14,095 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions

    Full text link
    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT

    Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

    Get PDF
    In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.Comment: 200

    New Image Processing Methods for Ultrasound Musculoskeletal Applications

    Get PDF
    In the past few years, ultrasound (US) imaging modalities have received increasing interest as diagnostic tools for orthopedic applications. The goal for many of these novel ultrasonic methods is to be able to create three-dimensional (3D) bone visualization non-invasively, safely and with high accuracy and spatial resolution. Availability of accurate bone segmentation and 3D reconstruction methods would help correctly interpreting complex bone morphology as well as facilitate quantitative analysis. However, in vivo ultrasound images of bones may have poor quality due to uncontrollable motion, high ultrasonic attenuation and the presence of imaging artifacts, which can affect the quality of the bone segmentation and reconstruction results. In this study, we investigate the use of novel ultrasonic processing methods that can significantly improve bone visualization, segmentation and 3D reconstruction in ultrasound volumetric data acquired in applications in vivo. Specifically, in this study, we investigate the use of new elastography-based, Doppler-based and statistical shape model-based methods that can be applied to ultrasound bone imaging applications with the overall major goal of obtaining fast yet accurate 3D bone reconstructions. This study is composed to three projects, which all have the potential to significantly contribute to this major goal. The first project deals with the fast and accurate implementation of correlation-based elastography and poroelastography techniques for real-time assessment of the mechanical properties of musculoskeletal tissues. The rationale behind this project is that, iii in the future, elastography-based features can be used to reduce false positives in ultrasonic bone segmentation methods based on the differences between the mechanical properties of soft tissues and the mechanical properties of hard tissues. In this study, a hybrid computation model is designed, implemented and tested to achieve real time performance without compromise in elastographic image quality . In the second project, a Power Doppler-based signal enhancement method is designed and tested with the intent of increasing the contrast between soft tissue and bone while suppressing the contrast between soft tissue and connective tissue, which is often a cause of false positives in ultrasonic bone segmentation problems. Both in-vitro and in-vivo experiments are performed to statistically analyze the performance of this method. In the third project, a statistical shape model based bone surface segmentation method is proposed and investigated. This method uses statistical models to determine if a curve detected in a segmented ultrasound image belongs to a bone surface or not. Both in-vitro and in-vivo experiments are performed to statistically analyze the performance of this method. I conclude this Dissertation with a discussion on possible future work in the field of ultrasound bone imaging and assessment
    • …
    corecore