9 research outputs found

    Statistical tests for a ship detector based on the Polarimetric Notch Filter

    Get PDF
    Ship detection is an important topic in remote sensing and Synthetic Aperture Radar has a valuable contribution, allowing detection at night time and with almost any weather conditions. Additionally, polarimetry can play a significant role considering its capability to discriminate between different targets. Recently, a new ship detector exploiting polarimetric information was developed, namely the Geometrical Perturbation Polarimetric Notch Filter (GP-PNF). This work is focused on devising two statistical tests for the GP-PNF. The latter allow an automatic and adaptive selection of the detector threshold. Initially, the probability density function (pdf) of the detector is analytically derived. Finally, the Neyman-Pearson (NP) lemma is exploited to set the threshold calculating probabilities using the clutter pdf (i.e. a Constant False Alarm Rate, CFAR) and a likelihood ratio (LR). The goodness of fit of the clutter pdf is tested with four real SAR datasets acquired by the RADARSAT-2 and the TanDEM-X satellites. The former images are quad-polarimetric, while the latter are dual-polarimetric HH/VV. The data are accompanied by the Automatic Identification System (AIS) location of vessels, which facilitates the validation of the detection masks. It can be observed that the pdf's fit the data histograms and they pass the two sample Kolmogorov-Smirnov and χ2 tests

    Optimal polarimetric detection filter and its statistical tests for a ship detector

    Get PDF
    Ship detection is one important task in radar remote sensing. Moreover, Polarimetry shows a valuable contribution to discriminate between targets and clutter. The performance of most polarimetric detectors depends on two important factors: target clutter ratio (TCR) and speckles (or standard deviation to mean ratio of clutter background). The polarimetric matched filter (PMF) is just to maximize the TCR, while the polarimetric whitening filter (PWF) only takes the speckle reduction into consideration. In this paper, the optimal polarimetric detection filter (OPDF) is put forward, which considers maximizing the ratio of TCR to speckle. The approximate expression of the probability density function (PDF) of the OPDF is derived in closed form, so are the probability of false alarm (PFA) and the probability of detection (PD) in Wishart distribution assumption. The threshold of the OPDF detection can be easily obtained in closed form or via the bisection method. Experiments via simulated data validate the correctness of our results. The OPDF detector gives the best performance in most environments, especially in low PFA case and in the case where the statistics of targets is not the ideal Wishart distribution

    A multi-family GLRT for detection in polarimetric SAR images

    Get PDF
    This paper deals with detection from multipolarization SAR images. The problem is cast in terms of a composite hypothesis test aimed at discriminating between the Polarimetric Covariance Matrix (PCM) equality (absence of target in the tested region) and the situation where the region under test exhibits a PCM with at least an ordered eigenvalue smaller than that of a reference covariance. This last setup reflects the physical condition where the back scattering associated with the target leads to a signal, in some eigen-directions, weaker than the one gathered from a reference area where it is apriori known the absence of targets. A Multi-family Generalized Likelihood Ratio Test (MGLRT) approach is pursued to come up with an adaptive detector ensuring the Constant False Alarm Rate (CFAR) property. At the analysis stage, the behaviour of the new architecture is investigated in comparison with a benchmark (but non-implementable) and some other adaptive sub-optimum detectors available in open literature. The study, conducted in the presence of both simulated and real data, confirms the practical effectiveness of the new approach

    A New Form of the Polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic radar (PolSAR) imagery attracts a lot of attention in recent years. Most notably, the detector polarimetric notch filter (PNF) has been demonstrated to be effective for ship detection in PolSAR imagery, which gives excellent performances. In this work, a mathematical form of one new PNF (NPNF) based on physical mechanisms of targets and clutter is further developed for partial targets. The different mechanisms have been revealed based on the projection matrix. The experimental results including simulated and measured data demonstrate that the NPNF exhibits a better performance than the original PNF

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter

    Get PDF
    Polarimetric whitening filter (PWF) can be used to filter polarimetric synthetic aperture radar (PolSAR) images to improve the contrast between ships and sea clutter background. For this reason, the output of the filter can be used to detect ships. This paper deals with the setting of the threshold over PolSAR images filtered by the PWF. Two parameter-constant false alarm rate (2P-CFAR) is a common detection method used on whitened polarimetric images. It assumes that the probability density function (PDF) of the filtered image intensity is characterized by a log-normal distribution. However, this assumption does not always hold. In this paper, we propose a systemic analytical framework for CFAR algorithms based on PWF or multi-look PWF (MPWF). The framework covers the entire log-cumulants space in terms of the textural distributions in the product model, including the constant, gamma, inverse gamma, Fisher, beta, inverse beta, and generalized gamma distributions (GΓDs). We derive the analytical forms of the PDF for each of the textural distributions and the probability of false alarm (PFA). Finally, the threshold is derived by fixing the false alarm rate (FAR). Experimental results using both the simulated and real data demonstrate that the derived expressions and CFAR algorithms are valid and robust

    PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix

    Get PDF
    The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms

    The InflateSAR Campaign: Testing SAR Vessel Detection Systems for Refugee Rubber Inflatables

    Get PDF
    Countless numbers of people lost their lives at Europe’s southern borders in recent years in the attempt to cross to Europe in small rubber inflatables. This work examines satellite-based approaches to build up future systems that can automatically detect those boats. We compare the performance of several automatic vessel detectors using real synthetic aperture radar (SAR) data from X-band and C-band sensors on TerraSAR-X and Sentinel-1. The data was collected in an experimental campaign where an empty boat lies on a lake’s surface to analyse the influence of main sensor parameters (incidence angle, polarization mode, spatial resolution) on the detectability of our inflatable. All detectors are implemented with a moving window and use local clutter statistics from the adjacent water surface. Among tested detectors are well-known intensity-based (CA-CFAR), sublook-based (sublook correlation) and polarimetric-based (PWF, PMF, PNF, entropy, symmetry and iDPolRAD) approaches. Additionally, we introduced a new version of the volume detecting iDPolRAD aimed at detecting surface anomalies and compare two approaches to combine the volume and the surface in one algorithm, producing two new highly performing detectors. The results are compared with receiver operating characteristic (ROC) curves, enabling us to compare detectors independently of threshold selection

    Comments on “Statistical Tests for a Ship Detector Based on the Polarimetric Notch Filter”

    No full text
    corecore