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ABSTRACT 

 

In the past few years, ultrasound (US) imaging modalities have received 

increasing interest as diagnostic tools for orthopedic applications. The goal for many of 

these novel ultrasonic methods is to be able to create three-dimensional (3D) bone 

visualization non-invasively, safely and with high accuracy and spatial resolution. 

Availability of accurate bone segmentation and 3D reconstruction methods would help 

correctly interpreting complex bone morphology as well as facilitate quantitative 

analysis.  However, in vivo ultrasound images of bones may have poor quality due to 

uncontrollable motion, high ultrasonic attenuation and the presence of imaging artifacts, 

which can affect the quality of the bone segmentation and reconstruction results. 

In this study, we investigate the use of novel ultrasonic processing methods that 

can significantly improve bone visualization, segmentation and 3D reconstruction in 

ultrasound volumetric data acquired in applications in vivo. Specifically, in this  study, 

we investigate the use of new elastography-based, Doppler-based and statistical shape 

model-based methods that can be applied to ultrasound bone imaging applications with 

the overall major goal of obtaining fast yet accurate 3D bone reconstructions.  This study 

is composed to three projects, which all have the potential to significantly contribute to 

this major goal.  

The first project deals with the fast and accurate implementation of correlation-

based elastography and poroelastography techniques for real-time assessment of the 

mechanical properties of musculoskeletal tissues. The rationale behind this project is that, 
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in the future, elastography-based features can be used to reduce false positives in 

ultrasonic bone segmentation methods based on the differences between the mechanical 

properties of soft tissues and the mechanical properties of hard tissues. In this study, a 

hybrid computation model is designed, implemented and tested to achieve real time 

performance without compromise in elastographic image quality . 

In the second project, a Power Doppler-based signal enhancement method is 

designed and tested with the intent of increasing the contrast between soft tissue and 

bone while suppressing the contrast between soft tissue and connective tissue, which is 

often a cause of false positives in ultrasonic bone segmentation problems. Both in-vitro 

and in-vivo experiments are performed to statistically analyze the performance of this 

method.   

In the third project, a statistical shape model based bone surface segmentation 

method is proposed and investigated. This method uses statistical models to determine if 

a curve detected in a segmented ultrasound image belongs to a bone surface or not. Both 

in-vitro and in-vivo experiments are performed to statistically analyze the performance 

of this method. 

I conclude this Dissertation with a discussion on possible future work in the field 

of ultrasound bone imaging and assessment.  

 

  

 

 



 

iv 

 

DEDICATION 

To my mother and father for their encouragement and to my wife for her loving support. 

 

  



 

v 

 

ACKNOWLEDGEMENTS 

I would like to thank my committee chair, Dr. Righetti, for her continuous 

support and guidance throughout my research. I would also like to thank my committee 

members, Dr. Liu, Dr. Bettati, Dr. Wright, for their advice and feedbacks throughout the 

course of this research.  

I thank our collaborators Dr. Krouskop, Dr. Ferrari and Dr. Tasciotti for their 

help and contribution to this work. Many thanks and acknowledgements to my former 

and current colleagues and friends in the Ultrasound Imaging Laboratory at Texas A&M 

University: Anuj, Biren, Mohan, Sanjay, Shafeeq, Songyuan, Srinath and Sthiti. With 

them I had fruitful discussions and a productive collaboration, which greatly inspired me 

and positively affected my research. I would also like to thank the staff in the Dept. of 

Electrical and Computer Engineering at Texas A&M University, who helped me with 

the administrative requirements for my PhD. 

The expertise, efforts and support of all these people have made my doctoral 

experience at Texas A&M University perfect.  

 

 

 

 

 

 

 



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

Contributors  

 This work was supported by a dissertation committee consisting of Professor 

Raffaella Righetti, Professor Steven M. Wright and Professor Tie Liu of the Department 

of Electrical and Computer Engineering and Professor Riccardo Bettati of the 

Department of Computer Science. All work conducted for the dissertation was 

completed by the student independently.  

 

Funding Sources  

 This work was partially supported by funding from the Department of Defense 

under Grant Number W81XWH-14-1-0600 and W81XWH-15-1-0718. 

  Its contents are solely the responsibility of the authors and do not necessarily 

represent the official views of the Department of Defense. 

 

 

 

 

 

 



 

vii 

 

TABLE OF CONTENTS 

                                        Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. vi 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ...........................................................................................................xii 

1 INTRODUCTION AND LITERATURE REVIEW ....................................................... 1 

2 A HYBRID CPU-GPGPU APPROACH FOR REAL-TIME ELASTOGRAPHY ........ 7 

Introduction ................................................................................................................ 7 
Method ...................................................................................................................... 10 

Result ........................................................................................................................ 25 

Discussion ................................................................................................................ 37 
Conclusion ................................................................................................................ 42 

3 BONE SURFACE ENHANCEMENT IN ULTRASOUND IMAGING USING A 

NEW DOPPLER-BASED ACQUISITION/PROCESSING METHOD  ........................ 43 

Introduction .............................................................................................................. 43 

Method ...................................................................................................................... 47 
Results ...................................................................................................................... 55 

Discussion ................................................................................................................ 63 
Conclusion ................................................................................................................ 67 

4 BONE SURFACE SEGMENTATION FOR FREE HAND ULTRASOUND 

IMAGE BASED ON STATISTICAL SHAPE MODEL ................................................. 68 

Introduction .............................................................................................................. 68 
Method ...................................................................................................................... 70 
Results ...................................................................................................................... 79 

Disscussion ............................................................................................................... 83 
Conclusion ................................................................................................................ 86 



 

viii 

 

5 CONCLUSIONS ........................................................................................................... 87 

Summary .................................................................................................................. 87 
Future work .............................................................................................................. 88 

REFERENCES ................................................................................................................. 91 

 



 

ix 

 

LIST OF FIGURES 

 Page 

Figure 1 Architecture of G92 GPGPU (adapted from NVIDIA.com). ............................ 14 

Figure 2 Time sequences of hybrid thread code and single thread code. (a) Hybrid 

approach showing how CPU and GPGPU cooperate to minimize 

computational time. (b) Time sequence of single thread code. ........................ 18 

Figure 3 Time profile of hybrid version of the elastography algorithm detailing the 

time spent executing each function in the algorithm ........................................ 25 

Figure 4 (a) Time cost of each elastographic frame computed using the hybrid 

implementation as a function of the cross-correlation window length for 

different sampling frequencies. (b) Corresponding time cost of each 

elastographic frame computed using the CPU implementation as a function 

of the cross-correlation window length for different sampling frequencies. 

(c) Estimated GFLOPS for the hybrid implementation as a function of the 

cross-correlation window length for different sampling frequencies. The RF 

data size is 1039*128 for 20 MHz sample frequency, 2078*128 for the 40 

MHz sample frequency and 4156*128 for 80 MHz sample frequency. ........... 29 

Figure 5 (a) Time cost of each elastographic frame computed using the hybrid 

implementation as a function of the cross-correlation window length for 

different number of A-lines. (b) Corresponding time cost of each 

elastographic frame computed using the CPU implementation as a function 

of the cross-correlation window length for different number of A-lines. (c) 

Estimated GFLOPS for the hybrid implementation as a function of the 

cross-correlation window length for different number of A-lines. The RF 

data size in the axial direction is 2078. ............................................................. 30 

Figure 6 (a-c) Examples of simulated ideal strain images (from FEM) obtained by 

simulating an elastic medium containing a cylindrical inclusion at different 

applied strain levels. (b-d) Corresponding simulated axial strain elastograms 

obtained using the hybrid version of the algorithm. (e-g) Corresponding 

simulated axial strain elastograms obtained using the CPU version of the 

algorithm. For the elastograms, the cross-correlation window length was 

fixed at 2 mm. No averaging was used. ............................................................ 31 

Figure 7 (a-c) Examples of simulated axial strain elastograms obtained using the 

hybrid version of the algorithm as applied to the simulation model 

containing a cylindrical inclusion at a 2% applied strain. (d-f) 

Corresponding simulated axial strain elastograms obtained using the CPU 

version of the algorithm. Data were processed using cross-correlation 



 

x 

 

window lengths ranging from 1 mm to 3 mm. No averaging was used. W 

stands for window size in mm. ......................................................................... 32 

Figure 8 Results of SNRe study: (a) CPU results; (b) GPGPU results; and (c) NRMS 

error results. ...................................................................................................... 33 

Figure 9 Results of CNRe study: (a) CPU results; (b) GPGPU results; and (c) NRMS 

error results. ...................................................................................................... 34 

Figure 10 Example of experimental axial strain elastograms obtained using the 

Hybrid.AxialOnly version of the algorithm (b and e).  For comparison, the 

corresponding B-mode images (a and d) and CPU axial strain elastograms 

(c and f) are also shown. Data refer to a gelatin phantom containing a 

cylindrical inclusion approximately two times stiffer than the background. 

Each elastogram is an average of 10 elastograms. Images (a)-(c) refer to 

data acquired with the transducer perpendicular to the axis of the cylinder. 

Images (d)-(f) refer to data acquired with the transducer parallel to the axis 

of the cylinder. .................................................................................................. 36 

Figure 11 Example of experimental axial strain elastogram obtained using the hybrid 

approach (b).  For comparison, the corresponding B-mode image (a) is also 

shown. Data refer to a meat sample containing a HIFU-induced lesion 

(circled area in the elastograms) scanned in free-mode acquisition.  No 

averaging was applied. ...................................................................................... 37 

Figure 12 Example of experimental axial strain elastogram obtained using the hybrid 

approach (b).  For comparison, the corresponding B-mode image (a) is also 

shown. Data refer to a liver sample containing a HIFU-induced lesion 

(indicated by the arrow) scanned in free-mode acquisition.  No averaging 

was applied. ...................................................................................................... 37 

Figure 13 Simplified schematic of a bi-layer tissue compressed from the top using an 

ultrasound probe (with a compressor attached to it) at a constant speed v. (a) 

Model before compression: the transducer is moving with speed v towards 

the bone surface. (b) Model after compression: both the thicknesses of the 

soft tissue layer and bone layer reduce, but the reduction in the thickness of 

the bone layer is negligible compared to the one of the soft tissue layer. ........ 48 

Figure 14. Signal processing procedure to obtain enhanced bone images using the 

proposed Doppler-based technique. .................................................................. 50 

Figure 15 A picture of the setup used for the experiments. ............................................. 52 

Figure 16 Simulated ultrasound signal from one A-line, used to illustrate how the 

SNR is computed in our application. ................................................................ 55 



 

xi 

 

Figure 17 Power Doppler images created using different surface-transducer relative 

speeds and the same scale: (a) 1cm/s (b) 2cm/s (c) 3cm/s. .............................. 56 

Figure 18 Selected in-vitro experimental results. Top panel refers to a chicken 

sample, while bottom panel refers to a sheep leg. In both cases both the B-

mode image and the corresponding Power Doppler image are shown. ............ 57 

Figure 19  Selected results obtained from an intact adult sheep tibia in vivo. ................. 58 

Figure 20 Selected results obtained from an intact adult sheep tibia in vivo. .................. 59 

Figure 21 Images from adult sheep II tibia with fracture in vivo. ................................... 60 

Figure 22 Comparison of normalized B-mode and Doppler signals obtained from 

columns of the image shown in Figures 19a (dotted lines) and 19b (solid 

lines). ................................................................................................................ 61 

Figure 23 SNR Results: left column shows average contrast at 80.5 (+56.5,-28.5) for 

regular B-mode data; right column shows average contrast at 1172.9 

(+1397.0,-191.5) for Power Doppler data. ....................................................... 62 

Figure 24 Steps for image preprocessing. ........................................................................ 73 

Figure 25 Illustration of complete segment steps. ............................................................ 74 

Figure 26 Segmentation results of ex-vivo experiments .................................................. 79 

Figure 27 Different bone surface segmented using our algorithm. .................................. 81 

 



 

xii 

 

LIST OF TABLES 

Page 

Table 1 Profile of main operations occurring in the hybrid algorithm to compute the 

elastogram. In the table, GST stands for global store and GLD stands for 

global load. The GST/GLD efficiency is the proportion of coalesced 

memory operations with respect to the total number of operations.................. 26 

Table 2 Algorithm detection rate for the two studies ....................................................... 82



 

1 

 

1 INTRODUCTION AND LITERATURE REVIEW 

 

Clinical diagnosis and assessment of bone abnormalities is achieved through the 

use of imaging modalities. Recently, three-dimensional (3D) imaging methods have 

been proposed to improve diagnosis of skeletal pathologies and the assessment of 

treatments and to provide anatomical insight before or during orthopedic procedures. 

Computerized Tomography (CT) is currently the gold standard for 3D imaging of 

skeletal tissues. CT methods provide superior sensitivity, specificity and spatial 

resolution in the detection of bone abnormalities. However, CT methods require the use 

of ionizing radiations as well as large and expensive equipment.  

In the recent past, ultrasound imaging modalities have received considerable 

interest in bone imaging applications. Ultrasound imaging modalities have been 

proposed and tested for the detection of bone defects, as intra-operative aiding tools in 

orthopedic procedures and to non-invasively monitor bone healing in regenerative 

medicine applications (Ricciardi, Perissinotto et al. 1993, Allen and Wilson 1999, Weiss, 

Jacobson et al. 2005) Ultrasound imaging techniques have some unique properties that 

could provide several advantages with respect to traditional bone imaging means. These 

include: portability, safety (no radiation), non-invasiveness, cost-effectiveness, real-time 

feedback and good spatial resolution and penetration depth. Recent developments in the 

field of magnetic position tracking or optical position tracking also allow accurate 

recording of the position of the ultrasound probe to facilitate 3D imaging (Barratt, 

Davies et al. 2001, Franz, Marz et al. 2013, Giannetti, Petrella et al. 2017). Additionally, 
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some 3D ultrasound probes are now commercially available. These recent developments 

combined with the availability of new image and processing methods to extract bone 

surface information from ultrasound volumetric data are now making ultrasound 

imaging a more usable and reliable modality for 3D bone imaging. Long bone 

assessment using ultrasound remains a prominent research area as the most commonly 

fractured bones are the distal radius, humerus, forearm shaft and tibial shaft (Cheng and 

Shen 1993). While most of the interest is in long bones, other ultrasound imaging 

applications such as on the knee, the rotator cuff and the spine are currently being 

investigated(de Jesus, Parker et al. 2009, Teefey, Petersen et al. 2009, Yu, Tan et al. 

2014, Slane, Slane et al. 2017) .   One potential and important application of ultrasound 

imaging methods is for the monitoring of bone healing processes. In such application, a 

patient may necessitates of multiple examinations during bone growth, which would be 

difficult to achieve using CT or Magnetic Resonance Imaging (MRI) methods.  This is 

particularly critical in the case that the patient is a child or if the bone healing process 

involves the use of regenerative medicine devices(Protopappas, Vavva et al. 2008, 

Fayaz, Giannoudi et al. 2011). Another important application of ultrasound imaging 

methods is as aiding tool in orthopedic surgeries. Since ultrasound systems are portable 

and provide real-time feedback, they are particularly suitable in intra-operatively 

scenarios.  Additionally, due to the high spatial resolution, ultrasound imaging methods 

have shown to have comparable performance than CT and MRI methods in finding small 

tendon tears, tiny calcifications and foreign body on a bone surface . Thus, they have 
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been proposed as an enhanced early bone pathology detection tool for surgeons (de Jesus, 

Parker et al. 2009, Chen, Lin et al. 2014, Wang, Wang et al. 2016).  

The majority of the work retrievable in the literature on ultrasound bone imaging 

refers to the use of quantitative low-frequency ultrasound (QUS) methods to assess bone 

density or detect bone abnormalities (Hijazy, Al-Smoudi et al. 2006, Laugier and Haïat 

2011). By measuring low frequency (0.1-1 MHz) ultrasound absorption and travel time 

through the bone structure using a specifically designed probe, QUS methods have been 

used to quantitatively estimate bone density and composition(Gluer and Barkmann 

2003). QUS methods  have been found very useful for diagnosis of osteoporosis and 

bone fragility (Heaney, Avioli et al. 1989, Gnudi, Malavolta et al. 1996) and for the 

assessment of bone metabolism (Guglielmi G 2010).  More recently, high frequency 

ultrasound methods have been extensively investigated for bone imaging(Hagiwara, 

Saijo et al. 2011, Giannetti, Petrella et al. 2017). However, while 3D ultrasound imaging 

methods are widely deployed for surface structural and functional imaging in several 

medical areas, most notably, perhaps, being obstetrics and cardiology, their utility for 

skeletal imaging applications remains largely unexplored. Only a few studies have been 

reported to date that investigate the use of 3D ultrasound techniques for bone 

applications (Barratt, Penney et al. 2006, Hacihaliloglu, Abugharbieh et al. 2008).  

3D imaging of bones using ultrasound require the design and implementation of 

accurate and robust bone surface segmentation and 3D reconstruction methods. Bones 

typically manifest as a hyper-echoic regions in ultrasound images. However, after 

envelope detection and dynamic range compression, the echogenity contrast between 
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bone and soft tissue may no longer be significant. Additionally, ultrasonic attenuation 

and imaging artifacts can make accurate detection of bone surfaces in ultrasound images 

very challenging. It is now evident that acoustic intensity alone is insufficient to 

differentiate between bone surface and other soft tissue structures (Alfiansyah, 

Streichenberger et al. 2006, Foroughi, Boctor∗ et al. 2007, Hacihaliloglu, Abugharbieh 

et al. 2008) and that more imaging features need to be used in order to identify a bone 

surface in an ultrasound image. One of the features that has been proposed is the shadow 

region below the bone surface (Foroughi, Boctor∗ et al. 2007, Shajudeen and Righetti 

2017). In some studies, a priori information about the bone shape has also been used. For 

example, Thomas et al. have discussed the possibility to segment a fetus femur using 

purely morphological operations, which is ideal for feature extraction if  prior 

knowledge on the shape of the bone anatomy is established (Thomas, Peters et al. 1991). 

Shape information has also been exploited to utilize active contours for the crux of the 

segmentation process (He and Zheng 2001, Alfiansyah, Streichenberger et al. 2006). I. 

Hacihaliloglu et al. proposed ultrasound bone surface localization and registration 

methods using local phase tensor and statistical shape models (Hacihaliloglu, 

Abugharbieh et al. 2009, Hacihaliloglu, Abugharbieh et al. 2011, Hacihaliloglu, 

Rasoulian et al. 2014) .  

Ultrasound elastography is a non-invasive technique that has been used to 

estimate the mechanical behavior of soft tissues (Ophir 1991). With the recent 

introduction on the market of ultrasound scanners with elastographic capabilities, 

elastography is becoming a widely accepted cost-effective tool for the diagnosis of a 

number of pathologies (Garra, Cespedes et al. 1997, Schaar, Korte et al. 2003, Souchon, 
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Rouviere et al. 2003). Several types of elastography techniques have been proposed, and 

the main ones used in the clinical practice are: quasi-static elastography, shear wave 

elastography (Sebag, Vaillant-Lombard et al. 2010), and acoustic radiation force impulse 

(ARFI) elastography(Cho, Lee et al. 2010). Our laboratory has been actively involved in 

the development of quasi-static elastography techniques, including novel 

poroelastography methods. The goal of quasi-static elastography techniques is to 

generate maps of the local strains that a tissue experiences due to the application of a 

mechanical stimulus. The resulting strain images are called “elastograms”. More 

specifically, an axial strain elastogram is an image of the strain tensor component along 

the beam axis. Other types of elastograms can also be generated by combining different 

strain components (Konofagou and Ophir 1998, Righetti, Ophir et al. 2005, Konofagou, 

Harrigan et al. 22001). Specifically, axial shear strain elastography (ASSE) (Konofagou 

and Ophir 1998, Konofagou et al 2000, Thitaikumar et al 2007a) is a recent development 

in this field that has been used to assess the degree of connectedness between different 

tissues. Recent work from our laboratory has demonstrated that ASSE may be used as a 

monitoring tool for bone imaging applications.   

While elastography is primarily used for the assessment of soft tissues, recent 

studies have suggested the possibility of incorporating elastographic information to 

improve bone detection and assessment and to better differentiate between soft tissue 

and bone tissue based on their distinctive mechanical properties.   

 In this study, I investigate and propose new methods to improve bone surface 

enhancement and segmentation in ultrasound images, with particularly emphasis on 

techniques that could be readily implementable in clinical in vivo applications 

necessitating free-hand acquisition settings and real-time feedback.  

In Chapter 2, I propose, design and test new methods to perform elastographic imaging 

of musculoskeletal structures in real-time but without the loss of image quality. These 
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methods might be used in the future to select new features to be incorporated in a bone 

surface detection algorithm for clinical applications. In Chapter 3, I propose, design and 

test a new Doppler-based bone surface enhancement method that might be used in the 

future to facilitate bone segmentation problems. This method gives a way to enhance 

signal from bone surface while suppress signal from soft tissue and connective tissue. It 

can be integrated into existing US Doppler module easily. In Chapter 4, I  propose, 

design and test a statistical shape method to identify bone surfaces in ultrasound images.  

The advantages of this method include low computation cost for training and 

classification with high segment accuracy.  
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2 A HYBRID CPU-GPGPU APPROACH FOR REAL-TIME ELASTOGRAPHY
1
 

 

INTRODUCTION 

 Ultrasound (US) elastography is a non-invasive imaging modality that maps local 

strains to color-coded tissue information (Ophir 1991). With the recent introduction on 

the market of US scanners with elastographic capabilities, elastography is becoming a 

widely accepted cost-effective tool for the diagnosis of a number of pathologies (Garra, 

Cespedes et al. 1997, Schaar, Korte et al. 2003, Souchon, Rouviere et al. 2003). In 

clinical applications, the availability of high quality elastograms combined with real-

time tissue visualization is usually a fundamental requirement for correct and early 

diagnosis. Yet, achievement of both these requirements in vivo simultaneously is a 

difficult task, which depends on a number of parameters related to the US system, the 

processing methods and noise (Varghese, Ophir et al. 2003).  

 In the past years, several real-time elastography methods have been proposed. 

These include: low computationally intensive estimation methods such as sum of square 

difference (SSD)(Hall, Zhu et al. 2003), spectral strain estimation (Konofagou, Varghese 

et al. September 1999), phase root seeking (Lindop, Treece et al. 2006), zero-crossing 

(Srinivasan and Ophir 2003) and sample tracking (Zahiri-Azar and Salcudean 2008) and 

cross-correlation with prior estimates (Zahiri-Azar and Salcudean 2006). These methods 

                                                 

1 Reprinted with permission from "A hybrid CPU-GPGPU approach for real-time 

elastography" by Xu Yang, Sthiti Deka and Raffaella Righetti, IEEE Transactions on 

Ultrasonics, Ferroelectrics and Frequency Control, 2011 Dec 58(12):2631-45 
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achieve real-time frame rates, but usually their improvement in computational speed is 

accompanied with losses in the quality of the resulting elastograms. Conventional cross-

correlation elastography algorithms usually provide high quality images (Hoyt, Forsberg 

et al. 2006), but they are computationally intensive and not suitable for real-time 

applications. 

 The problem of achieving high speed computational powers while preserving 

image quality in clinical environments extends well beyond elastography applications. In 

fact, this capability not only may allow fast and improved diagnosis but it may be 

essential to monitor treatments in real-time for individualized therapies. Recent 

developments in the biomedical imaging field have suggested that this issue might be 

solved using a hardware/software approach (Luebke 2008). In this connection, General 

Purpose Graphics Processing Unit (GPGPU) has become an attractive platform for 

bioscience and bioengineering problems of this kind (Owens, Luebke et al. 2007). 

Recently, GPGPU has been used in several medical imaging application (Xu and 

Mueller 2005, Samant, Xia et al. 2008, Jia, Lou et al. 2010)and in ultrasonic imaging 

applications that involve computationally intensive algorithms, such as real-time 3D 

reconstruction (Dai 2010), real-time 2D temperature imaging (Liu 2010), and real-time 

displacement estimation (Rosenzweig 2011). Our group has reported the first work 

retrievable in the literature that suggests that the use of GPGPU may be advantageous in 

ultrasound elastography applications (Deka, Yang et al. 2009).  

 The tremendous computational power of GPGPU is supported by the SIMT 

(Single Instruction Multiple Thread) architecture, which was originally intended for 3D 
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rendering applications. In addition, fast context switching and high memory bandwidth 

also contribute to GPGPU’s high performance. To fully exploit the high computational 

horsepower of GPGPU, an implementation has to follow a number of restrictions to 

maximize device utilization, memory throughput and instruction throughput. In general, 

GPGPU makes computation faster in most applications and, equally importantly, frees 

CPU for other high priority computations. Therefore areas ranging from complex 

simulations to medical imaging are actively investigating the use of GPGPU to 

accelerate complex algorithms that could easily saturate the CPU (Owens, Luebke et al. 

2007). 

 While in the past graphics hardware had to be programmed through multiple 

software layers and complex low level languages, the availability of high level 

programming languages make the GPGPU readily accessible to developers for general 

purpose computation. Current popular programming models such as NVDIA's Compute 

Unified Device Architecture (CUDA)(NVIDA 2010) and OpenCL(ATI 2010) are 

designed to abstract the hardware and offer language APIs that are simple extensions to 

the familiar C99 standard. For example, CUDA enables application software to 

transparently scale its parallelism to leverage the increasing number of processor cores. 

A compiled CUDA program can be executed on any available NVDIA processor cores 

because the runtime system will directly schedule the parallelism leaving programmers 

the only task of parallelizing the algorithm (NVIDA 2010). 

 In this paper, we investigate the use of GPGPU hardware accelerators for US 

elastography applications. We provide a comprehensive analysis of the performance, 
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potentials and fundamental limitations of GPGPU methods as applied to classical 

elastography estimations problems. The driving motivation at the basis of this study is to 

tackle the speed-quality orthogonal problem in elastography by employing a new 

approach, which is cost effective, efficient and allows real-time performance with no 

loss in image quality.  

METHOD 

Elastography image formation process  

 The goal of US elastography techniques is to generate maps of the local strains 

that a tissue experiences due to the application of a mechanical stimulus (Ophir 1991). 

The resulting strain images are called “elastograms”. More specifically, an axial strain 

elastogram is an image of the strain tensor component along the beam axis, while a 

lateral strain elastogram is an image of the strain tensor component orthogonal to the 

beam axis within the scanning plane. Other types of elastograms can also be generated 

by combining different strain components (Konofagou and Ophir 1998, Righetti, Ophir 

et al. 2005, Konofagou, Harrigan et al. 22001). These local strains (or combination 

thereof) are related to the underlying tissue mechanical properties (Srinivasan, Krouskop 

et al. 2004).  

 Below, we provide a detailed explanation of the elastographic image formation 

process, since it is fundamental to understand the computational issues related to 

elastographic estimations. While elastography is fundamentally a three dimensional 

problem, in this study we focus primarily on axial displacement and strain estimation. 
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However, the concepts covered in this paper can be easily extended to lateral and 

elevational displacement and strain estimations as well (Konofagou and Ophir 1998). 

To generate an elastogram, a set of digitized RF echo-lines (pre-compression frame) is 

acquired from the region of interest inside the tissue. The tissue is then compressed by a 

small amount (typically 0.1-1% strain) usually along the ultrasonic radiation axis and a 

second set of digitized RF echo-lines (post-compression frame) is acquired from the 

same region of interest inside the tissue. Congruent echo-lines are globally stretched to 

correct for echo-decorrelation noise (Varghese and Ophir 1996) and divided into 

temporal windows. Time delay estimation (TDE) techniques are applied to the 

windowed signals, to obtain a local displacement estimate (Cespedes, Huand et al. 

1995). The temporal windows are then shifted along the radiation axis and the 

computation is repeated for all depths. This process allows generation of a displacement 

map. The strain image is computed as the gradient of the local displacements (after 

median filtering to remove salt-and-pepper noise).  

 Each pixel in the elastogram represents the local value of the strain experienced 

by the tissue as a result of the compression. Local displacements may be obtained using 

TDE techniques, and several of these methods can be found in the literature. While each 

of the proposed methods has his own advantages and limitations, cross-correlation based 

methods are known to provide the highest quality estimates albeit at the expense of 

computational time (Hoyt, Forsberg et al. 2006).  A recent study conducted in our 

laboratory demonstrates that cross-correlation methods provide the highest image quality 
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when compared to other algorithms based on minimization of cost functions 

(Sambasubramanian August 2010).  

 In this study, we implemented a generalized cross-correlation algorithm in C, 

using the following steps: 1) temporally stretch the post-compression echo signals; 2) 

divide data into temporal windows; 3) cross-correlate corresponding windowed pre- and 

post-compression echo-signals; 4) estimate displacement from the position of the peak of 

cross-correlation function; 5) repeat steps 3 and 4 for the entire depth of the echo-line 

and for every echo-line; 6) median filter displacements; 7) estimate strains. In our 

implementation, the cross-correlation is performed in the frequency domain, where it is 

computed as the inverse Fourier transform of the product of the FFT of the pre-

compression window and the conjugation of the FFT of the post-compression window. 

While cross-correlation can be performed either in the time-domain or in the frequency 

domain, FFT implementation takes logarithmic time complexity, while it would take 

quadratic time complexity (O(n2)) to perform cross-correlation in the time domain.  The 

position of the peak of the cross-correlation function yields the time-delay estimate. 

From the displacement maps, the strain elastograms are computed using a staggered 

strain estimation technique, which is a multi step strain estimation method that provides 

elastograms of improved quality with respect to those obtained using a simple gradient 

method (Srinivasan, Ophir et al. 2002). 

The GPGPU architecture 

 To investigate the feasibility of using GPGPU for elastography applications, we 

implemented the elastographic estimator described in the previous section on the Nvidia 
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GeForce 8800 GT. The Nvidia GeForce 8800 GT is a graphics card equipped with a G92 

graphics processing unit (GPU) based on Tesla unified graphics and computing 

architecture. Tesla architecture can support NVIDIA's CUDA, which allows developers 

to easily implement data-parallel algorithms based on SIMT model. In the following 

paragraphs, we discuss the features of CUDA and G92 that are most relevant for the 

problem of accelerating ultrasonic elastography. 

 Figure 1 shows a schematic of the architecture of the G92 GPGPU. The G92 

GPGPU has 14 streaming multiprocessors (SMs), each containing 8 streaming 

processors (SPs) running at 1.5GHz. The SMs use SIMT unit to organize threads into 

groups of 32 parallel threads (warps).  In addition, each SM has two special functional 

units shared among 8 SPs to perform reciprocal, square root, sine and cosine with low 

latency. Each SP has one arithmetic unit that performs single precision floating point 

operations and 64-bit integer operations. For each clock cycle, a SP can perform one 

multiply-add operation and a SFU can perform one complex floating point operation. 

The combination of the 8 arithmetic units and the 2 SFUs allow 18 floating point 

operations per clock cycle for each SM, and the 14 SMs carry out 378 GFLOPS peak 

theoretical performance for the G92 (14 SM * 18 FLOP/SM * 1.5 GHz).   
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Figure 1 Architecture of G92 GPGPU (adapted from NVIDIA.com). 

 

 There are two kinds of memory on graphics card: the on-chip memory and the 

off-chip memory. The on-chip memory is integrated in the GPU chip and has low 

latency compared to the off-chip memory, which is loaded on the graphics card as main 

data storage. The GeForce 8800 GT has 57.6 GB/s of bandwidth on its 512 MB global 

memory. Although the available bandwidth is high, off-chip global memory suffers from 

high-latency. Besides, the global memory has no cache, so the theoretical bandwidth can 

only be achieved under strict access patterns. Therefore as all GPGPUs based on Tesla 

architecture, G92 has four types of on-chip memory designed to reduce demands for 

global memory access. The fastest on-chip memory is the register in SMs. For G92, each 
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SM has 8192 shared registers. Additionally, each SM has 8kB constant memory cache 

that speeds up read from 64 kB off-chip constant memory, and 16kB on-chip shared 

memory that is optimized for parallel data accessing. Finally, Tesla architecture provides 

the off-chip texture memory and the on-chip texture caches optimized for 2D spatial 

locality.  

Elastography on GPGPU 

 To study the usefulness of the GeForce 8800 GT’s architectural features in 

elastography applications, we implemented a hybrid CPU-GPGPU version of the 

conventional elastographic estimator detailed in section A. The hybrid implementation 

was achieved through iterative developments, during which four major versions of the 

algorithm were generated. It should be noted that, apart from parallelizing the algorithm 

to improve efficiency, the major issues that we need to address when implementing 

elastography on GPGPU are related to memory and control flow problems. Memory-

related issues are present in all steps of the algorithm (see section A), from transferring 

and storing RF data to saving and accessing FFT results and cross-correlation values for 

the estimation of displacements. Control flow problems are present mainly during 

operations such as summation and sorting cross-correlation values to find the peak of the 

cross-correlation.  

 The various iterations of the algorithm implemented in this study differ from 

each other with respect to the optimization level used for the memory bandwidth and 

GPGPU occupancy. The final hybrid version allows CPU and GPGPU to work 

simultaneously to overlap waiting time when processing continuous windows. Below, 

we provide a brief description of the technical characteristics of each iteration 

implemented in this study. 

GPGPU.Base 

 The GPGPU.Base is a direct implant from CPU implementation with no 

optimization methods employed to conserve memory bandwidth or tolerate long latency 

loads. This simple base version executes data on the GPGPU in a parallel fashion, which 
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results in frequent data transfer between host memory and graphics memory. In this 

version, only the cross-correlation computations are performed on the GPGPU. For the 

FFT computation, CUFFT library is used. 

GPGPU.H2DMem 

 In the second version, GPGPU.H2DMem, the transferring of RF data from host 

memory to device global memory is optimized in several ways. First, the RF data is 

stored, A-line by A-line (instead of row by row as in the base version). This modification 

improves cache misses when dividing A-line into windows. It also makes coalesced 

memory access possible for executing computations on the GPGPU. Second, coalesced 

memory transaction is used to make the use of global memory bandwidth more 

efficiently. Data should be aligned and accessed in sequence by threads, so that memory 

transactions of threads in a half-warp can be coalesced into one transaction. Third, RF 

data is saved in page-locked memory before transferring. Page-locked memory has 

higher bandwidth than regular pageable host memory.  

GPGPU.On-ChipMem 

 In the version, GPGPU.On-ChipMem, data for displacement and cross-

correlation estimation are loaded into on-chip shared memory to reduce device memory 

transaction.  While in the previous versions, to estimate the displacements threads need 

to access cross-correlation functions saved in the device global memory repeatedly, in 

this version cross-correlation functions are loaded into the on-chip shared memory 

before actual computation. This allows avoiding the high latency of the device global 

memory transaction. Shared memory is divided into banks, and any memory request of n 

addresses that fall into n distinct memory banks can be combined into one transaction. If 

two addresses fall into one bank, a bank conflict happens and the request is serialized. 

Although additional synchronization operations are needed for the loading process, this 

step allows saving computational time because the on-chip shared memory is very fast 

(32 bits per two clock cycle) when there is no bank conflict, compared to 400 to 800 

cycles for the off-chip memory. Furthermore, in this version, all computations except the 
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median filtering and the strain estimation are executed on the GPGPU to reduce frequent 

data exchange between host memory and graphics memory. 

GPGPU.ControlFlow 

 The fourth version, GPGPU.ControlFlow, additionally improves performance by 

using parallel reduction (Harris 2007).  According to NVIDIA, any flow control 

instruction (if, switch, while, for) can significantly impact the effective instruction 

throughput by causing threads of the same warp to diverge (NVIDA 2010). As a 

consequence of such divergence, the different execution paths need to be serialized, 

increasing the total number of instructions executed. Since for the displacement 

estimation, only the maximum value of the cross-correlation is of importance, there is no 

need to perform a complete sorting. Therefore a parallel reduction method (Harris 2007) 

is used to reduce divergence and find the maximum value of the cross-correlation. As a 

common data parallel primitive, parallel reduction cuts off runtime effectively by using 

tree-based approach within each block. This can be easily implemented in a loop. 

One important technique to implement parallel reduction in CUDA is the 

unrolling of the last six loops. As reduction proceeds, the number of active threads 

decreases by half in each step. Due to warp synchronization, all threads within a warp 

have the same instruction. Therefore when the number of effective threads in a step is 

equal to or below the warp size, there is no need to have synchronization and judgment 

of active threads in the step. So unrolling of the last six loops makes the last six step 

divergence free.  

Hybrid multithread 

 This final version uses Consumer/Producer Pattern to create a hybrid computation 

model, which employs both CPU and GPGPU.  In this version, the median filtering and the 

strain computation are performed on the CPU.  Execution of these operations on the GPGPU is 

deliberately avoided because they involve uncoalesced memory accesses, bank conflict and 

control flow that cap the performance.  In addition, the CPU computational time required by the 

execution of these two steps is so small that it can be overlapped with the computational time 

taken by the GPGPU to execute other operations. Therefore, the Consumer/Producer Pattern 

approach is used to solve the problem.  In our approach, we let CPU compute the median filter 
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and strain of frame n while the GPGPU is calculating the displacement for frame n+1. Thus, for 

continuous frames, the time used to estimate the strain will be completely overlapped with the 

time used to compute the displacement.   Figure 2 shows a schematic of the proposed approach 

vs. a single thread approach. As it can be observed from this schematic, the hybrid thread code 

allows an effective reduction of the computational time by overlapping the processing times of 

the different stages of the algorithm.   

 

 

Figure 2 Time sequences of hybrid thread code and single thread code. (a) Hybrid approach 

showing how CPU and GPGPU cooperate to minimize computational time. (b) Time sequence 

of single thread code. 

 

Performance evaluation 

 The CPU-GPGPU hybrid implementation was compiled using speed maximize 

option (-O2, CUDA version 3.2) and tested on GeForce 8800 GT installed in a system 

with a 2.2 GHz Core Duo E4500 CPU. Both CPU and GPGPU versions were tested on 

this platform.  
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All tests were performed on simulated data. We simulated a 40 by 40 mm
2 
media 

using a simulation software developed in our lab and previously described (Desai, 

Krouskop et al. 2010). In all simulated models, the media were compressed from the top 

by applying a constant axial strain (ranging from 0.01% to 10%).  We assumed slip 

boundary conditions at the bottom and a plane-strain state model. In all models, a scatter 

density of at least 40 scatters/pulse-width was used, satisfying the requirement for 

obtaining fully developed Rayleigh backscatters. The speed of sound was fixed at 1540 

m/s.  The sonographic signal-to-noise ratio (SNRs) was set at 20 dB.   

We simulated an ultrasound system that resembled our experimental ultrasound 

system. The simulated ultrasound transducer had 128 elements, frequency bandwidth 

between 5-14 MHz, a 6.6 MHz center frequency and 50% fractional bandwidth at -6 dB.  

The transducer’s beamwidth was assumed to be approximately 1 mm at 6.6 MHz.   

To evaluate the effect of data size (both axial and lateral) on the computational 

speed, two sets of data were simulated. The first set was used to test the impact of axial 

data size on the computational speed. The second set was used to test the impact of 

lateral data size on the computational speed. For statistical analysis, 50 independent 

realizations were simulated for each data configuration. 

The number of axial pixels in an elastogram depends on the acquisition depth, 

window length and overlap between successive windows and can be computed as  

d

lw(1−α)
, where d is acquisition depth, lw is window length and α is the overlap. Here, d 

and lw can be in units of mm or pixel (as long as they have the same unit). The number 

of lateral pixels in an elastogram is equal to the number of A-lines. For each pixel in the 

elastogram, the problem size is determined by the number of samples in each window, 

which is given by 2
fslw

c
, where fs is the sampling frequency and c is the speed of sound 

(in this formula lw has the same unit of measurement of c).  

To test the effect of axial data size on the computational speed, three values of 

sampling frequency were considered: 20 MHz, 40 MHz and 80 MHz while the number 

of A-lines was set at 128. This resulted in simulated RF frames of size 1039 x 128 

pixels
2
, 2078 x 128 pixels

2 
and 4156 x 128 pixels

2
 respectively. To test the effect of 
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lateral data size on the computational speed, three values of A-lines were considered: 

128, 256 and 512 while the sampling frequency was set at 40 MHz. This resulted in 

simulated RF frames of size 2078 x 128 pixels
2
, 2078 x 256 pixels

2 
and 2078 x 512 

pixels
2
 respectively.  

Finally, we also investigated the effect of the cross-correlation window size on 

the computational speed. Window sizes ranging from 0.4 mm to 4.0 mm were used for 

this study (for a 2% applied strain - note that the applied strain does not affect 

computational time). For all simulation cases, the window overlap was set at 80% (note 

that the window overlap has only a linear effect on computational speed).  

Evaluation of computational speed  

 For the evaluation of the speed performance we used simulation data 

corresponding to a uniform medium. The computational speed of the elastography 

algorithm was assessed by computing the execution time and GFLOPS for RF data sets 

described in previous section. The execution time was calculated as the average 

processing time it takes to complete each trial.  

To compute the number of floating point operations in each step of the elastographic 

algorithm, the following procedure was used. Let each RF frame have dimension L x N 

pixels
2
, where L is the number of samples in the axial direction and N is the number of 

samples in the lateral direction. Let K be the number of pixels in each cross-correlation 

window. Then, the elastogram size is M x N pixels
2
 (where M can be computed as 

specified above). The number of floating point operations in each step of the 

elastographic algorithm is estimated as follows: 

a. The stretching operation is performed on the RF data. Stretching is performed using 

linear interpolation: given two points (𝑥0, 𝑦0)  and (𝑥1, 𝑦1), for each 𝑥 ∈ (𝑥0, 𝑥1)  the 

corresponding y is given by  𝑦 = 𝑦0 + (𝑥 − 𝑥0)
𝑦1−𝑦0

𝑥1−𝑥0
  . Thus, linear interpolation costs 5 

operations for each sample, and stretching costs 5LN floating point operations.  

b. The cross-correlation cost MN(15K log2(K) +  6K + 4K)  floating point operations. 

The number of FFT floating point operations for each pixel in the elastogram is given by 

15K log2(K) because 2 FFT and 1 inverse FFT operations are needed for each pixel and 
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each operation has roughly 5K log2(K) operations (according to the radix-2 Cooley-

Tukey algorithm)(Cooley and Tukey 1965). Additionally, 6K operations are needed to 

multiply complex FFT results, and additional 4K operations are needed to calculate the 

sum of squares in each pair of pre-compression and post-compression windows. 

c. Displacement estimation uses MN( K +  11 )  floating point operations. To find the 

peak of the cross-correlation value in a window,  K  floating point operations are needed 

using a parallel reduction method, and 11 more operations are used for sub-sample 

estimation (cosine interpolation around the peak of the cross-correlation function). 

Similarly as for point a), the y value here can be calculated as  𝑦 = 𝑦0(1 − 𝜇) + 𝑦1𝜇, 

where 𝜇 = (1 − 𝑐𝑜𝑠(
𝑥−𝑥0

𝑥1−𝑥0
𝜋))/2. 

d. Staggered strain estimation costs MN (J log2(J) +  4), where J is the median filter 

size. Staggered strain calculation is somewhat similar to linear interpolation and roughly 

costs 4 floating point operations for each pixel in the elastogram. The strain value in 

strain map is calculated as 𝑠𝑖,𝑗 = |
𝑑𝑖,𝑗−𝑑𝑖,𝑗+𝑊

𝑑𝑠ℎ𝑖𝑓𝑡×𝑊
|, where 𝑠𝑖,𝑗 is strain value at position (i,j) 

and 𝑑𝑖,𝑗 is displacement at (i,j) in displacement map, 𝑑𝑠ℎ𝑖𝑓𝑡 is the window shift and W is 

staggered size (Srinivasan, Ophir et al. 2002). 

It is important to note that the above calculations are not an actual flop counts, because 

all operations (addition, subtraction, multiplication, division and trigonometric 

functions) are counted as one operation, as it is often the case in GFLOPS calculations.  

 

In addition to the execution time, for the hybrid approach we also analyzed the 

percentage of time spent on the different functions of the algorithm during the execution 

of the elastograms. Using NVIDIA Compute Visual Profiler, we evaluated the profile of 

warp serialization, the profile of branch and divergent branch and the profile of 

coalesced and uncoalesced global memory loads.  

Image quality assessment 

 In order to evaluate any eventual loss in resulting image quality, we statistically 

compared the performance of the CPU/GPGPU hybrid approach implementation and the 
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CPU implementation of the elastography algorithm. This performance comparison 

between GPGPU and CPU implementations of the algorithm is necessary because the 

GPGPU employed for this study is limited by single precision floating point arithmetic, 

as opposed to the CPU’s double precision capacities.   

Image quality tests were performed on two simulation models. For the SNRe 

tests, we used a uniform simulated medium (elastic modulus = 2 kPa and Poisson’s ratio 

= 0.495). For the CNRe tests, we used a simulated medium containing a cylindrical 

inclusion (background:  elastic modulus = 2 kPa and Poisson’s ratio = 0.49; inclusion: 

elastic modulus = 10 kPa and Poisson’s ratio = 0.495). The mechanical properties of the 

background and the inclusion materials were chosen based on previous elastography 

studies (Kallel and al. 2001, Righetti, Ophir et al. 2002).  

The SNRe was computed as SNRe =
s

σl
 , where s is the mean value of the 

estimated strain and σl is the standard deviation of the strain (Varghese, Ophir et al. 

2003). The CNRe was computed as CNRe =  
2(st−sb)2

σt
2+σb

2 , where st  and sb  are the mean 

values of the estimated strain in the target and the background respectively, and σt  and 

σb  are the respective standard deviations of the estimated strains (Varghese and Ophir 

1998).  The SNRe was measured on simulated uniform cubic phantoms.  The CNRe was 

measured on simulated cubic phantoms containing a 10 mm diameter cylindrical 

inclusion. These image quality factors were assessed using a set of 50 independent trials. 

To further evaluate any statistical difference on a pixel-by-pixel basis between 

the CPU implementation and the hybrid implementation, the normalized root mean 

square error (NRMS) was also calculated. The NRMS error was computed as  𝑒 =

1

(�̇�𝑚𝑎𝑥−�̇�𝑚𝑖𝑛)
√

∑ ∑ (�̇�𝑖𝑗−�̈�𝑖𝑗)2𝑁
𝑖=1

𝑀
𝑖=1

𝑀𝑁
, where M and N are the axial size and lateral size of the 

elastograms (as specified earlier),  ṡij is the strain estimation at position (i,j) obtained 

using the CPU implementation and s̈ij is strain estimation at the same position obtained 

using the hybrid implementation. 

Experiments 
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 Experiments were performed to demonstrate the technical feasibility for generating 

elastograms using the CPU/GPGPU hybrid approach as applied to noisy, real elastographic data. 

For comparison, the same sets of data were also processed using the CPU implementation of the 

elastography algorithm.  

Experiments on gelatin phantoms 

 For the first set of experiments, we used gelatin phantoms containing a cylindrical 

inclusion. Five gelatin phantoms were used for these experiments. The gelatin phantoms were 

constructed following the procedure indicated in Kallel et al.(Kallel and al. 2001). Briefly, the 

gelatin blocks were fabricated by mixing 5% by weight of gelatin and 3% by weight of agar to 

boiling water and following the procedure described in Kallel et al. (2001). After solidification, a 

cylindrical cavity of diameter equal to 1cm was created at the center of the phantom. The 

cylindrical inclusion was the filled with a gelatin mix fabricated by mixing 12% by weight of 

gelatin and 3% by weight of agar. This allowed generation of a phantom with a cylindrical 

inclusion approximately two times stiffer than the background. It should be noted that similar 

gelatin phantoms serve well as ultrasonic tissue-mimic phantoms and are commonly used in 

elastography applications for the purpose of evaluating image quality of elastographic 

estimators. 

Each gelatin sample was then placed on a rubber plate and compressed from the 

top using an apparatus that allows application of a constant strain to the sample(Desai, 

Krouskop et al. 2010).  The custom-build compression-loading frame held the ultrasonic 

transducer in contact with the sample being studied.  A compressor plate was attached to 

the transducer to approximate a uniform stress distribution.  Before elastographic data 

collection, each sample was initially pre-compressed in order to assure good contact (the 

amount of pre-compression depended on the curvature of the muscles).  Subsequently a 

2% axial strain was applied to the sample.  

The samples were scanned using a 38 mm real-time linear array scanner Sonix 

RP (Ultrasonix, Richmond, BC, Canada) that has 128 elements, a bandwidth between 5-

14 MHz, a center frequency of 6.6 MHz, 50% fractional bandwidth at -6 dB, sampling 

frequency of 40 MHz, and 1 mm beamwidth at the focus. After data acquisition, the RF 

data are then transferred in an external computer for processing.  

Experiments on ex vivo tissues 
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For the second set of experiments, we used eight samples of ex vivo tissues, which included 

samples of fresh bovine muscle (5) and porcine liver (3) purchased at a local market.  The 

samples were casted into gelatin blocks approximately 50 mm thick and 50 mm wide. Prior 

elastographic data collection, the samples were exposed to High Intensity Focused Ultrasound 

(HIFU), which provided a controlled means to locally modify the stiffness properties of the 

materials and generate stiffer inclusions inside the tissue samples. It should be noted that the use 

of HIFU to create localized and coagulated areas within tissues has been well documented in the 

literature (Hill and terHaar 1995, Madersbacher, Kratzik et al. 1995). Righetti et al. (Righetti, 

Kallel et al. 1999) demonstrated the feasibility of using HIFU to create localized stiff lesions in 

canine livers. By varying the amount of ultrasound exposure and acoustic power, they were able to 

create a large range of stiff lesions having different size and elastic modulus. In addition, the field 

of HIFU treatments represents a possible medical area where the application of real-time 

elastographic methods could prove clinically relevant.   

The in-house HIFU system used for this study comprises a HIFU transducer that 

has a diameter of 6 cm, a nominal center frequency of 1 MHz and, -6dB beamwidth of 1 

mm and a focal length equal to 76 mm. The HIFU acoustic power can reach up to 120 W, 

which combined with the focal spot size measurements results in a focal intensity of 

1582.1 W/cm
2
.  For the specific study, one inclusion was induced in each meat sample 

using a 75 W acoustic power and 30 s exposure time. 

Following the HIFU experiments, the sample was cast in a gelatin block, which was 

used with the sole scope of supporting the phantom during elastographic data collection. 

Each sample was then placed on a rubber plate and compressed from the top. A 

compressor plate was attached to the transducer to approximate a uniform stress 

distribution.  Before elastographic data collection, each sample was initially pre-

compressed in order to assure good contact (the amount of pre-compression depended on 

the curvature of the muscles).  Data were acquired while compressing the sample in free-

mode configuration. Approximately, a 2% total axial strain was applied to the sample. 
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RESULT 

Speed performance evaluation 

 Figure 3 shows the percentage of time spent by the hybrid algorithm in the 

various stages that compose the elastography algorithm. 

 

Figure 3. Time profile of hybrid version of the elastography algorithm detailing the time 

spent executing each function in the algorithm 

 

 Table 1 shows a detailed performance analysis of warp serialization, branch and 

global memory efficiencies for the hybrid version of the algorithm. In Table 1, we can 

observe that the global load efficiency is Not Applicable (N/A) for all the functions since 

all functions take advantage of texture cache during loading data from the global 

memory. Some functions have branch problems, but divergent branches are largely 

avoided. In the axial displacement estimation and cross correlation normalization, 

reduction is used in sorting and summation. This generates a high number of branches. 

However, the proportion of divergent branches with respect to the total branches in these 

two functions is low. The product computation (i.e., the product between the FFT of the 

pre-compression window and the FFT of the post-compression window) has very low 
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global store efficiency due to the dimension of the output arrays, which are determined 

by the size of the FFT. Since the FFT length is padded to be 2n, the length of the FFT 

result is 2n−1+1, which is an odd number and therefore causes large uncoalesced 

memory access. The axial displacement estimation also has low global store efficiency 

but the size of stored data in this case is small. Being the most time consuming portion 

of the algorithm, the FFT function has several issues except global loading. 

Table 1 Profile of main operations occurring in the hybrid algorithm to compute the 

elastogram. In the table, GST stands for global stor. The GST efficiency is the 

proportion of coalesced memory operations with respect to the total number of 

operations. 

 

GPU% Branches 

Divergent 

branches 

Warp 

serializations 

GST 

efficiency 

Data transfer from 

device to host  
0.37% N/A N/A N/A N/A 

Stretching  0.55% 1616 9 0 1 

Data transfer from 

host to device 
6.56% N/A N/A N/A N/A 

Estimation of cross 

correlation peak  & 

axial displacement 

18.44% 224460 860 0 0.11 

Zero padding and 

normalization  
20.38% 275040 1719 0 0.99 

Cross-

correlation 

computation 

FFT & 

IFFT 
41.14% 61024 1718 44438 0.36 

Product 12.56% 0 0 0 0.012 
 

 

 

 Figure 4 shows the effect of sampling frequency on computational speed, and 

figure 5 shows the effect of A-lines on computational speed. As the FFT size is padded 

to 2n and the size of the FFT depends on the window length, there is a jump in 

performance when the padded length changes due to the window length increase in both 

figures. In elastography, smaller window sizes lead to improved resolutions but lower 



 

27 

 

SNRe and CNRe (Varghese, Ophir et al. 2003). Computationally, smaller window size 

means smaller number of axial samples in each window but larger number of windows 

in the elastograms (since the depth is fixed). The sampling frequency is proportional to 

number of axial samples in each window. The graph in Figs. 4a and 5a shows that the 

hybrid method gains more speed for smaller RF data size (lower sample frequencies) and 

larger window sizes.  GFLOPS increases with RF data size and window size (Fig. 4c and 

5c). For the hybrid implementation, computational time increases sub-linearly (Figs. 4a 

and 5a) as the data size increases (laterally and axially) while CPU computation time 

increases (Figs. 4b and 5b). 

 From Fig. 4a we observe that the sampling frequency has practically no effect on 

the time cost for window lengths below 1mm. This is because for window length less 

than 1mm (corresponding to a FFT length of 64 samples or lower), the number of 

windows is more relevant than the window length itself and the algorithm spends more 

time in calling the functions than in the computation itself. Since the depth is fixed, the 

number of windows changes with the window length but does not change with the 

sampling frequency. In Fig. 5a, instead, for each lateral data size, the window length is 

the same but the number of windows is different. The CPU results (Figs. 4b and 5b) 

show a similar trend as the GPU results (Figs. 4a and 5a) even though in this case the 

computational time is significantly higher than the corresponding computational time 

required by the hybrid approach (using t-test at a 95% confidence level). As previously 

mentioned graphs  mentioned it should be noted that, if single precision CPU are used 

instead of double-precision CPU, computation in CPU is about 1.8 times faster than 
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double precision computation for FFT  which occupies around 90% of the computation 

time in CPU. 

 We finally observe that increase in the lateral data size causes a higher number of 

GFLOPS than the increase in axial data size (Fig. 5c vs. Fig. 4c). This is because our 

kernel function computes the displacement and correlation peak values for a row of 

windows each time the function is called. So the data size expansion in the lateral 

direction causes CUDA to start more threads each time, hence more latency can be 

hidden (when a batch of threads is waiting for data, GPGPU can switch to work on 

another batch that is ready for computation). This would indicate that the hybrid 

approach has the potential to increase GFLOPS and maximize the occupancy of GPU by 

computing more windows in different rows each time the function is called.     



 

29 

 

 

Figure 4 (a) Time cost of each elastographic frame computed using the hybrid 

implementation as a function of the cross-correlation window length for different 

sampling frequencies. (b) Corresponding time cost of each elastographic frame 

computed using the CPU implementation as a function of the cross-correlation window 

length for different sampling frequencies. (c) Estimated GFLOPS for the hybrid 

implementation as a function of the cross-correlation window length for different 

sampling frequencies. The RF data size is 1039*128 for 20 MHz sample frequency, 

2078*128 for the 40 MHz sample frequency and 4156*128 for 80 MHz sample 

frequency. 

 

 



 

30 

 

  

Figure 5 (a) Time cost of each elastographic frame computed using the hybrid 

implementation as a function of the cross-correlation window length for different 

number of A-lines. (b) Corresponding time cost of each elastographic frame computed 

using the CPU implementation as a function of the cross-correlation window length for 

different number of A-lines. (c) Estimated GFLOPS for the hybrid implementation as a 

function of the cross-correlation window length for different number of A-lines. The RF 

data size in the axial direction is 2078. 

 

Image quality assessment 

 Figures 6-9 show the results of the image quality analysis performed using 

simulations. Figures 6-8 shows simulated axial strain elastograms for the simulation 

model containing a cylindrical inclusion. These elastograms were obtained for different 

values of applied strains (figure 6) and cross-correlation window length (figure 7). The 
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corresponding ideal images (from the FEM simulation model) and the CPU elastograms 

are also shown.  

    

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 6 (a-c) Examples of simulated ideal strain images (from FEM) obtained by 

simulating an elastic medium containing a cylindrical inclusion at different applied strain 

levels. (b-d) Corresponding simulated axial strain elastograms obtained using the hybrid 

version of the algorithm. (e-g) Corresponding simulated axial strain elastograms 

obtained using the CPU version of the algorithm. For the elastograms, the cross-

correlation window length was fixed at 2 mm. No averaging was used.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 7 (a-c) Examples of simulated axial strain elastograms obtained using the hybrid 

version of the algorithm as applied to the simulation model containing a cylindrical 

inclusion at a 2% applied strain. (d-f) Corresponding simulated axial strain elastograms 

obtained using the CPU version of the algorithm. Data were processed using cross-

correlation window lengths ranging from 1 mm to 3 mm. No averaging was used. W 

stands for window size in mm. 

 

 Figure 8 shows the results of the SNRe study, while figure 9 shows the results of 

the CNRe study as a function of the applied strain and window length. These data refer 

to simulated axial strain elastograms obtained using the hybrid and CPU versions of the 

algorithm. In both cases, the SNRe and CNRe curves corresponding to the CPU and 

hybrid versions of the algorithm are practically overlapping, which explains why the 

elastograms in figure 6 and 7 have no perceptible visual differences. The NRMS error 
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shows that the difference in precision between the two implementations is larger for 

higher strains and smaller window sizes. In both cases, the NRMS is found below 1% 

when the applied strain is less 5%, which is typically the case in elastography 

applications.  

 

Figure 8 Results of SNRe study: (a) CPU results; (b) GPGPU results; and (c) NRMS 

error results. 
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Figure 9 Results of CNRe study: (a) CPU results; (b) GPGPU results; and (c) NRMS 

error results. 

 

 The results of the image quality analysis carried out in this study show that there 

is no statistically significant difference in the analyzed image quality factors between 

CPU elastograms and GPGPU elastograms. 
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Experimental results 

 Figure 10 shows examples of experimental axial strain elastograms obtained 

from a gelatin phantom using the CPU and hybrid version of the elastography algorithm. 

As it can be observed by the results shown in figure 11, there is no appreciable 

difference between the experimental elastograms obtained using the CPU- and GPGPU-

based versions of the algorithm, as expected from the statistical image quality analysis 

reported in the previous section. 

  As additional examples of experimental application of GPGPU elastography, 

Figs. 11-12 show examples of experimental axial strain elastograms obtained from a 

meat sample (Fig. 11) and two liver samples (Figs. 12 and 13), each of them containing a 

HIFU-induced lesion.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 10 Example of experimental axial strain elastograms obtained using the 

Hybrid.AxialOnly version of the algorithm (b and e).  For comparison, the 

corresponding B-mode images (a and d) and CPU axial strain elastograms (c and f) are 

also shown. Data refer to a gelatin phantom containing a cylindrical inclusion 

approximately two times stiffer than the background. Each elastogram is an average of 

10 elastograms. Images (a)-(c) refer to data acquired with the transducer perpendicular to 

the axis of the cylinder. Images (d)-(f) refer to data acquired with the transducer parallel 

to the axis of the cylinder. 
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Figure 11 Example of experimental axial strain elastogram obtained using the hybrid 

approach (b).  For comparison, the corresponding B-mode image (a) is also shown. Data 

refer to a meat sample containing a HIFU-induced lesion (circled area in the 

elastograms) scanned in free-mode acquisition.  No averaging was applied.  

 

 

Figure 12 Example of experimental axial strain elastogram obtained using the hybrid 

approach (b).  For comparison, the corresponding B-mode image (a) is also shown. Data 

refer to a liver sample containing a HIFU-induced lesion (indicated by the arrow) 

scanned in free-mode acquisition.  No averaging was applied. 

 

DISCUSSION 

 In this paper, we have presented a new technique that allows generation of 

elastograms in real-time and with no loss in image quality. This technique is based on 
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the use of graphic cards to speed up computation. GPGPU cards are becoming popular in 

biomedical applications. They are in general cheap and widely available. Thus, they may 

provide an attractive alternative to software-based solutions for real-time elastography 

applications. In addition to real-time elastography, the findings reported in this 

manuscript might be of use for the design and implementation of other elastography 

techniques that deal with applications involving a large amount of data and computations 

(Lindop, Treece et al. 2006)and, possibly, to other biomedical engineering areas. 

We have demonstrated how a hybrid computation method that uses both CPU and 

GPGPU can be accomplished through iterative optimization. Our study demonstrates 

that by using GPGPU as a co-computational device to the CPU, cross-correlation based 

elastography algorithms can be accelerated to deliver real-time performance. Our 

statistical analysis indicates that the loss in image quality when using the hybrid 

approach with respect to the CPU-based approach is very limited. The image quality 

comparison between GPGPU and CPU was necessary because of the single floating 

point precision of the GPGPU card employed in this study (vs. the double floating point 

precision of the CPU).   

 With respect to previous real-time strain estimators, the newly proposed hybrid 

algorithm performs comparably in terms of speed. For a typical 4 cm × 4 cm area 

sampled at 40MHz using a transducer with 128 elements, this implementation can 

achieve 56.4 fps when 2mm window length and 80% overlap are used (12800 pixels in 

the elastograms). However, it may have several important advantages with respect to 

previous real-time strain estimators. First, the statistical analysis performed in this study 
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using simulations demonstrates that the proposed elastography algorithm provides high 

quality elastographic estimates, with SNRe and CNRe values in the range typical for 

‘slow’ elastographic estimators but significantly higher with respect to real-time strain 

estimator algorithms previously reported in the literature (Zahiri-Azar and Salcudean 

2006). This may be expected because the majority of real-time elastography algorithms 

previously proposed are based on the use of sub-optimal displacement estimators or 

prior information to accelerate computation (Hall, Zhu et al. 2003, Zahiri-Azar and 

Salcudean 2006). It is indeed known that cross-correlation TDE algorithms are optimal 

(with respect to the mean squared error) and outperform spectral estimator, sum-of 

squared difference and sum-of absolute difference elastographic algorithms (Viola and 

Walker 2003). A recent study conducted in our laboratory confirms the statistical 

superiority of cross-correlation elastographic estimators both for axial displacement and 

lateral displacement estimations (Sambasubramanian August 2010). Second, the newly 

proposed GPGPU-based elastography has the advantage to minimize the utilization of 

CPU in the ultrasound system, which can be used for other operations. 

 Experiments were performed as a proof of principle of the applicability of the 

algorithm to real data. We performed two sets of experiments. The first set of 

experiments involved the use of conventional gelatin phantoms under controlled 

compression conditions. The second set of experiments involved the use of ex vivo 

tissues containing HIFU-induced lesions under free-mode acquisition conditions. The 

reason for these experiments can be justified as follow: first, the necessity of testing the 

algorithm using more complicated samples in more realistic noise and clinical 
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conditions; second, the large interest in studying the suitability of real-time elastographic 

estimators for monitoring HIFU-based treatments(Kallel, Stafford et al. 1999, Righetti, 

Kallel et al. 1999). The preliminary experimental results reported in this study appear to 

confirm the simulation findings.  

 By harnessing the computational horsepower of both CPU and GPGPU, we 

achieved real-time performance using conventional elastography for most of the 

acquisition and imaging configurations and without loss in image quality. The hybrid 

approach also shows more efficiency when RF data size increased. Beyond this, 

parallelization of cross-correlation based elastography algorithms is limited because of 

the inherent data-dependency of the algorithm.  

 Several challenges are encountered when implementing conventional cross-

correlation based elastography algorithms on GPGPU to achieve high acceleration ratios. 

Divergence and uncoalesced memory access will cause efficiency penalty in SIMT 

architecture. Cross-correlation based elastography algorithms contain FFT, sorting and 

median filtering, which are destined to have these problems. In fact, the highest 

GFLOPS that our implementation can reach is limited by CUFFT library. As shown in 

our performance analysis (figure 3), cross-correlation related computation (FFT, FFT 

products and sum of squares) uses 53.70 % of the GPGPU time. More specifically, 

computation of FFT and IFFT occupy 41.14% of the GPGPU time, thus heavily 

affecting the overall computational speed. From our performance analysis (table 1), we 

can also observe that CUFFT is largely affected by warp serialization problems, high 

branching (although divergent branching has been largely avoided) and uncoalesced 
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global memory stores. Finally, the speed is also limited by the platform we are targeting. 

GeForce 8800 GT does not have a very strong computation power, but its characteristics 

in terms of power consumption fit our ultrasonic imaging system limitations. Our Sonix 

RP system has a total power supply of 400 W, a constraint that leads to a compromise 

between performance and system’s safety when choosing the GPGPU to be used within 

the system.  

 For this algorithm, we see a potential improve on speed by increasing GPU 

occupancy. Improvement in speed could also be obtained using different TDE 

estimations algorithms, i.e., elastography estimators that do not use cross-correlation. 

However, this could lead to decreased image quality, which in clinical application is not 

desirable (Sambasubramanian August 2010). Further improvement in speed can be 

obtained only with higher performance hardware and more power supply from host. A 

G200 based Quadro FX 5600 (4 cores), executing multi-threaded version of our 

software, will deliver 4 times more performance than a single G92 based GeForce 8800 

GT. However, GPGPUs with more computation resources are more expensive and have 

power consumption that can easily exceed 200 W, which might not be suitable for many 

US systems (unless a high output power supply unit is used).  

 The above observations lead to considering the heterogeneous approach of 

computing where CPU, GPGPU and other compute devices are allotted computational 

load that agree best to their underlying architecture, for achieving performance 

optimization at little extra cost. On this regard, the OpenCL standard and the availability 

of its libraries could make load-balancing through heterogeneous computing feasible.  
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CONCLUSION 

 Using GPU as a co-computational device to the CPU, we have demonstrated that 

cross correlation based elastography can be accelerated to deliver real time performance 

at 3fps against an initial benchmark of 0.1fps, with no loss in visual or statistical image 

quality. There are limitations to parallelizing cross-correlation based elastography 

further because of the inherent data-dependency in the algorithm. Further improvement 

in speed can be obtained only with higher computation power hardware. A 4-GPU G200 

based Quadro FX 5600, executing multi-threaded version of our software, will deliver 4 

times more performance than a single GPU G80 based GeForce 8800M GTS. However, 

with cost to performance ratio being the goal, we soon hit the price wall. This leads to 

considering the heterogeneous approach of computing where CPU, GPU and other 

compute devices are allocated computational load that agree best to their underlying 

architecture, for achieving performance optimization at little extra cost. The OpenCL 

standard and the availability of its libraries can make load-balancing through 

heterogeneous computing a reality.  

 Integration of our implementation with an ultrasonic diagnostic system equipped 

with GPU hardware and testing of the software with in-vivo tissue is part of our future 

work.  
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3 BONE SURFACE ENHANCEMENT IN ULTRASOUND IMAGING USING A 

NEW DOPPLER-BASED ACQUISITION/PROCESSING METHOD 
2
 

 

INTRODUCTION 

 Ultrasound (US) imaging has been shown to be a potentially useful tool for 

orthopedic surgeries (Barratt, Penney et al. 2006) and to visualize the healing process of 

bone fractures (Li, Le et al. 2013). While US imaging has many advantages compared to 

more traditional bone imaging methods such as safety (Fayaz, Giannoudi et al. 2011) 

and lack of radiations, US bone assessment is limited by noise, presence of speckle, 

attenuation, hand-held motion and imaging-related artifacts. Unlike computed 

tomography (CT), the tissue and bone signal intensities in US images cannot be 

calibrated. In many cases, depending on the incident angle between the US beam 

propagation and a bone surface, US images of bones are heavily affected by 

reverberation artifacts. Consequently, complex signal processing and pattern recognition 

methods need to be used in bone segmentation algorithms to obtain meaningful 

quantitative analysis or for 3D ultrasonic bone reconstructions (Carson, Oughton et al. 

1977, Sehgal, Lewallen et al. 1988, Lasaygues, Ouedraogo et al. 2005, Hacihaliloglu, 

Abugharbieh et al. 2008, Laugier and Haïat 2011). These methods are computationally 

intense, slow down processing speed and often offer marginal improvement to the bone 

segmentation process.  

                                                 

2
  Reprinted with permission from "Bone surface enhancement in ultrasound images 

using a new Doppler-based acquisition/processing method " by Xu Yang, Songyuan 

Tang, Ennio Tasciotti and Raffaella Righetti. Phys Med Biol. 2018 Jan 17;63(2).  

https://www.ncbi.nlm.nih.gov/pubmed/29339568
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 The localization of a bone surface in a US image is normally characterized by 

different features such as a high shadow profile underneath the location of the soft 

tissue/bone interface and high intensity across the bone surface (Blankstein 2011). In the 

past, acoustic signal-to-noise ratio at the bone surface has been measured to be of the 

order of 10 dB (Culjat, Choi et al. 2008), depending on a number of factors including the 

properties of the US system used for data acquisition and the location of the bone. 

However, it is well known that ultrasonic bone segmentation methods based solely on 

intensity information perform poorly due to the limited contrast between the bone and 

soft tissue and the presence of other imaging artifacts (Hacihaliloglu, Abugharbieh et al. 

2008). In some applications, a priori information about the bone is used to improve bone 

localization and segmentation (Thomas, Peters et al. 1991). For example, Thomas et al. 

have discussed the possibility to segment a fetus femur using purely morphological 

operations, which requires prior knowledge of the shape of the bone anatomy (Thomas, 

Peters et al. 1991). Shape information has been exploited by using active contours for 

the crux of the segmentation process (He and Zheng 2001, Alfiansyah, Streichenberger 

et al. 2006). Fuzzy logic has also been used for bone segmentation with prior knowledge 

about the osseous interface (Vincent, Tonetti et al. 2004). Kowal et al. proposed a 

method that employs adaptive threshold of the low intensity regions coupled with 

morphological filtering to reduce noise emanating from echoes (Kowal, Amstutz et al. 

2007). The aforementioned methods are image processing techniques that operate on the 

B-mode images. Methods that use ‘raw’ ultrasonic data, also referred to as radio 

frequency (RF) data, for bone segmentation have also been developed. Xu Wen used a 
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power reflection detector to locate the bone surface and found that the location of the 

bone coincided with the maximum reflection ratio (Wen and Salcudean 2007). Another 

proposed method is based on the comparison between pre- and post-compression RF 

data and application of a rigid bone position technique (Doctor, Vondenbusch et al. 

2011). Local phase features have been recently used for bone segmentation and fracture 

detection purposes (Hacihaliloglu, Abugharbieh et al. 2008, Hacihaliloglu, Abugharbieh 

et al. 2009, Hacihaliloglu, Abugharbieh et al. 2011) and demonstrated many advantages 

over intensity-based methods. However, calculation of phase features is typically 

computationally intense. Reconstruction of a 3D volume may need segmentation of the 

bone surface in hundreds of planes (images), and the accumulated processing time can 

be significant. Ideally, US elastography (T and J 1997) should be a reliable tool to 

separate a bone surface from the surrounding soft tissue since the Young’s Modulus of 

bones can be several orders of magnitude greater than the Young’s Modulus of soft 

tissues. While strain images can be used to obtain some mechanical information about 

the soft tissue in proximity of the bone surface (Tang, Chaudhry et al. 2017), in its 

present form and without any user-input information, strain elastography alone cannot be 

used to automatically detect the exact location of a bone surface. This is due to a number 

of reasons, which include the poor reliability of the ultrasonic signal below the bone 

surface due to high attenuation and other artifacts and the presence of soft tissue 

structures generating similar strain contrast and patterns to the ones generated by the 

bones in the elastographic images (Parmar, Yang et al. 2015). While, theoretically, the 

strain contrast corresponding to the soft tissue-bone interface should be much higher 
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than the strain contrast between different soft tissue layers, in practice, the strain 

concentration pattern at the soft tissue-bone interface may not stand out significantly 

with respect to other strain concentration patterns especially in heterogeneous tissue 

environments due to contrast-transfer-efficiency (CTE) limitations (Kallel and al. 2001). 

The use of parametric elastographic techniques and/or inversion methods to generate 

maps of underlying mechanical parameters is limited by the lack of suitable, realistic and 

sufficiently complex theoretical models, which would need to consider a priori 

information about the bone and boundary conditions as well as non-linearity, anisotropy 

and various degrees of connectedness between soft tissue and bones and would require 

high computation time.   

 In this study, a novel and fully automated bone surface enhancement method for 

US is presented, tested and discussed. This method greatly increases the contrast 

between bone surface and soft tissue in a US image. Therefore, it should significantly 

facilitate the segmentation of bone surfaces, which may be performed using simpler and 

faster methods. The proposed method is based on Tissue Doppler Imaging (TDI) and 

knowledge that the mechanical and acoustic properties of bones are significantly 

different than those of soft tissues. TDI is typically used for blood flow measurements, 

but it has also been used to measure soft tissue motion (Agarwal, Gosain et al. 2012) 

such as myocardial motion (Smiseth, Stoylen et al. 2004, Gorcsan and Tanaka 2011) and 

for muscle assessment (Al Naimi, Fittschen et al. 2014). The proposed method is real-

time and does not require specialized US systems. The real-time property makes it 
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particularly suitable for 3D applications. Results obtained from ex-vivo and in-vivo 

experiments are reported and discussed. 

 

METHOD 

 When a tissue is compressed, the particles inside the tissue are displaced 

according to their mechanical properties. During compression, these particles move with 

a certain speed relative to the compressor, which, in an elastography experiment, is 

typically attached to the ultrasound transducer itself. To illustrate how these basic 

concepts can be used to enhance bone surfaces in US bone imaging applications, we use 

the schematic shown in Figure 13(a). Here, the overall tissue system is modeled as 

composed by two layers: the top layer is the soft tissue and the bottom layer is the bone. 

Before compression, the soft tissue has a thickness of h1, while the bone layer has a 

thickness of h2. After compression, the thickness of the soft tissue becomes h'1 and the 

thickness of the bone layer becomes h'2. If the total thickness of the tissue is L before 

compression (L = h1 + h2) and L' after compression (L' = h'1 + h'2), the total strain 

experienced by this bi-layer system is ϵ =  
L−L′

L
. Let us assume that the compression 

occurs in a given time interval with constant speed, and that the compression is very 

small, i.e., in the range 1%-5%, as it is typically the case for elastography applications. 

Since the bone is several orders of magnitude stiffer than the tissue, most of the applied 

compression is taken up by the soft tissue layer while the thickness of the bone layer 

does not change appreciably (i.e., h2 ~ h'2). This results in very little strain inside the 

bone. Given the fact that the relative displacement between the transducer and the tissue 
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increases monotonically with depth and that ultrasonic penetration below the bone 

surface is very small, the peak of this displacement occurs at the bone surface. In terms 

of Doppler parameters, the Doppler frequency shift generated by the soft tissue/bone 

interface is the highest - any tissue above the bone surface would cause a lower Doppler 

frequency shift during the compression. 

                                                  

 

 

                                                                  (b) 

Figure 13 Simplified schematic of a bi-layer tissue compressed from the top using an 

ultrasound probe (with a compressor attached to it) at a constant speed v. (a) Model 

before compression: the transducer is moving with speed v towards the bone surface. (b) 

Model after compression: both the thicknesses of the soft tissue layer and bone layer 

reduce, but the reduction in the thickness of the bone layer is negligible compared to the 

one of the soft tissue layer. 

 

 In comparison with other soft tissue interfaces, the soft tissue-bone interface 

would typically have a larger reflection, so that the Doppler signal generated at the soft 

tissue-bone interface would have the maximal power as well. The ultrasound incident 

angle (i.e., the angle between the ultrasound beam propagation and the bone surface) 

usually depends on the compression direction (since the transducer itself is typically 

used to compress the tissue). When the tissue is subjected to uni-axial compression, the 
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incident angle is close to 90 degrees (Figure 13), and, since the motion of the particles in 

proximity of the bone surface is predominantly along the axis of compression, the 

Doppler angle between the direction of the particle motion and the axis of compression 

is close to zero degrees. In our technique, we use Power Doppler, so the angle 

information is not needed for the estimation of the Doppler frequency shift. Note that, 

unlike elastography that depends on signal penetration, the Doppler signals used in our 

model mainly relate to the reflection occurring at the soft tissue-bone interface. 

Therefore, these Doppler signals can, in theory, be generated more reliably than 

elasticity information using RF signals in the vicinity of the bone surface.  

 Figure 14 shows a schematic of the acquisition/processing scheme used in our 

model to extract the Doppler shift occurring at the soft tissue/bone interface. The 

transducer is used both to compress the tissue (1%-5% strain (T and J 1997) and to 

acquire the RF data. The RF data are acquired while the transducer is moved towards the 

bone surface at a constant speed vt. From the acquired RF data, displacement estimation 

is first performed using cross-correlation between two Color RF frames. This is used to 

find the maximum displacement in each A-line. As previously mentioned, the maximum 

displacement theoretically occurs at the soft tissue/bone interface. The central frequency 

of the Doppler signal generated by the relative motion between the transducer and the 

bone interface during the compression is given by f1 =  2
vt

vc
f0, where vc is the speed of 

sound in the tissue and f0 is the central frequency of the transmitting pulse. Second, a 

phase-based mean frequency estimator is applied to the RF data (Jensen 1996). A band-

pass filter centered at f1 is then applied to the I/Q decomposed RF signals to eliminate 
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the Doppler signals generated from the soft tissue’s structures and any reverberation 

artifact. The filtered signals (output of the band-pass filter) are then used to produce a 

Power Doppler image using autocorrelation-based methods (Kasai, Namekawa et al. 

1985). Using the autocorrelation estimator (Namekawa, Kasai et al. 1983, Kasai, 

Namekawa et al. 1985), we can get the signal power, mean frequency of Doppler 

spectrum and bandwidth of Doppler spectrum. The signal power information is used to 

form the Power Doppler images used in this paper. 

 Based on the proposed model, the bone surface in the output image should be 

greatly enhanced in the Power Doppler image with respect to the original B-mode 

image, and this should facilitate bone surface segmentation.  

 

 

 

 

Figure 14. Signal processing procedure to obtain enhanced bone images using the 

proposed Doppler-based technique. 
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Experiments 

 Ex-vivo and in-vivo experiments were used to test the performance of the 

proposed method. Experiments were performed using a Sonix RP diagnostic ultrasound 

imaging system (Ultrasonix Medical Corp., Richmond, BC, Canada). Data were 

acquired with a 38-mm linear array transducer with 128 elements, 5 to 14 MHz 

bandwidth, 50% fractional bandwidth at -6dB, and 1mm beamwidth at the focus. The 

center frequency was set at 5-10 MHz, depending on the experiment, as detailed below. 

For Doppler data acquisition, pulse repetition frequency was 1428 Hz and sampling 

frequency was 20MHz. For the displacement estimation, we used a window size of 40 

samples with an overlapping size of 4 samples. Each RF data package had 12 

observations in time. These settings allowed us to obtain Doppler images with a 

theoretical axial resolution of approximately 1.5mm. In all samples tested in this paper, 

the upper bone surface (i.e., the surface closer to the transducer) was located at a depth 

of few cm (in all cases, < 2.5 cm). No signal could be reliably detected below the upper 

bone surface. A single focal zone was set at the location of the upper bone surface in the 

B-mode image prior data acquisition. The time gain compensation (TGC) was not used 

in our experiments.  

Phantom experiments 

 Controlled phantom experiments were performed to test the sensitivity of the 

proposed technique. In these experiments, PVC pipes (1/2 inch × 1 inch) were embedded 

into gelatin blocks, fabricated as reported by Kallel et al. (Kallel and al. 2001). Each 

sample was then positioned in a controlled compression frame. A picture of the 
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compression frame used for the experiments is shown in Fig. 15. Due to the compression 

frame, the transducer motion was confined along the axis of compression. Three 

different transducer speeds were achieved: 1cm/s, 2cm/s and 3cm/s. In all cases, RF data 

were acquired during the compression. In this experiment, the transducer was moved for 

0.1 second axially using each speed setting. Color RF data were acquired during the 

compression to calculate the Power Doppler image as explained in the previous section. 

 

Figure 15 A picture of the setup used for the experiments. 

 

Ex-vivo experiments 

 Ex vivo experiments were conducted on 3 chicken leg samples and 2 sheep leg 

samples, in all cases with intact soft tissue. The chicken samples were embedded into 

gelatin cases to assure stability during compression. The sheep leg samples, instead, 

were not embedded into gelatin cases (due to their dimensions). RF data were acquired 

both using the same compression apparatus used for the phantom experiments and in 

freehand mode. The freehand experiments were performed in preparation for the in vivo 

experiments, where the compression apparatus could not be used. The samples were 
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scanned at different locations both with the transducer parallel to the bone axis and with 

the transducer perpendicular to the bone axis. 

In-vivo experiments 

 In-vivo experiments were performed on sheep legs to investigate the feasibility 

of the proposed method in more realistic noise conditions. Specifically, in living tissues, 

blood flow and wall movements could, in principle, affect the performance of the 

proposed method. The lower legs of two adult sheep were scanned for these 

experiments. The sheep samples were obtained from the Texas A&M Institute for 

Preclinical Studies (TIPS). This study was approved by the Texas A&M University 

Institutional Animal Care and Use Committee (IACUC) (ARO #60598-MS-DRP, Award 

W911NF-11-1-0266). In one case, the tibia was intact; in the other case, the tibia was 

fractured. Signals were acquired from anesthetized animals, in free-hand compression 

mode. Different locations of the sheep legs were imaged both with the transducer 

parallel to the bone axis and perpendicular to the bone axis. More details regarding the 

in-vivo experiment protocol can be found in Parmar et al (Parmar, Yang et al. 2015). 

Statistical Analysis  

 For 40 in-vitro and in-vivo data acquisitions, we compared the local peak 

intensity contrast for each A-line (in each image) between the envelope of RF data (i.e., 

B-mode) and Power Doppler data. In general, local maxima are generated at the 

interface between different tissue layers due to reflection. While the bone-tissue 

interface should generate a peak in both the B-mode and Power Doppler data, additional 

tissue-tissue interfaces (such as soft tissue/connective tissue, etc.) can generate peaks of 
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intensity comparable to the ones generated by the bone-tissue interface in the B-mode 

data. The peaks generated by tissue-tissue interfaces can create false positives in bone 

segmentation, which is one of the reasons why a simple intensity thresholding method, 

in general, does not perform well in ultrasonic bone segmentation problems. Generally 

speaking, a “good” enhancement method (prior to bone segmentation) should reduce the 

probability of false positives, which in most cases are generated by tissue-tissue 

interfaces. To evaluate if the use of the proposed Power Doppler method would indeed 

help reducing the presence of false positives caused by tissue-tissue interfaces, we 

defined the following metric: 

SNR =
1

N
∑

Pi

Pavg
i

N
i=1   (1) 

 where P is the local peak pixel intensity value in each column of the image’s 

original RF data, Pavg is the average peak value except the maximum peak and N is the 

number of A-lines (columns) in an image. This metric represents the ratio between the 

maximum local peak intensity and the average of other local peak intensities, and, for 

our specific application, it is indicative of the signal-to-noise ratio. This metric was 

computed for both the B-mode and the Power Doppler signals. In reference to the B-

mode signal, this metric shows the contrast between the highest echogenic tissue 

interface and the average among other interfaces. In reference to the Power Doppler 

signal, it shows the ratio of the signals from the interface between materials with the 

highest acoustic and mechanical property contrast to those from other interfaces.  
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 To illustrate how this parameter is computed, we can use the simulated 

ultrasound signal in Fig. 16. In this specific example, the signal shows 3 local peaks, 

with P2 being the highest. Therefore, for this specific signal, the SNR = P2/[(P1+P3)/2]. 

 

 

Figure 16 Simulated ultrasound signal from one A-line, used to illustrate how the SNR 

is computed in our application.   

 

RESULTS 

Phantom experiments 

 Figure 17 shows selected Power Doppler results from the controlled phantom 

experiments. These results were obtained with the transducer moving at speed: (a) 1cm/s 

(b) 2cm/s (c) 3cm/s. The only purpose of these controlled experiments is to verify the 

sensitivity of the proposed method to speed detection. It can be observed that Power 

Doppler can be used to detect the gelatin-PVC interface in all cases. In addition, the 

contrast-to-noise ratio between gelatin/PVC in the Doppler images increases when the 

compression speed increases. These results are consistent both when the compressor 

apparatus was used and in freehand mode.  
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(a)                                                  (b)                                          (c) 

 Figure 17 Power Doppler images created using different surface-transducer relative 

speeds and the same scale: (a) 1cm/s (b) 2cm/s (c) 3cm/s.  

 

Controlled in vitro experiments 

 Figure 18 shows examples of bone enhancement obtained from a chicken leg 

embedded into gelatin (figures 18a and 18b) and an ex–vivo sheep leg (figures 18c and 

18d) both in freehand compression conditions. In both cases, the samples were scanned 

with the transducer perpendicular to the axis of the bone. Figure 18a shows the B-mode 

image obtained from the chicken leg. The bone surface appears in the B-mode image as 

an upside-down “U” (Blankstein 2011), with intensity somewhat higher than in the soft 

tissue. In this image, both the tibia and the fibula are visible (white arrows). Note, 

however, that other soft tissue structures (yellow arrow, on the left side) may appear to 

have similar intensity as the bone surface. This is because the soft tissue layer itself may 

also be inhomogeneous (there is fat, connective tissue, muscle, etc.). At the various 

tissue interfaces, ultrasound reflection is generated due to the mismatch of acoustic 

impedance and can show up as a locally high intensity peak in the B-mode image. In 

some cases, these local peaks can be as high as the peak from the soft tissue/bone 

interface. The presence of such soft tissue structures typically causes inaccuracy in 
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intensity-based bone segmentation methods. Figure 18b shows the corresponding Power 

Doppler image obtained using the proposed technique. In this image, the bone surfaces 

of both the tibia and fibula are enhanced (white arrows) and have significantly higher 

intensity than the connective tissue (yellow arrow).  

 

 

 
 

Figure 18 Selected in-vitro experimental results. Top panel refers to a chicken sample, 

while bottom panel refers to a sheep leg. In both cases both the B-mode image and the 

corresponding Power Doppler image are shown.  

    

 Figure 18c and 18d refer to data acquired from the sheep leg. In general, these 

images are significantly noisier than the chicken ones. This is presumably due to the 

geometry of the limb and the fact that the soft tissue has intensity comparable to that at 
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the soft tissue/bone interface. Consequently, bone surface detection is challenging in 

both the B-mode and the Power Doppler images. However, the contrast between soft 

tissue/bone interface and surrounding soft tissue is shown to be improved after the 

Doppler processing. Note also that the high intensity soft tissue structures are greatly 

reduced in the Power Doppler images (yellow arrows in 6c and 6d). 

In vivo experiments  

 Figure 19 shows a set of results obtained from an intact adult sheep tibia in vivo. 

Figure 17a shows the B-mode image and Figure 19b shows the corresponding Power 

Doppler image. For these images, data were acquired with the transducer parallel to the 

bone axis. While the bone surface is clearly visible in the B-mode image (white arrow), 

portions of the soft tissue above the bone surface appears to have comparable intensity to 

that at the bone-soft tissue interface. In contrast, the signals from the soft tissue are 

shown to be significantly lower than the signal generated by the bone surface in the 

Power Doppler image (Figure 19b).   

 

 Figure 19  Selected results obtained from an intact adult sheep tibia in vivo.  
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 Figure 20 shows another set of data obtained from the in vivo sheep study. 

Similarly to the previous case, the transducer was oriented parallel to the bone axis. The 

bone surface enhancement is clear in the Power Doppler image throughout the upper 

bone surface (yellow arrow in 20b). A measure of the SNR (dB) computed as explained 

previously is also reported. The SNR values associated with the Doppler images are 

significantly higher than those obtained from the B-mode images. Note that the multi-

reflection artifact below the bone surface (white arrows in 20a and 20b) is reduced on 

the Power Doppler image.  

 

(a) B mode image (b) Power Doppler Image (c) SNR(dB) on each A-line 

 Figure 20 Selected results obtained from an intact adult sheep tibia in vivo.  

 

 The set of images shown in Figure 21 refers to a case where a tibia fracture was 

visible. Figure 21a shows the B-mode image. The fracture can be clearly localized in this 

image, but, as for the intact case, large portions of the soft tissue present with intensity 

comparable to that of the bone surface. Figure 21b shows the corresponding Power 

Doppler image. The soft tissue signals are almost entirely suppressed in this image. 

Figure 21c shows the Color Doppler Image, which is used here to evaluate the blood and 
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soft tissue wall movements’ influence on the frequency shift. The Color Doppler image 

appears to indicate the presence of a blood vessel, but note that the bone surface is not 

visible in the Color Doppler image. This is because blood speed is higher than freehand 

compression speed, and therefore signals from the bone surface are filtered out by the 

filter used to generate the Color Doppler images. By comparing figures 21b and 19c, the 

Power Doppler signal intensity generated by the soft tissue/bone interface is 1-2 

magnitudes higher than the Power Doppler signal intensity generated by the blood 

velocity. This is because the intensity associated to the bone surface can be orders of 

magnitude higher than the intensity generated by blood cell scattering. Note also that 

Doppler signals associated to vessel walls don’t show up in figure 21b. This is because 

vessel wall motion usually creates Doppler signals at 50-100Hz (Kruskal, Newman et al. 

May 2004), and the band-pass filter applied in the proposed bone method had a highest 

cut-off frequency of 45 Hz. This demonstrates that Doppler signals from bone and blood 

manifest at different frequencies and can be separated in different Doppler images. 

 

 (a) B-mode Image                  (b) Power Doppler Image            (c) Color Doppler Image 

 Figure 21 Images from adult sheep II tibia with fracture in vivo.  
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  (a) 

 

  (b) 

 Figure 22 Comparison of normalized B-mode and Doppler signals obtained from 

columns of the image shown in Figures 19a (dotted lines) and 19b (solid lines). 

  

 Figure 22 shows two examples of normalized signal axial profiles obtained from 

the B-mode image’s original RF envelope (dotted lines) shown in figure 21a and the 

Power Doppler image’s original RF envelope (solid lines) shown in figure 21b. In the B-
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mode data, the soft tissue has an echo intensity comparable to that of the bone surface. In 

contrast, the Power Doppler signals corresponding to the bone surface are significantly 

higher than those associated to the soft tissue in both cases. The SNR associated to the 

Power Doppler signal was found to be statistically significantly higher when compared 

to the one obtained from the B-mode one. 

Statistical Analysis 

 For 40 in vitro and in vivo data acquisitions, we compared the SNR for each 

column (in each image) both for the B-mode and Power Doppler data. The results of our 

statistical analysis are shown in Figure 23. Our data show that the presence of a bone 

surface (which is typically highly reflective and harder than the surrounding tissue) 

would generate an increase in the SNR of the Power Doppler signal (1172.9) 

approximately 14.5 times higher with respect to the B-mode case (80.5). 

 

 Figure 23 SNR Results: left column shows average contrast at 80.5 (+56.5,-28.5) for 

regular B-mode data; right column shows average contrast at 1172.9 (+1397.0,-191.5) 

for Power Doppler data.  
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DISCUSSION 

 In this paper, we have proposed and investigated the use of a novel bone 

enhancement method, which is based on the use of Power Doppler imaging and 

elasticity imaging concepts. Inspired by elastography, this method takes advantage of the 

bone’s mechanical and acoustical characteristics, which are significantly different than 

those of soft tissues. The method was tested in a variety of experimental conditions. In 

all in vitro and in vivo cases analyzed for this study, the application of the proposed 

method allowed to enhance the bone surface in ultrasonic images and reduce the signal 

generated by the surrounding tissue.  

 To better understand the idea at the basis of the proposed method, we need to 

consider the following. In general, the presence of high reflective tissue is greatly 

reduced in Power Doppler images of bones because its average Doppler frequency is 

lower than that corresponding to bone surfaces. Typically, if we indicate with ∆f the 

Doppler frequency shift, we would expect  ∆fsoft tissue <  ∆fconnective tissue <

∆fbone surface < ∆fvessel wall < ∆fblood. The difference in Doppler frequencies between 

connective tissue and bone surface depends on the thickness of the tissue, the depth of 

the tissue and difference in the mechanical properties between soft tissue and connective 

tissue. Thus, by properly selecting the frequency limits of the band-pass filter, signals 

not associated with the bone surface can be reduced or eliminated. Additionally, the 

proposed method is expected to reduce the effect of multiple reflections from the soft 

tissue/transducer interface or the soft tissue/bone interface. In US imaging, multiple 

reflections typically arise in non-homogeneous materials when the thickness of a layer is 
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larger than the ultrasonic wavelength, and there is a large acoustic impedance mismatch 

between the tissue layer and the background (Zheng, Le et al. 2007). Since the cortical 

bone thickness is larger than the ultrasonic wavelength and has a significant different 

acoustic impedance with respect to the surrounding soft tissue, imaging artifacts caused 

by multiple reflections are very common in US bone imaging and have become a major 

source of noise for bone reconstruction methods. The performance of bone segmentation 

methods based on RF or B-mode intensity can be greatly affected by such artifacts 

because, in many cases, the intensity of the artifacts can be comparable to the intensity 

of the actual bone surface. In our method, these artifacts can be filtered out because they 

would have a different (higher) Doppler shift than the one associated to the bone surface.  

The success of the proposed method depends on several factors. One is the 

synchronization between the RF signal acquisition and the compression. If the relative 

compression speed is not constant during acquisition, this could introduce noise in the 

Doppler estimation. This is because we have implemented a fixed frequency filter to 

extract the signal. When the compression speed matches the filter frequency, the contrast 

is greatly enhanced.  This contrast enhancement is reduced when the speed and filter 

frequency do not match. In the future, the result can be improved by adaptively choosing 

cut-off frequencies for each line in the image if freehand compression doesn't have a 

constant velocity during each acquisition. 

 Based on the results reported in this paper, the Power Doppler method proposed 

for bone enhancement does not seem to be affected by the presence of blood flow, 

despite the fact that the velocity of blood in major blood vessels is much higher than the 
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transducer’s compression speed. This is because the signal intensities from bone surface 

and blood cells are typically very different, which is the dominant factor over the 

velocity. In fact, Rayleigh scattering signals generated by red blood cells are very weak 

compared to strong reflective signals generated by bone surfaces. As for small vessels, 

the difference in relative speed itself can also be low. 

 The intensity of the Doppler signals generated by blood vessel wall motion is 

stronger than the intensity of the Doppler signals generated by blood motion. However, 

it is still not comparable to the signal intensity at the soft tissue-bone interface. In 

addition, common wall filters used to remove blood vessel signals operate between 50Hz 

and 100Hz (Rubens, Bhatt et al. Jan. 2006). In our study, we found that the band-pass 

filter has typically a cut-off frequency of 15-20Hz. Thus, this filter would eliminate most 

of the signals generated by the vessel wall motion and blood motion. In our experiments, 

vessel wall motion did not affect the Power Doppler bone images after the application of 

the low-pass filter unless the transducer was parallel to the blood vessel.  

 Power Doppler images are typically more sensitive to the flash artifact than 

Color Doppler images (Bude and Rubin 1996).  In our experiments, the flash artifact was 

not observed or not visibly comparable to the Power Doppler signals generated by tissue 

interfaces. This may be due to the fact that our method focuses on signals from tissue 

interfaces where reflection is the dominating effect. While transducer motion can 

generate signals from tissue scattering, the intensity of scattered US signals is typically 

not comparable to the intensity of reflected US signals. In our experiments, we 

concentrated only on motion directions perpendicular to the bone surface. In the future, 
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the presence and effect of flash artifacts when imaging complex bone geometries may 

need to be evaluated. Aliasing is another common Doppler artifact, but it does not affect 

Power Doppler. So, in our experiments, we did not need to adjust the pulse repetition 

frequency to the different transducer compression speeds. 

 In our proposed method, we have used quasi-static elastography in multi-

compression mode to compute the displacements and determine the frequency cut-off of 

the band-pass filter. In principle, other elastographic techniques could be used for this 

purpose. Some advantages of quasi-static elastography include that it is real-time and 

that it does not require the use of complex theoretical models. It should be noted, 

however, that the proposed method differs significantly from established elastography 

techniques, which are typically optimized for soft tissue imaging. No standard 

elastography method has proven to be suitable for automatic bone detection yet. Our 

proposed method is optimized to detect the bone surface and reduce the soft tissue 

information. This is in complete contrast to current standard elastography methods. As a 

result, the generated bone image is stable and the location of the bone is relatively easy 

to identify.  

 In some of the Power Doppler images collected in this study, the spatial 

resolution appears to be reduced with respect to the corresponding B-mode images 

presumably due to the filtering introduced during the Doppler estimation. Nevertheless, 

in the future, bone surface segmentation may be improved by combining the information 

from both the B-mode and Doppler images, where the Doppler image could be used to 
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automatically detect the location of the bone, while the actual bone segmentation could 

be performed on the B-mode image at that location to preserve resolution.  

 Perhaps, the major advantages of the method reported in this study are its relative 

simplicity and the limited overall computational cost since all processing steps can be 

performed in real-time on commercial US imaging systems. When used in conjunction 

with a bone segmentation technique, the proposed method has the potentials to 

significantly reduce the overall complexity of the bone segmentation process and 

improve its performance. 

  

CONCLUSION 

 In this paper, a US bone enhancement method is proposed. This method is 

designed to work robustly for in-vivo freehand scans, and it is based on the fundamental 

concept that bones have distinct mechanical and acoustic properties with respect to soft 

tissue. The method was tested both in ex vivo and in vivo experiments. Based on the 

results presented in this paper, the availability of the proposed Power Doppler-based 

technique could improve ultrasound bone surface detection and enable fast volume data 

processing for 3D reconstructions. 
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4 BONE SURFACE SEGMENTATION FOR FREE HAND ULTRASOUND IMAGE 

BASED ON STATISTICAL SHAPE MODEL 

 

INTRODUCTION 

 Bone fracture assessment using ultrasound imaging techniques has received 

increasing attention recently for a num- ber of reasons, including the potentials of these 

techniques to be used in intra-operative scenarios (Beek, Abolmaesumi et al. 2008) and 

to non-invasively and safely monitor bony healing(Ricciardi, Perissinotto et al. 1993) (Li, 

Le et al. 2013) (Chen, Lin et al. 2014). Since ultrasound imaging modalities are non- 

ionizing, their application to monitor bone growth in children has also been actively 

investigated in the past few years (Chen, Kim et al. 2007, Poonai, Myslik et al. 2017). 

However, bone segmentation and reconstruction from ultrasound images can be affected 

by low image quality due to the presence of speckle, imaging and motion-related 

artifacts generated during free-hand scans. Therefore, robust bone image enhancement 

and segmentation methods must be used to achieve acceptable image quality. 

 The location of a bone in an ultrasound image is normally characterized by 

different features. Two of these features are a high shadow profile underneath the 

location of the bone and high intensity across the bone surface,  which have been 

successfully used in a spine surface detection method recently proposed by our group. 

Other priori information about the bone can also be used collaboratively. For example, 

Thomas et al. has discussed the possibility to segment a fetus femur using purely 

morphological operations assuming a priori knowledge about the shape of the bone 
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anatomy (Thomas, Peters et al. 1991). Bone shape information has also been exploited to 

utilize active contours for the crux of the segmentation process (He and Zheng 2001, 

Alfiansyah, Streichenberger et al. 2006). Hacihaliloglu et al. have proposed bone surface 

localization and registration methods using a local phase tensor and statistical shape 

models(Hacihaliloglu, Abugharbieh et al. 2009, Hacihaliloglu, Abugharbieh et al. 2011, 

Hacihaliloglu, Rasoulian et al. 2014). However, given the irregular shape and complex 

structure of bone fractures, assumptions about bone surface shape may be difficult to 

make. Connective tissue or other soft tissue structures may manifest in the upper and 

lower limb sonograms with similar intensity as those at the bone surface, which can 

create ambiguity in pattern classification. Aside from feature selection, another 

challenge in bone segmentation in ultrasound lies in the free hand nature of the in vivo 

experiment, which usually results in  images with relatively lower quality. This fact 

manifests itself in the following several aspects. First, the distinctive shadow pattern 

beneath the bone surface becomes not clear. Second, uncontrolled motion of the 

transducer can be a source of refraction artifacts and can affect the acquisition of aligned 

parallel frames necessary for 3D reconstructions. Third, 3D shape model-based methods 

used in other medical imaging segmentation applications (such as magnetic resonance 

imaging) become not applicable in ultrasound imaging because ultrasound usually 

doesn’t give slice position information. Fourth, because of undesired transducer motion, 

the bone surface shape change necessitates of more information to accurately describe 

shape variations. Iterative shape model-based methods may be a solution to some of the 

aforementioned problems but suffer from high computation cost(Cootes, Taylor et al. 
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1995, Zheng, Barbu et al. 2008), which is a reason why methods such as marginal space  

learning have been developed (Zheng, Barbu et al. 2008, Kelm, Wels et al. 2013). In 

ultrasound imaging, however, processing speed is an important factor especially when 

dealing with intra- operative or other clinical applications. In this study, we propose a 

machine learning-based method that coordinates both intensity information and 

statistical shape model to segment bone surfaces in ultrasound images. This method 

allows to achieve fast processing and high accuracy. 

METHOD 

 In the proposed segmentation technique, we first use phase symmetry-based 

methods to extract bone surface candidates (Hacihaliloglu, Abugharbieh et al. 2009, 

Shajudeen and Righetti 2017). By 'candidate', we mean possible areas where bone 

surface exists. The candidates are manually labeled to create a database of bone surface 

shapes. Then a statistical shape model is extracted from the database. This model can be 

used to score each segmentation candidate's possibility of being a bone surface. This 

score along with shadow intensity and size information is combined as a feature vector 

to describe each segmentation candidate. These features can be used to train a classifier, 

which can supervise the segmentation process in other ultrasound images (applicable to 

stacks of images for 3D bone reconstruction). 

 Pre-processing 

  In this step, we use a phase symmetry-based method to extract high intensity 

profiles in the ultrasound image. These extracted regions, usually with the axial 

thickness of one single pixel size, are bone segmentation candidates. 
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To enhance the bone surface contrast and decrease the intensity of non-bone surface 

tissues, we create a shadow value image (Shajudeen and Righetti 2017)which is tailored 

to the long bone segmentation application. Its intensity value for each pixel represents 

the average image intensity among a vertical line segment of a fixed length below that 

pixel in the original image. In the shadow value image, the region underneath the 

hyperechoic bone surface is typically hypoechoic since sound waves are mostly reflected 

by the bone surface and also highly attenuated inside the bone. While across the soft 

tissue its intensity tends to be in general higher due to significant echogenicity. The pixel 

intensity in the region close to the bone surface, on the other hand, is very sensitive to 

the selection of the line segment length parameter used for the local averaging. The pixel 

value of each component in the mask is calculated as:           

SH(x, y) =
1

N
∑ I(x + i, y)k+N

i=k  (1) 

 where SH(x,y) is termed as the shadow value of a pixel at row x and scan line y. 

N is the depth of the shadow and k is set to be the thickness of bone surface in the image 

to get optimal performance. I(x, y) represents the pixel intensity at location (x,y) in the 

original image. The new image obtained by subtracting the mask image from the original 

image is referred to as the ``shadow-enhanced'' (SE) image. 

 Subsequently, a common blob detection method based on the Laplacian of 

Gaussian is used to extract the bright part of the SE image. This is done by convolving 

an image with the Gaussian kernel given below to smooth the image and desensitize it to 

noise: 
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g(x, y, t) =
1

2πt2
e

−
x2+y2

2t2   (2) 

 where t is a scaling constant. Then the Laplacian of the smoothed image is 

calculated to highlight discontinuities in the intensities in the image. In the resulting 

Laplacian of Gaussian image, strong negative values correspond to high intensity areas 

in the original image, which have a high probability of being parts of the bone surface. 

To regularize the image, the positive values are set to zero while the negative values' 

signs are reversed (Foroughi, Boctor∗ et al. 2007).    

 The intensity-based Laplacian of Gaussian image highlights the bright areas in 

the image. However, it may not maintain the original shape of the bright blob and is 

sensitive to non-uniform intensities along the bone surface, which are quite common in 

free hand scans. According to Kovesi (Kovesi 1997), the phase symmetry can be used to 

recognize various regions of interest in natural objects, and this information is used in 

our algorithm to complement the Laplacian of Gaussian image. The phase symmetry is 

computed as: 

Sym(x) =  
∑ [[|en(x)|−|on(x)|] − T]n

∑ An(x) + εn
 (3) 

en(x) and on(x) are even symmetry component and odd symmetry component at scale n. 

In this paper, the two symmetry components are calculated by convolving the SE image 

with even- and odd-symmetric wavelets at scale n. 

[en(x), on(x)] = [I(x) ∗ Mn
e , I(x) ∗ Mn

o] (4) 

 An(x) is the amplitude of the transform defined in equation 4. The phase symmetry 

technique is widely used in feature extraction as it provides mirror symmetry, rotation 
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symmetry and curve symmetry at the same time (Shajudeen and Righetti 2017). It 

extracts image features using phase information and, therefore, is more robust to 

intensity-based methods. Specific to speckle in ultrasound images, however, there is 

always a certain degree of local symmetry in the tissue and shadow areas. As a 

consequence, there will also be some remnants in the phase symmetry image from 

regions that are not bone surface. Since it extracts bone surface steadily and preserves its 

shape, phase symmetry is used in complement with the Laplacian of Gaussian image to 

bring the pre-processing step to a conclusion. A summary of the overall preprocessing 

steps is provided in:     

 

 
Figure 24 Steps for image preprocessing. 

 

 In Figure. 24, it is clear that the average intensity of surrounding tissues is 

successfully diminished in the SE image. In the phase symmetry image of SE, the bone 

surface is extracted. However, there is still unwanted symmetry information especially in 
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the soft tissue area. In LoG of SE, on the other hand, the bone surface is quite blurred 

and its contour is distorted from the original shape due to non-uniformity illumination 

along the bone surface. We note that the combination of the two methods removes most 

normal intensity tissue but keeps most high-intensity bone surface candidates. Hence, the 

pre-processed image is ready for further segmentation operations.  

 

Figure 25 Illustration of complete segment steps. 
  

Create Segmentation Candidates and shape model 

 The image after the pre-processing is transformed to black and white, and 

morphological thin operation is used to obtain segmentation candidates, which contains 

mainly the bone surface and connective tissue interfaces. In addition, bone fracture and 

some high intensity artifacts may also exist in the current image. 

 Segmentation candidates are drawn from the candidate library with each 

connected component manually labeled as the bone surface or otherwise. When a bone 
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surface is marked, the shape is resampled using 10 points evenly spaced along the 

horizontal direction by linear interpolation, and then its size is rescaled to normalize the 

horizontal coordinate range. In this way, variability in the horizontal coordinates is 

completely controlled for, and, as a result, only the 10 vertical coordinates for each 

surface candidate are used to represent the shape. The mean shape can be produced by 

averaging the entire swarm of regularized shapes, and the deviations of each shape from 

the mean shape are combined to construct the sampled covariance matrix. By performing 

Principal Component Analysis (PCA) we can describe a curve by: 

S ≈  S̃  = A(S̅  +  Pb ) (5) 

where S =  (x1, x2 … x10), with each component being one of the resampled vertical 

coordinates, A is a size factor used to restore the original scale of the bone, S̅ is the mean 

shape,  P =  (p1|p2 … | pn) contains n eigenvectors of the difference matrix, and b is a 

t-dimensional vector defined by   

b =  PT(S − S̅) (6) 

 For free-hand ultrasound scans, the bone shape exhibits a lot of variations due to 

the different incident angles and positions. For one type of imaging target, we create a 

shape model so that 90% energy. For magnetic resonance or computed tomography 

images, 3 to 4 eigenvectors could produce a P matrix that contains 90% of energy, but 

for free-hand ultrasound scans, more eigenvectors need to be used because of more 

variations caused by imaging position difference. In this case, feature vector will have 

higher dimensions which can increase computation cost dramatically. To reduce the 

feature vector dimension, we can use the statistical model to fit a candidate's natural 
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shape and give a score for the shape match possibility, indicative of the likelihood that 

one shape can be represented by the model. The score is calculated by the normalized 

Mean Square Error (MSE) of S and S̃: 

P =  
1

10
∑  

(xi−  x̃i)2

xi
2

          10
1  (7) 

Intensity and Shape Features 

 For each bone surface segmentation candidate, we extract a set of local features 

from the points defining the surface based on intensity, shadow and shape features. A 

major reason for choosing these features is to make sure that the classifier can be robust 

to different bone surface conditions (i.e., intact or fractured). The intensity- and shadow-

based features can help determine small bone pieces, and shape-based features can 

improve bone surface segmentation accuracy, especially by ruling out connective tissues. 

The pooled features are: the average intensity of the sampled segmentation points, the 

average shadow intensity and its standard deviation, the width and height of the 

segmented hyperechoic regions, shape match possibility and size factor. These features 

are combined and used for Support Vector Machine (SVM) (Cortes and Vapnik 

1995)training. We use sigmoid kernel for SVM and perform parameter grid search to 

find the best parameters for each classifier  (Claesen and Moor 2015). 

Experimental testing 

 Controlled ex-vivo and in-vivo experiments were used to assess the performance 

of the proposed technique. All experiments were performed using a Sonix RP diagnostic 

ultrasound imaging system (Ultrasonix Medical Corp., Richmond, BC, Canada), which 

has been described previously (Parmar, Yang et al. 2015, Shajudeen and Righetti 2017). 
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Images were acquired with the center frequency set to 10 MHz or 6.6 MHz depending 

on the depth of the samples. 

Controlled experiment 

 For the controlled experiments, we used data previously obtained from samples 

with controlled defects. The overall procedure about the samples and how to obtain the 

controlled defects has been described previously(Parmar, Longsine et al. 2010). Since in 

these samples the size of the defects was known from the optical measurements, these 

experimental data could be used to assess the accuracy of the proposed segmentation 

method. 

Ex-vivo experiment 

 Ex vivo data were used to validate the proposed method in realistic but more 

controlled scenarios than in in vivo experiments. Ultrasound data were acquired from the 

tibia in the lower limb of sheep animals using the system with a center frequency of 10 

MHz or 6.6 MHz depending on the depth. Ten sheep tibia experiments were performed. 

Two-three data sets were acquired from the same leg at different locations. During the 

acquisition, the transducer was moved free-hand along the direction of the tibia long axis 

with the imaging plane perpendicular to the bone axis (as typically required by 3D 

reconstructions). Each volume scan took 2 to 4 seconds, covered a distance of 4-10 cm 

and contained 100-300 frames. The angle between bone surface and axis of 

insonification and the transducer-specimen contact varied during the free-hand scan. The 

presence of connective tissue and soft tissue hetero-geneity generated a number of 

hyperechoic regions in these images in more superficial areas than the bone surface. 
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In-vivo experiment 

 In vivo data were collected from 7 live sheep tibias (intact) in free hand mode. In 

vivo data acquisition was approved by the Houston Methodist Research Institute, 

Institutional Animal Care and Use Committee (IACUC)  (ARO #60598-MS-DRP, 

Award W911NF-11-1-0266). The same scan protocol was used as in ex vivo 

experiments. The acquisition depth was set to 4cm, and three focal zones were set with 

the bone surface situated approximately in the center. B-mode images were saved as 

AVI videos and then individually extracted for segmentation purposes. 

Performance Analysis 

 The accuracy of the proposed segmentation method was assessed in terms of the 

pixel error. The average pixel error is defined as the average difference between 

locations of the segmentation curve and manual delineation curve on the same A-line: 

𝐸 =
1

𝑁
∑‖𝑥𝑖 − 𝑥𝑖

′‖, (8) 

 where N is the A-line number while 𝑥𝑖 and 𝑥𝑖
′ are the locations of the auto-

segmented bone curve and manually segmented bone curve on the i
th

 column of the 

image. To calculate the average pixel error, 205 images were randomly selected from the 

image set and manually delineated by an independent ultrasound expert by following the 

procedures in Foroughi et al. Foroughi et al. (2007). About 70% of the selected images 

were used for modeling and training while auto-segmentation was applied to the other 

30%. The auto-segmentation results were then compared to the ones obtained by the 

ultrasound expert to calculate the error. The number of false positive and false negative 

was also evaluated as delineated in Shajudeen and Righetti (2017). 
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RESULTS 

Segmentation of Bone Surfaces from Ex Vivo Samples 

 The goal of the ex vivo study is to test the performance of the proposed 

segmentation method in B-mode images with varying image quality but in conditions 

more controllable by the operator than in in vivo experiments. We note that the signal to 

noise ratio (SNR) and contrast in these sheep animal data is generally low presumably 

due to ultrasonic attenuation Parmar et al. (2010). In Figure 3 of this section, we report 

selected representative ex vivo results from the sheep animal data. 

 

Figure 26 Segmentation results of ex-vivo experiments 
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 In the B-mode images (first column of Figure 3), skin, subcutaneous tissue, 

muscle and bone are visible. After the segmentation (third column of Figure 3), only the 

bone surface is extracted, and the boundary between the subcutaneous tissue and muscle, 

which has similar intensity to that of the boundary of the bone surface, is not present in 

general. Note that in the second row of Figure 3, the connective tissue above the bone 

has higher intensity than the bone surface in the original B-mode image. In the 

segmented image, however, it is not present as the algorithm correctly identifies it as a 

non-bone surface. From these preliminary results, it appears that the proposed method 

can differentiate high intensity connective tissues from high intensity bone surfaces, 

which is a major source of false positives in ultrasonic bone segmentation applications. 

Also, the method still performs well even when the shadow area underneath the bone 

surface may not be clearly defined. These experiments also demonstrate that the method 

can be used in free-hand ultrasound scan mode, which typically results in limited image 

quality due to the probe’s freedom of motion but is essential in applications in vivo.  

Segmentation of Bone Surfaces from In Vivo Samples 

 In this section, we evaluate our method using in vivo data sets. In vivo 

experiments would allow us to test the performance of the method on a variety of bone 

shapes. Note that the in vivo images were acquired from a larger scan area than the ex 

vivo images, and the acquisition was also under more noisy conditions presumably due 

to the motion of the sheep. Consequently, the bone sonographic profile can have more 

variations. The display resolution was around 400 as acquired from saved AVI files. As 

ultrasound acquisition speed was very high, adjacent frames are very similar in contact 
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to each other. Hence, it is not necessary to incorporate all of them in the analysis. Under 

this premise, 105 frames were selected to construct the dataset for the training and 

testing. 

               

Figure 27 Different bone surface segmented using our algorithm.  
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 Figure 27 shows segmentation results obtained from those in vivo sheep 

experiments. The results demonstrate that, although the shape of the bone varies at 

different scan locations and the illumination conditions change among animal subjects, 

the algorithm can adapt to these changes and detect the bone surface with fairly high 

accuracy. 

Statistical results 

 The results of our statistical analysis are shown in Table 2. From Table 2, we 

observe that the segmentation results from the ex vivo study is more accurate than the 

segmentation results from the in vivo study, as expected. In addition, segmentation 

accuracy is improved in the presence of the shape information. In particular, false 

positives decreased greatly, in the presence of the shape information. 

 

Table 2 Algorithm detection rate for the two studies 

 Avg. 

Error(pixel) 

False 

Positive 

False 

Negative 

Ex-vivo 3.23 17.2% 3.9% 

In-vivo 5.16 16.8% 7.8% 

Ex-vivo without SSM 5.53 27.2% 5.3% 

In-vivo without SSM 7.22 28.4% 8.7% 
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DISSCUSSION 

  In this paper, we present a method to segment the bone surface in noisy 

ultrasound images based on SSM. While SSM has been extensively investigated for MRI 

and CT applications, its suitability for ultrasound bone imaging has not been evaluated 

yet. The ex vivo and in vivo results included in this paper show that, when combined 

with phase symmetry and shadow information, the SSM can significantly improve 

accuracy of bone surface detection and segmentation. 

  The SSM-based segmentation method is particularly suitable for freehand 

ultrasound scans. Common errors arising in parameter estimation-based methods due to 

variations occurring in a volumetric free-hand scan do not affect this method since the 

shape information input to the classifier is entirely obtained from a data-driven statistical 

model. Thus, the proposed segmentation method allows us to automatically segment a 

large number of images once the classifier has been trained. The method is sensitive to 

the shadow underneath the bone and performs well even when the intensity contrast 

between the bone surface and other tissue regions is not high (as in the sheep data used 

in this study). In those cases, pure intensity-based methods would likely fail. As 

demonstrated by our results, most soft tissue hyperechoic areas are suppressed in the 

processed images. In applications aiming at 3D bone reconstructions based on volume 

rendering, the false positives caused by the soft tissue may be further reduced using 

thresholding. This method is currently implemented using MATLAB and takes about 2.3 

seconds to process each frame with 400×450 resolution on an Intel Core i7-4700 MQ 

laptop. In order to accelerate computation, GPGPU might be used to parallelize all 
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computations Yang et al. (2011). By using more efficient computer languages such as C 

and optimizing the algorithm properly, we would expect this algorithm to achieve at 

least semi real-time performance on ultrasound imaging systems. 

 As mentioned previously, the SSM can be used in many ways. One popular 

method is marginal space learning, which has been applied to many applications for MR 

and CT imagingZheng et al. (2008); Kelm et al. (2013). However, the complexity of 

marginal space learning increases exponentially with the number of eigenvectors. Our 

method does not search for eigenvalue directly to reconstruct curved bone surface 

patterns in the B-mode image. This obviates the need of a large number of eigenvectors 

to describe bone shape variations, which is a typical problem that affects free-hand 

ultrasound imaging. Therefore, in general, the proposed method is time-efficient and 

adaptive to a variety of experimental conditions. 

 There are a number of factors that could affect the performance of the proposed 

method. The first is the quality of the ultrasound images. As demonstrated by our results, 

the higher is the bone/soft tissue contrast in the ultrasound images and, in general, the 

better is the performance of the segmentation method. This is true, in general, for most 

ultrasound bone segmentation methods proposed in the literature. However, a strength of 

the proposed method with respect to previously proposed intensity-based and phased-

based algorithms, is that a good performance (error rate at around 16.8% or below) is in 

general maintained also in the cases where the quality of the B-mode images is fairly 

poor. Therefore, in these very difficult cases, the availability of the proposed 

segmentation methods could be helpful. The second is the features used for the 
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classification. For example, radiofrequency (RF) data have the potential to provide 

information regarding reflected power Wen and Salcudean (2007). Ultrasound 

elastographic features could further help identifying soft tissue structures Parmar et al. 

(2015); Tang et al. (2017), and reduce influence of connective tissues, which create high 

reflection in B-mode images. However acquiring 3D elastography data is challenging 

and not easy for wide area free hand scans using regular probes Gennisson et al. (2013); 

Lindop et al. (2006). In addition, an increase in the number of features used for the 

classification will, in general, lead to more complex and less computationally efficient 

algorithms. 

  In this paper, we have studied the performance of the algorithm only using long 

bones from a large animal model (sheep). Naturally, it is expected that the performance 

of the method varies depending on the bone that is imaged. Based on our past experience, 

bone surface segmentation from humans typically yield better results than those obtained 

from large animal models. 

 Furthermore, we have not studied the performance of the algorithm when abone 

fracture is present. In this case, the method may need to be modified. It may require 

generation of a cascading classifier. This classifier would first determine if there are 

fractures in an image, and then apply models of the corresponding category (i.e., intact 

or fractured) to segment the bone surface. The assessment of the proposed method in the 

presence of fractures is left for future work. 
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CONCLUSION 

  In this paper a new bone segmentation method is proposed. This method is 

designed to work robustly for in vivo free hand scans. Shadow effects are used firstly to 

enhance contrast between soft tissue and bone surface. Then, phase property is used to 

extract patterns in the images. Finally, intensity property and SSM are combined to 

describe each segmentation candidate. A trained SVM classifier is then used to classify 

the bone surface according to the features extracted. Based on ex vivo and in vivo 

experimental data, the proposed method may be used in clinical bone imaging 

applications.  
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5 CONCLUSIONS 

SUMMARY 

 Ultrasound image has a lot of potentials in orthopedics applications. This 

dissertation studies some fundamental aspects in 3D Ultrasound reconstruction in 

orthopedics. Real-time high quality strain elastography opens possibility to acquire 3D 

US elastography. New way to process Doppler signal can improve contrast between 

bone surface and connective tissue, and can eventually reduce the computation cost for 

bone segmentation. Shape model based segment method offers an alternative before 

previous image enhancement method can be implemented in real-time. 

 Section 2 discussed keys and limitations in using CUDA for strain elastography 

computation, and proposed a hybrid method which take advantage of both CPU and 

GPGPU to achieve the goal of success. Simulation data and real data are used for 

performance analysis. This implementation is finally integrated with Sonix US system to 

display real-time strain elastography on screen.  

 The method used in section 3  is inspired by strain elastography but applied in 

US Doppler image. Using in-vivo and in-vitro experiment, the feasibility of using pre- 

and post-compression Doppler signal to increase contrast between tissue-bone surface 

and connective tissue surface is verified. The enhancement can eventually simplify bone 

segmentation method used for surface reconstruction and give faster reconstruction 

results. 

 In section 4 a segment method is discussed using regular US image. Images are 

manually segmented and a statistical shape model is generated from these models. For 
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surface detection, all curves in US image is extracted and the coefficients fit to this 

model is calculated. If the coefficients are outliers, the curve is considered not a bone 

surface. The method is tested using in-vivo data from long bones as they are most 

concerned in many clinical settings. 

 

FUTURE WORK 

Based on the studies in this dissertation, a series of future research plan can be 

considered.  

3D Elastography 

 3D elastography is a very important research as the possibility to have 

elastography of a entire volume can greatly extend its usability in clinical investigation. 

In section 2 the software to generate real-time 2D strain elastography is ready to use and 

integrated with commercial US imaging system. The follow up study can include the 

following part: 

 1. Use electro-magnetic position sensor to record position of each image. Electro-

magnetic position sensor has been used on commercial US 3D acquisition systems to 

generate 3D tissue volumes. For this study, it would be interesting to see if it is possible 

to record actual strain as well for pre- and post-compression RF frames. As strain 

elastography is qualitative, recording the actual strain might be very important to set 

stretch factor in elastography algorithm and make images acquired from different plans 

more comparable. If actual strain is too small to be detected, adaptive stretch method 

should be used to estimate real strain and get best image contrast. 
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 2. Develop a proper normalization algorithm to combine strain elastograph 

acquired at different positions. Although strain elastograph cannot be compared in 

quantitative way, adjacent images may be able to normalized properly to form a 3D 

volume considering the fact that tissues are continuous. Elastography acquired from 

nearby positions with similar strain should be comparable and normalized. 

 3. To get best result, mechanical apparatus should be developed to control strain 

applied. It can also get highly precise image position information as well. 

 4. Choose an organ to have human studies. In such study, the key is to compare 

elastography detected suspicion region and other modality detected suspicion region. 

This study would provide more comprehensive understanding about the correlation 

between elastography and CT/MRI. It may help decide the scope of application for strain 

elastography in clinic, and provide patients with more affordable and accessible service 

in the future. 

      As mentioned before, current shear wave based quantitative elasography needs a 

couple seconds to acquire one frame. This makes continuous acquisition very hard for 

3D elastography. If 3D strain elastography can be achieved with reasonable position 

attachments, it would give strain elastography another important reason to stay on stage. 

 Current study in section 2 offered only axial strain image. It would be easy to 

modify the algorithm to get axial shear strain image as well for other related research 

projects. 
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3D Bone surface reconstruction 

  As described before, this dissertation is aimed to create 3D reconstruction of 

bone surface in multiple US image modalities. Though the purpose is not achieved, the 

tools to achieve the purpose are prepared. 

 With position  sensor attached to US probe, regular 2D US scan can be combined 

to form a 3D volume. Bone surface could be extracted from the volume. Possible 

research topic include: 

 1. Repeatability study. With freehand scan, it is important to know how 

repeatable the 3D reconstructions are. Between different scans probe can have different 

compression on tissue and different velocity at each position. How to eliminate the effect 

of these factors and get repeatable result is very important for follow up studies. If there 

are inevitable reconstruction errors, it is also important to know the range. 

 2. 3D volume registration. Unlike CT or MR, US images object from one 

direction. This means if a comprehensive 3D volume is required, different US scan 

volumes from different directions need to be registered and combined together. While 

soft tissue can deform during scan, bone surface is a better reference for volume 

registration.  

 3. 3D bone fracture identification. As 2D US image is just an image of one cross 

section of tissue volume,  in many cases it is hard to determine if one surface is fracture 

or not in one image or one direction. With 3D technique, algorithm can have more 

characteristics to determine if one object is fracture or not. 
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