25 samples from

our SGD inference procedure with t = 5000, d = 1000, η = 0.2, and mini batch size of 10.
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Figure 1.13: Higgs data set with n = 90000
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Figure 1.14: Splice data set

1.1.2.2 Splice data set

The Splice data set 2 contains 60 distinct features with 1000 data samples. This is a

classification problem between two classes of splice junctions in a DNA sequence. Similar to

the Higgs data set, we use a logistic regression model, trained using vanilla SGD.

In Figure 1.14, we compare the covariance matrix computed using our SGD inference

procedure and bootstrap n = 1000 samples. We used 10000 samples from both bootstrap

and our SGD inference procedure with t = 500, d = 100, η = 0.2, and mini batch size of 6.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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1.1.2.3 MNIST

Here, we train a binary logistic regression classifier to classify 0/1 using perturbed

MNIST data set, and demonstrate that certain adversarial examples (e.g. [GSS14]) can be

detected using prediction confidence intervals. For each image, where each original pixel

is either 0 or 1, we randomly changed 70% pixels to random numbers uniformly on [0, 0.9].

Figure 1.15 shows each image’s logit value (log P[1|image]
P[0|image]

) and its 95% confidence interval

computed using our SGD inference procedure. The adversarial perturbation used here is

shown in Figure 1.16 (scaled for display).
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Figure 1.16: MNIST adversarial perturbation (scaled for display)
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Appendix 2

Chapter 4 appendix

2.1 Experiments

2.1.1 Synthetic data

2.1.1.1 Low dimensional problems

Here, we provide the exact configurations for linear/logistic regression examples

provided in Table 4.1.

Linear regression. We consider the model y = 〈[1, · · · , 1]>/
√

10, x〉+ ε, where x ∼ N(0,Σ) ∈
R10 and ε ∼ N(0, 0.72), with 100 i.i.d. data points.

Lin1: We used Σ = I. For Algorithm 1, we set T = 100, do = di = 2/3, ρ0 = 0.1,

L = 200, τ0 = 20, So = Si = 10. In bootstrap we used 100 replicates. For averaged SGD, we

used 100 averages each of length 50, with step size 0.7 · (t+ 1)−2/3 and batch size 10.

Lin2: We used Σjk = 0.4|j−k|. For Algorithm 1, we set T = 100, do = di = 2/3,

ρ0 = 0.7, L = 100, τ0 = 1, So = Si = 10. In bootstrap we used 100 replicates. For averaged

SGD, we used 100 averages each of length 50, with step size (t+ 1)−2/3 and batch size 10.

Logistic regression. Although logistic regression does not satisfy strong convexity, exper-

imentally Algorithm 1 still gives valid confidence intervals ([GP17] recently has shown that

This chapter also appears in [LKLC18]. The experiments were conducted in collaboration with Liu Liu.
It was edited by Anastasios Kyrillidis and Constantine Caramanis.
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SGD in logistic regression behaves similar to strongly convex problems). We consider the

model P[y = 1] = P[y = 0] = 1/2 and x | y ∼ N(0.1/
√

10 · [1, · · · , 1]>,Σ) ∈ R10, with 100 i.i.d.

data points. Because in bootstrap resampling the Hessian is singular for some replicates, we

use jackknife and solve each replicate using Newton’s method, which approximately needs 25

steps per replicate.

Log1: We used Σ = I. For Algorithm 1, we set T = 50, do = di = 2/3, ρ0 = 0.1,

L = 100, τ0 = 2, So = Si = 10, δ0 = 0.01. For averaged SGD, we used 50 averages each of

length 100, with step size 2 · (t+ 1)−2/3 and batch size 10.

Log2: We used Σjk = 0.4|j−k|. For Algorithm 1, we set T = 50, do = di = 2/3,

ρ0 = 0.1, L = 100, τ0 = 5, So = Si = 10, δ0 = 0.01 For averaged SGD, we used 50 averages

each of length 100, with step size 5 · (t+ 1)−2/3 and batch size 10.

Calibration. Here, we give empirical results on calibrating confidence intervals ([ET94],

Ch.18; [PRW12], Ch. 9) produced by our approximate Newton procedure. We consider the

model y = 〈[1, · · · , 1]>/
√

20, x〉+ ε, where x ∼ N(0,Σ) ∈ R20 and ε ∼ N(0, 0.72), with 200 i.i.d.

data points. We ran 100 simulations. In each simulation, we bootstrapped the dataset 100

times, and computed confidence intervals on each bootstrap replicate using our approximate

Newton procedure, bootstrap, and inverse Fisher information. For each method, we then

used grid search to find a multiplier such that the empirical point estimate is covered by the

bootstrap confidence intervals 95% of the time. Average 95% confidence interval coverage

and length after calibration are given in Table 4.2.

2.1.2 Real data

2.1.2.1 Neural network adversarial attack detection

The adversarial perturbation used in our experiments is shown in Figure 2.3. It is

generated using the fast gradient sign method [GSS14] Figure 2.1 shows images in a “Shirt”
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example. Figure 2.2 shows images in a “T-shirt/top” example.
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Figure 2.1: “Shirt” example
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Figure 2.2: “T-shirt/top” example
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Figure 2.3: Adversarial perturbation generated using the fast gradient sign method [GSS14]
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Appendix 3

Chapter 5 appendix

3.1 Experiments

3.1.1 Synthetic data

3.1.1.1 High dimensional linear regression

For comparison with de-biased LASSO [JM15, vdGBRD14], we use the oracle de-

biased LASSO estimator

θ̂d
oracle = θ̂LASSO + 1

n
· Σ−1

(
1
n

n∑
i=1

yixi −
n∑
i=1

xix
>
i θ̂LASSO

)
,

and its corresponding statistical error covariance estimate

σ2 · Σ−1

(
1
n

n∑
i=1

xix
>
i

)
Σ−1,

which assumes that the true inverse covariance Σ−1 and observation noise variance σ2 are

known.

Experiment 1. We use 600 i.i.d. samples from a model with Σ = I, σ = 0.7, θ? =

[1/
√

8, · · · , 1/
√

8, 0, · · · , 0]> ∈ R1000 which is 8-sparse.

For our method, the average confidence interval length is 0.14 and average coverage is

0.83. For the oracle de-biased LASSO estimator, the average confidence interval length is

0.11 and average coverage is 0.98.

This chapter also appears in [LKLC18]. The experiments were conducted in collaboration with Liu Liu.
It was edited by Anastasios Kyrillidis and Constantine Caramanis.
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Figure 3.1: Comparison of our de-biased estimator and oracle de-biased LASSO estimator

Experiment 2. We use 600 i.i.d. samples from a model with Σ = I, σ = 0.7, θ? = 0 ∈ R1000

which is 8-sparse.

3.1.2 Real data

3.1.2.1 High dimensional linear regression

HIV drug resistance mutations dataset. We apply our high dimensional inference

procedure to the dataset in [RTW+06] to detect mutations related to HIV drug resistance.

Our procedure is able to detect verified mutations in an expert dataset [JBVC+05], when we

control the family-wise error rate (FWER) at 0.05.

Riboflavin (vitamin B2) production rate data set. For the vanilla LASSO estimate

on the high-throughput genomic data set concerning riboflavin (vitamin B2) production rate

[BKM14], we set λ = 0.021864. Figure 3.2, and we see that our point estimate is similar to

the vanilla LASSO point estimate.

For statistical inference, in our method, we compute p-values using two-sided Z-test.
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Adjusting FWER to 5% signifi-cance level, our method does not find any significant gene.

[JM14, BKM14] report that [Büh13] also does not find any significant gene, whereas [MMB09]

finds one significant gene (YXLD-at), and [JM14] finds two significant genes (YXLD-at and

YXLE-at). This indicates that our method is more conservative than [JM14, MMB09].
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Figure 3.2: Comparison of our high dimensional linear regression point estimate with the
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Appendix 4

Chapter 6 appendix

4.1 Experiments

4.1.1 Synthetic data

In our linear regression simulation, we generate i.i.d. random explanatory variables,

and the observation noise is a 0-mean moving average (MA) process independent of the

explanatory variables.

For the linear model

yi = 〈xi, θ?〉+ εi,

xi ∈ R20 are i.i.d. samples generated from N
(

[1, 1, . . . , 1]>/
√
k, I
)

, and εi is a 0-mean

moving average process

εi = 0.6 · zi + 0.8 · zi−1,

where zi are i.i.d. N(0, 0.72).

We ran 10,000 simulations, with each time series containing n = 10, 000 samples, and

set the lag l = 32. For our approximate Newton statistical inference procedure (Algorithm 6),

average 95% confidence interval (coverage, length) is (0.958, 0.0142), and it matches our

theory. For circular bootstrap, where each replicate contains n − l samples, average 95%

confidence interval (coverage, length) is (0.949 , 0.0136).

This chapter also appears in [LKLC18]. The experiments were conducted in collaboration with Liu Liu.
It was edited by Anastasios Kyrillidis and Constantine Caramanis.
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4.1.2 Real data

Using monthly equities returns data from [FP14], we use our approximate Newton

statistical inference procedure to show that the correlation between US equities market

returns and non-US global equities market returns is statistically significant, which validates

the capital asset pricing model (CAPM) [Sha64, Lin65, FF04].

We regress monthly US equities market returns from 1995 to 2018 against other

countries’ equities market returns, and each country’s coefficient and its 95% confidence

interval is shown in Figure 6.1. And we observe that the US market is highly positively

correlated with Canada and other advanced economies such as Germany and UK.
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[LSS14] Jason Lee, Yuekai Sun, and Michael Saunders. Proximal Newton-type methods

for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–

1443, 2014. 2, 7, 40, 45

[MB11] Eric Moulines and Francis R. Bach. Non-asymptotic analysis of stochastic

approximation algorithms for machine learning. In Advances in Neural Infor-

mation Processing Systems, pages 451–459, 2011. 41, 46

[MCF15] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic

gradient MCMC. In Advances in Neural Information Processing Systems, pages

2917–2925, 2015. 5

[MHB16] Stephan Mandt, Matthew Hoffman, and David Blei. A Variational Analysis

of Stochastic Gradient Algorithms. In Proceedings of The 33rd International

Conference on Machine Learning, pages 354–363, 2016. 5, 15

[MHB17] Stephan Mandt, Matthew Hoffman, and David Blei. Stochastic Gradient

Descent as Approximate Bayesian Inference. arXiv preprint arXiv:1704.04289,

2017. 5

147



[MMB09] Nicolai Meinshausen, Lukas Meier, and Peter Bühlmann. p-values for high-
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[vdGBRD14] Sara van de Geer, Peter Bühlmann, Yaacov Ritov, and Ruben Dezeure. On

asymptotically optimal confidence regions and tests for high-dimensional models.

The Annals of Statistics, 42(3):1166–1202, 2014. 1, 7, 38, 40, 134

[vdV98] Aad W. van der Vaart. Asymptotic statistics. Cambridge University Press,

1998. 26, 32

[vdV00] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, 2000. 10

[VGS05] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning

in a random world: conformal prediction. Springer, 2005. 8

[Wai09] Martin Wainwright. Sharp thresholds for High-Dimensional and noisy spar-

sity recovery using `1-Constrained Quadratic Programming (Lasso). IEEE

transactions on information theory, 55(5):2183–2202, 2009. 8

[Wai17] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic View-

point. To appear, 2017. 101, 103, 111, 112

[Was13] Larry Wasserman. All of statistics: a concise course in statistical inference.

Springer Science & Business Media, 2013. 1, 9, 26

151



[Whi80] Halbert White. A heteroskedasticity-consistent covariance matrix estimator and

a direct test for heteroskedasticity. Econometrica: Journal of the Econometric

Society, pages 817–838, 1980. 7, 40, 41, 45, 50

[WT11] Max Welling and Yee Teh. Bayesian learning via stochastic gradient Langevin

dynamics. In Proceedings of the 28th International Conference on Machine

Learning, pages 681–688, 2011. 5

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms. arXiv preprint

arXiv:1708.07747, 2017. 33

[XZ14] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with

progressive variance reduction. SIAM Journal on Optimization, 24(4):2057–

2075, 2014. 2, 7, 40, 41, 46, 48, 107, 108

[YLR14] Eunho Yang, Aurelie Lozano, and Pradeep Ravikumar. Elementary estimators

for high-dimensional linear regression. In International Conference on Machine

Learning, pages 388–396, 2014. 7, 39, 40

[ZZ14] Cun-Hui Zhang and Stephanie Zhang. Confidence intervals for low dimensional

parameters in high dimensional linear models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 76(1):217–242, 2014. 7, 38, 40

152


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1. Introduction
	Related work
	Connection with Bootstrap methods
	Other stochastic gradient methods for frequentist inference
	Stochastic gradient methods for Bayesian inference
	Related optimization algorithms
	Statistical inference in high dimensional linear regression


	Chapter 2. Statistical inference in M-estimation
	Chapter 3. Statistical inference using SGD
	Statistical inference using SGD
	Theoretical guarantees
	Intuitive interpretation via the Ornstein-Uhlenbeck process approximation
	Logistic regression

	Experiments
	Synthetic data
	Real data
	Discussion

	Linear Regression
	Exact analysis of mean estimation

	Chapter 4. Approximate Newton-based statistical inference using only stochastic gradients
	Statistical inference with approximate Newton steps using only stochastic gradients
	Experiments
	Synthetic data
	Real data

	Statistical inference via approximate stochastic Newton steps using first order information with increasing inner loop counts
	Unregularized M-estimation

	SVRG based statistical inference algorithm in unregularized M-estimation
	Lack of asymptotic normality in alg:stat-inf-spnd for mean estimation


	Chapter 5. High dimensional linear regression
	Experiments
	Synthetic data
	Real data

	Statistical inference using approximate proximal Newton steps with stochastic gradients
	Computing the de-biased estimator (5.4) via SVRG
	Solving the high dimensional linear regression optimization objective (5.1) using proximal SVRG
	Non-asymptotic covariance estimate bound and asymptotic normality in alg:stat-inf:high-dim:linear:proximal:svrg
	Plug-in statistical error covariance estimate

	Chapter 6. Time series analysis
	Time series analysis
	Time series statistical inference with approximate Newton steps using only stochastic gradients (sec:time-series)
	Experiments
	Synthetic data
	Real data


	Chapter 7. An intuitive view of SVRG as approximate stochastic Newton descent
	Chapter 8. ch:sgd-stat-inf proofs
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Corollary 1

	Chapter 9. sec:unregularized-m-est proofs
	Proof of thm:spnd-bound
	Proof of (4.8)
	Proof of (4.9)
	Proof of (4.6)
	Proof of (4.7)
	Proof of (4.10)

	Proof of cor:foasnd:asymptotic-normality:outer-avg
	Proof of cor:svrg-foasnd:bounds

	Chapter 10. ch:high-dim-linear proofs
	Proof of thm:lasso-mod-cov-bounds
	Proof of thm:lasso-mod:de-bias:stat-inf
	Proof of thm:alg:stat-inf:high-dim:linear:proximal:svrg
	Proof of lem:ch:high-dim:lasso:linear-regression:plug-in:sandwich

	Technical lemmas
	lem:bubeck:strongly-convex-bound
	lem:geometric-like-series-bound


	Appendix
	Appendix 1. ch:sgd-stat-inf appendix
	Experiments
	Synthetic data
	Real data


	Appendix 2. sec:unregularized-m-est appendix
	Experiments
	Synthetic data
	Real data


	Appendix 3. ch:high-dim-linear appendix
	Experiments
	Synthetic data
	Real data


	Appendix 4. ch:time-series appendix
	Experiments
	Synthetic data
	Real data


	Bibliography

