1,532 research outputs found

    Collaborative models for autonomous systems controller synthesis

    Get PDF
    Funding: UK EPSRC grants EP/N508792/1, EP/N007565 and EC/P51133X/1.We show how detailed simulation models and abstract Markov models can be developed collaboratively to generate and implement effective controllers for autonomous agent search and retrieve missions. We introduce a concrete simulation model of an Unmanned Aerial Vehicle (UAV). We then show how the probabilistic model checker PRISM is used for optimal strategy synthesis for a sequence of scenarios relevant to UAVs and potentially other autonomous agent systems. For each scenario we demonstrate how it can be modelled using PRISM, give model checking statistics and present the synthesised optimal strategies. We then show how our strategies can be returned to the controller for the simulation model and provide experimental results to demonstrate the effectiveness of one such strategy. Finally we explain how our models can be adapted, using symmetry, for use on larger search areas, and demonstrate the feasibility of this approach.Publisher PDFPeer reviewe

    Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models

    Get PDF
    Matlab/Simulink is a development and simulation language that is widely used by the Cyber-Physical System (CPS) industry to model dynamical systems. There are two mainstream approaches to verify CPS Simulink models: model testing that attempts to identify failures in models by executing them for a number of sampled test inputs, and model checking that attempts to exhaustively check the correctness of models against some given formal properties. In this paper, we present an industrial Simulink model benchmark, provide a categorization of different model types in the benchmark, describe the recurring logical patterns in the model requirements, and discuss the results of applying model checking and model testing approaches to identify requirements violations in the benchmarked models. Based on the results, we discuss the strengths and weaknesses of model testing and model checking. Our results further suggest that model checking and model testing are complementary and by combining them, we can significantly enhance the capabilities of each of these approaches individually. We conclude by providing guidelines as to how the two approaches can be best applied together.Comment: 10 pages + 2 page reference

    Optimisation-based verification process of obstacle avoidance systems for unmanned vehicles

    Get PDF
    This thesis deals with safety verification analysis of collision avoidance systems for unmanned vehicles. The safety of the vehicle is dependent on collision avoidance algorithms and associated control laws, and it must be proven that the collision avoidance algorithms and controllers are functioning correctly in all nominal conditions, various failure conditions and in the presence of possible variations in the vehicle and operational environment. The current widely used exhaustive search based approaches are not suitable for safety analysis of autonomous vehicles due to the large number of possible variations and the complexity of algorithms and the systems. To address this topic, a new optimisation-based verification method is developed to verify the safety of collision avoidance systems. The proposed verification method formulates the worst case analysis problem arising the verification of collision avoidance systems into an optimisation problem and employs optimisation algorithms to automatically search the worst cases. Minimum distance to the obstacle during the collision avoidance manoeuvre is defined as the objective function of the optimisation problem, and realistic simulation consisting of the detailed vehicle dynamics, the operational environment, the collision avoidance algorithm and low level control laws is embedded in the optimisation process. This enables the verification process to take into account the parameters variations in the vehicle, the change of the environment, the uncertainties in sensors, and in particular the mismatching between model used for developing the collision avoidance algorithms and the real vehicle. It is shown that the resultant simulation based optimisation problem is non-convex and there might be many local optima. To illustrate and investigate the proposed optimisation based verification process, the potential field method and decision making collision avoidance method are chosen as an obstacle avoidance candidate technique for verification study. Five benchmark case studies are investigated in this thesis: static obstacle avoidance system of a simple unicycle robot, moving obstacle avoidance system for a Pioneer 3DX robot, and a 6 Degrees of Freedom fixed wing Unmanned Aerial Vehicle with static and moving collision avoidance algorithms. It is proven that although a local optimisation method for nonlinear optimisation is quite efficient, it is not able to find the most dangerous situation. Results in this thesis show that, among all the global optimisation methods that have been investigated, the DIviding RECTangle method provides most promising performance for verification of collision avoidance functions in terms of guaranteed capability in searching worst scenarios

    Provably-Correct Task Planning for Autonomous Outdoor Robots

    Get PDF
    Autonomous outdoor robots should be able to accomplish complex tasks safely and reliably while considering constraints that arise from both the environment and the physical platform. Such tasks extend basic navigation capabilities to specify a sequence of events over time. For example, an autonomous aerial vehicle can be given a surveillance task with contingency plans while complying with rules in regulated airspace, or an autonomous ground robot may need to guarantee a given probability of success while searching for the quickest way to complete the mission. A promising approach for the automatic synthesis of trusted controllers for complex tasks is to employ techniques from formal methods. In formal methods, tasks are formally specified symbolically with temporal logic. The robot then synthesises a controller automatically to execute trusted behaviour that guarantees the satisfaction of specified tasks and regulations. However, a difficulty arises from the lack of expressivity, which means the constraints affecting outdoor robots cannot be specified naturally with temporal logic. The goal of this thesis is to extend the capabilities of formal methods to express the constraints that arise from outdoor applications and synthesise provably-correct controllers with trusted behaviours over time. This thesis focuses on two important types of constraints, resource and safety constraints, and presents three novel algorithms that express tasks with these constraints and synthesise controllers that satisfy the specification. Firstly, this thesis proposes an extension to probabilistic computation tree logic (PCTL) called resource threshold PCTL (RT-PCTL) that naturally defines the mission specification with continuous resource threshold constraints; furthermore, it synthesises an optimal control policy with respect to the probability of success. With RT-PCTL, a state with accumulated resource out of the specified bound is considered to be failed or saturated depending on the specification. The requirements on resource bounds are naturally encoded in the symbolic specification, followed by the automatic synthesis of an optimal controller with respect to the probability of success. Secondly, the thesis proposes an online algorithm called greedy Buchi algorithm (GBA) that reduces the synthesis problem size to avoid the scalability problem. A framework is then presented with realistic control dynamics and physical assumptions in the environment such as wind estimation and fuel constraints. The time and space complexity for the framework is polynomial in the size of the system state, which is efficient for online synthesis. Lastly, the thesis proposes a synthesis algorithm for an optimal controller with respect to completion time given the minimum safety constraints. The algorithm naturally balances between completion time and safety. This work proves an analytical relationship between the probability of success and the conditional completion time given the mission specification. The theoretical contributions in this thesis are validated through realistic simulation examples. This thesis identifies and solves two core problems that contribute to the overall vision of developing a theoretical basis for trusted behaviour in outdoor robots. These contributions serve as a foundation for further research in multi-constrained task planning where a number of different constraints are considered simultaneously within a single framework

    Calibration and Extension of a Discrete Event Operations Simulation Modeling Multiple Un-Manned Aerial Vehicles Controlled by a Single Operator

    Get PDF
    This research improved a simulation that models a single operator responsible for multiple UAV rovers. The improvement calibrated the model by increasing the realism of its expected time that the target will be within the field of view of a UAV\u27s camera and how much of that will be observed by an operator that has multiple tasks to perform throughout the mission. The calibration was derived from multiple flight tests, by using a Field of View Algorithm in MATLAB and by visually recording times for loiter loops by hand. It was determined that the target will be within the field of view of a UAV loitering in a circular pattern between 62% and 66% of the overall loiter time. For an 8 hour beyond line of sight mission, the model\u27s optimal results were 145 min of Value Added Time in low wind conditions and 137 min in high wind. For an 8 hour within line of sight mission, the optimal result was 287 min in low wind conditions and 268 min in high wind

    Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal Abstractions

    Full text link
    Controllers for dynamical systems that operate in safety-critical settings must account for stochastic disturbances. Such disturbances are often modeled as process noise in a dynamical system, and common assumptions are that the underlying distributions are known and/or Gaussian. In practice, however, these assumptions may be unrealistic and can lead to poor approximations of the true noise distribution. We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions. In particular, we address the problem of computing a controller that provides probabilistic guarantees on safely reaching a target, while also avoiding unsafe regions of the state space. First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states. As a key contribution, we adapt tools from the scenario approach to compute probably approximately correct (PAC) bounds on these transition probabilities, based on a finite number of samples of the noise. We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP is, with a user-specified confidence probability, robust against uncertainty in the transition probabilities, and the tightness of the probability intervals can be controlled through the number of samples. We use state-of-the-art verification techniques to provide guarantees on the iMDP and compute a controller for which these guarantees carry over to the original control system. In addition, we develop a tailored computational scheme that reduces the complexity of the synthesis of these guarantees on the iMDP. Benchmarks on realistic control systems show the practical applicability of our method, even when the iMDP has hundreds of millions of transitions.Comment: To appear in the Journal of Artificial Intelligence Research (JAIR). arXiv admin note: text overlap with arXiv:2110.1266
    corecore