16 research outputs found

    A Game-Theoretic Based Resource Allocation Strategy for Cloud Computing Services

    Get PDF

    Minimizing energy costs for geographically distributed heterogeneous data centers

    Get PDF
    2018 Summer.Includes bibliographical references.The recent proliferation and associated high electricity costs of distributed data centers have motivated researchers to study energy-cost minimization at the geo-distributed level. The development of time-of-use (TOU) electricity pricing models and renewable energy source models has provided the means for researchers to reduce these high energy costs through intelligent geographical workload distribution. However, neglecting important considerations such as data center cooling power, interference effects from task co-location in servers, net-metering, and peak demand pricing of electricity has led to sub-optimal results in prior work because these factors have a significant impact on energy costs and performance. In this thesis, we propose a set of workload management techniques that take a holistic approach to the energy minimization problem for geo-distributed data centers. Our approach considers detailed data center cooling power, co-location interference, TOU electricity pricing, renewable energy, net metering, and peak demand pricing distribution models. We demonstrate the value of utilizing such information by comparing against geo-distributed workload management techniques that possess varying amounts of system information. Our simulation results indicate that our best proposed technique is able to achieve a 61% (on average) cost reduction compared to state-of-the-art prior work

    A Framework for Approximate Optimization of BoT Application Deployment in Hybrid Cloud Environment

    Get PDF
    We adopt a systematic approach to investigate the efficiency of near-optimal deployment of large-scale CPU-intensive Bag-of-Task applications running on cloud resources with the non-proportional cost to performance ratios. Our analytical solutions perform in both known and unknown running time of the given application. It tries to optimize users' utility by choosing the most desirable tradeoff between the make-span and the total incurred expense. We propose a schema to provide a near-optimal deployment of BoT application regarding users' preferences. Our approach is to provide user with a set of Pareto-optimal solutions, and then she may select one of the possible scheduling points based on her internal utility function. Our framework can cope with uncertainty in the tasks' execution time using two methods, too. First, an estimation method based on a Monte Carlo sampling called AA algorithm is presented. It uses the minimum possible number of sampling to predict the average task running time. Second, assuming that we have access to some code analyzer, code profiling or estimation tools, a hybrid method to evaluate the accuracy of each estimation tool in certain interval times for improving resource allocation decision has been presented. We propose approximate deployment strategies that run on hybrid cloud. In essence, proposed strategies first determine either an estimated or an exact optimal schema based on the information provided from users' side and environmental parameters. Then, we exploit dynamic methods to assign tasks to resources to reach an optimal schema as close as possible by using two methods. A fast yet simple method based on First Fit Decreasing algorithm, and a more complex approach based on the approximation solution of the transformed problem into a subset sum problem. Extensive experiment results conducted on a hybrid cloud platform confirm that our framework can deliver a near optimal solution respecting user's utility function

    Decentralized load balancing in heterogeneous computational grids

    Get PDF
    With the rapid development of high-speed wide-area networks and powerful yet low-cost computational resources, grid computing has emerged as an attractive computing paradigm. The space limitations of conventional distributed systems can thus be overcome, to fully exploit the resources of under-utilised computing resources in every region around the world for distributed jobs. Workload and resource management are key grid services at the service level of grid software infrastructure, where issues of load balancing represent a common concern for most grid infrastructure developers. Although these are established research areas in parallel and distributed computing, grid computing environments present a number of new challenges, including large-scale computing resources, heterogeneous computing power, the autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites, considerable job transfer costs, and considerable communication overhead involved in capturing the load information of sites. This dissertation focuses on designing solutions for load balancing in computational grids that can cater for the unique characteristics of grid computing environments. To explore the solution space, we conducted a survey for load balancing solutions, which enabled discussion and comparison of existing approaches, and the delimiting and exploration of the apportion of solution space. A system model was developed to study the load-balancing problems in computational grid environments. In particular, we developed three decentralised algorithms for job dispatching and load balancing—using only partial information: the desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We conducted extensive simulation studies to analyse the performance of our load-balancing algorithms. Simulation results showed that the algorithms significantly outperform preexisting decentralised algorithms that are relevant to this research

    An efficient, practical, portable mapping technique on computational grids

    Get PDF
    Grid computing provides a powerful, virtual parallel system known as a computational Grid on which users can run parallel applications to solve problems quickly. However, users must be careful to allocate tasks to nodes properly because improper allocation of only one task could result in lengthy executions of applications, or even worse, applications could crash. This allocation problem is called the mapping problem, and an entity that tackles this problem is called a mapper. In this thesis, we aim to develop an efficient, practical, portable mapper. To study the mapping problem, researchers often make unrealistic assumptions such as that nodes of Grids are always reliable, that execution times of tasks assigned to nodes are known a priori, or that detailed information of parallel applications is always known. As a result, the practicality and portability of mappers developed in such conditions are uncertain. Our review of related work suggested that a more efficient tool is required to study this problem; therefore, we developed GMap, a simulator researchers/developers can use to develop practical, portable mappers. The fact that nodes are not always reliable leads to the development of an algorithm for predicting the reliability of nodes and a predictor for identifying reliable nodes of Grids. Experimental results showed that the predictor reduced the chance of failures in executions of applications by half. The facts that execution times of tasks assigned to nodes are not known a priori and that detailed information of parallel applications is not alw ays known, lead to the evaluation of five nearest-neighbour (nn) execution time estimators: k-nn smoothing, k-nn, adaptive k-nn, one-nn, and adaptive one-nn. Experimental results showed that adaptive k-nn was the most efficient one. We also implemented the predictor and the estimator in GMap. Using GMap, we could reliably compare the efficiency of six mapping algorithms: Min-min, Max-min, Genetic Algorithms, Simulated Annealing, Tabu Search, and Quick-quality Map, with none of the preceding unrealistic assumptions. Experimental results showed that Quick-quality Map was the most efficient one. As a result of these findings, we achieved our goal in developing an efficient, practical, portable mapper
    corecore