

DECENTRALIZED LOAD BALANCING IN
HETEROGENEOUS COMPUTATIONAL GRIDS

A thesis submitted for review

Kai Lu

November 11, 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sydney eScholarship

https://core.ac.uk/display/41237145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

With the rapid development of high-speed wide-area networks and powerful yet low-cost

computational resources, grid computing has emerged as an attractive computing paradigm.

The space limitations of conventional distributed systems can thus be overcome, to fully

exploit the resources of under-utilised computing resources in every region around the world

for distributed jobs. Workload and resource management are key grid services at the service

level of grid software infrastructure, where issues of load balancing represent a common

concern for most grid infrastructure developers. Although these are established research areas

in parallel and distributed computing, grid computing environments present a number of new

challenges, including large-scale computing resources, heterogeneous computing power, the

autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites,

considerable job transfer costs, and considerable communication overhead involved in

capturing the load information of sites.

This dissertation focuses on designing solutions for load balancing in computational

grids that can cater for the unique characteristics of grid computing environments. To explore

the solution space, we conducted a survey for load balancing solutions, which enabled

discussion and comparison of existing approaches, and the delimiting and exploration of the

apportion of solution space. A system model was developed to study the load-balancing

problems in computational grid environments. In particular, we developed three decentralised

algorithms for job dispatching and load balancing—using only partial information: the

desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware

load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing

algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We

conducted extensive simulation studies to analyse the performance of our load-balancing

algorithms. Simulation results showed that the algorithms significantly outperform pre-

existing decentralised algorithms that are relevant to this research.

Acknowledgements

It is with great pleasure that I wish to acknowledge several people that have helped me

tremendously during the difficult, challenging, yet rewarding and exciting path towards a

Ph.D. Without their help and support, none of this work could have been possible.

First and foremost, I wish to express my sincere gratitude to my research advisor,

Prof. Albert Y. Zomaya for his guidance, encouragement, motivation, and continued

support throughout my academic years at the University of Sydney, Australia. Albert has

allowed me to pursue my research interests with sufficient freedom, while always being

there to guide me. Working with him has been one of the most rewarding experiences of

my professional life.

I would like to express my gratitude to Dr. Riky Subrata who took the time to

review my work and with whom I was able to co-author some papers. His valuable

comments are very helpful. I would like to sincerely thank Dr. Bing Bing Zhou for

helpful discussions and advices. Many thanks go also to the rest of the Advanced

Networks Research Lab members for my help. My fruitful discussions and interactions

with them helped me grow professionally.

I am grateful to Dr. Tony Souter not only for reviewing my dissertation, but more

importantly for teaching me how to improve the presentation of the dissertation in many

ways. I am very thankful to my dissertation committee members for agreeing to serve on

my committee.

Last but not least, I am forever indebted to my wife, my parents, and the rest of

my family. My wife, Rong Zhang, has been a great source of inspiration to me. None of

this would have been possible without her love, support, and continuous encouragement.

My parents’ prayers have always accompanied me. Their love keeps me going. My

daughter Sophia has been the greatest source of motivation and inspiration during the last

year of my Ph.D. I am very lucky to have been blessed with her. I am grateful to all of

them. This work is dedicated to my family.

 1

1

Introduction

This chapter introduces the context of the research. It starts with an introduction to the

general area of grid computing, including a layered architecture of the computational grid,

and a short overview of core grid middleware. It discusses the motivation and challenges

for scheduling and load balancing in these environments, and summarises the primary

contributions of the project and the evaluative methodology.

1.1 Cluster and grid environments

The emergence of computer and information technology has changed society

dramatically. At the same time, the advances in high-speed networking have enabled

computers to collaborate. This has created a tremendous source of processing power by

the use of distributed systems, opening up many possibilities for running advanced

computation-intensive jobs in a reasonable time frame.

There are several options for establishing distributed systems; cluster systems [5]

and grid systems [1] are the most common for distributed jobs. Cluster systems combine

several personal computers or workstations to conduct distributed applications through a

 2

high-speed local network. The disadvantage is that the use of cluster systems must be

limited to a fixed area (e.g., [73, 110, 131]), making the job inflexible in terms of its

performance.

We refer to a cluster system as a “site”. A computational grid uses the network

and combines computing resources from geographically disperse sites for distributed

jobs. Because grid computing uses Internet connections, compared with conventional

distributed systems, it provides better large-scale resource sharing, improved resource

utilisation and the broad-field Internet access environment [3]. Space limitations of

conventional distributed systems can thus be overcome to fully exploit these under-

utilised computing resources [119]. A computational grid can form more powerful

computing capabilities to assist in the computing of large amounts of more complicated

scientific jobs than can a cluster system; thus, processing power is more efficiently used

and the quality of service is improved, for instance, in shorter response times.

Computational grids are emerging as next-generation computing platforms for large-scale

computation problems in industry, academic and government organisations.

1.2 Resource management models

There are two kinds of resource management models and corresponding metrics.

• System-centric. Most jobs in an open grid system are independent. They are

submitted to the grid at different times, and require different resources and

durations for their execution. When a single job arrives at a grid within a unit-

scheduling time-slot, the scheduling system will analyse the load situation of

every node and select one node to run the job. At this stage, the scheduling policy

is to optimise the total performance of the whole system. If the grid system is

heavily loaded, the scheduling system must realise the load balancing and

increase the system throughput and resource utilisation under restricted conditions.

In this dissertation, this kind of scheduling is classified as “system-centric

scheduling”, for which the objective is to optimise system performance, such as

 3

[6], [8–9], [16], and [32]. The system-level resource scheduling was our main

focus.

• Application-centric. If a parallel application with a number of tasks arrives within

a unit-scheduling time-slot, the scheduling system will attempt to allocate and

finish it in terms of a defined objective. The objective is usually the minimal

completion time for the entire application. This scheduling policy is application-

oriented, so here, we refer to it as “application-centric scheduling” [2, 4, 13–14].

Application-centric models deal with three kinds of application. The first kind is

task farming, also known as “Bag of Tasks”, in which numerous independent jobs

arrive simultaneously. The second kind is a co-allocation application, in which

each task is modelled as performing all-to-all communication patterns throughout

its execution. The last kind can be represented as a direct acyclic graph (DAG)

application, in which there is data-dependency between a task and other tasks.

1.3 Core grid middleware: Globus

In practical terms, all major grid projects are built on protocols and services provided by

the Globus Toolkit [10], a software “work in progress” developed by the Globus Alliance,

which involves primarily Professor Ian Foster’s team at Argonne National Laboratory

and Professor Carl Kesselman’s team at the UCLA [1,7]. A brief description for the core

grid middleware is given below.

Globus [11] provides software infrastructure that enables applications to handle

distributed heterogeneous computing resources as a single virtual machine. The Globus

project is a US multi-institutional research effort that is enabling the construction of

computational grids. A computational grid, in this context, is hardware and software

infrastructure that provides dependable, consistent, and pervasive access to high-end

computational capabilities, despite the geographical dispersion of both resources and

users. Globus provides basic services and capabilities required to construct a

computational grid. Their toolkit consists of a set of components that implement basic

services, such as security, resource location, resource management, and communications.

 4

Computational grids need to support a wide variety of applications and

programming paradigms. Consequently, rather than providing a uniform programming

model, such as the object-oriented model, Globus provides a bag of services that

developers of specific tools or applications can use to meet their own particular needs.

This methodology is possible only when the services are distinct and have well-defined

application programming interfaces (APIs) that can be incorporated into applications or

tools incrementally.

Globus is constructed as a layered architecture in which high-level global services

are built on essential low-level core local services. The Globus toolkit is modular, and an

application can exploit Globus features, such as resource management or information

infrastructure, without using the Globus communication libraries. The Globus toolkit

supports the following:

• grid security infrastructure;

• gridFTP;

• Globus resource allocation manager;

• metacomputing directory service;

• global access to secondary storage;

• data catalogue and replica management; and

• advanced resource reservation and allocation.

Globus can be viewed as a grid computing framework based on a set of APIs to the

underlying services. Globus provides application developers with a practical means of

implementing a range of services to provide a wide-area application execution

environment.

The major grid tools and application projects using Globus as their low-level

middleware include AppLeS [13], Ninf [15], Nimrod-G [14], NASA IPG [21], Condor-G

[16], Gridbus Broker [17], UK eScience Project [18], GriPhyN [20], and the EU Data

Grid [19].

 5

1.4 Motivation of the research

Workload and resource management are key grid services provided at the service level of

grid software infrastructure, where issues of load balancing are a common concern for

most developers. Although these are established research areas in parallel and distributed

computing, grid computing environments present at least seven new challenges.

• Scalability. The grid may potentially encompass all high-performance

computing resources. A given component of the grid will have its own

functions, resources and environment. These are not necessarily geared to

work together in the overall grid; they may be physically located in different

organisations and may not be aware of each other. Scalability is of particular

concern to grid environments that can attain planetary scale in terms of both the

number of resources and the number of jobs for those resources. This raises the

problem of potential performance degradation as the size of grids increases.

• Autonomy. Grid resources typically span multiple organisations each having one

or more administrative domains. Each administrative domain typically has

autonomous policies that govern the sharing of its resources with the rest of the

grid. Resource management must preserve the autonomy of organisations hosting

the resources. Each computing resource is independent. The computing

resource itself determines whether or not to run a new job, how to schedule it

and how to optimise resource utilisation. The strength of this autonomy varies

at different levels of the grid architecture. Generally speaking, the higher a

level, the more autonomous.

• Adaptability. A grid is a dynamic environment where the location, type and

performance of the components are constantly changing. For example, a

component resource may be added to or removed from the grid at any time. In

addition, a component resource may fail within a certain time. How to handle

these unexpected system activities in as close to local resource as possible,

such as within a local organisation.

 6

• Heterogeneity. A grid involves a multiplicity of resources that are heterogeneous

and encompass a vast range of technologies. A grid exhibits heterogeneity of

many types—including hardware, operating systems, file systems and network

heterogeneity. Heterogeneity poses a challenge because it must be managed to

enable the parts of the grids to work together; however, it also presents an

opportunity, since the variety of different resources suggests that it may be

possible to select the best resources for a particular problem. The variety and

amount of computing resources in the grids offers significant potential for high-

performance computing. Zhou et al. [22] define three forms of heterogeneity that

may exist in distributed systems: (1) architectural heterogeneity (the hardware

design differs from node to node, so nodes require different executable code); (2)

operating system heterogeneity (facilities provided at each node may differ and

may be incompatible); and (3) configuration heterogeneity, also known as

performance heterogeneity (nodes are differently resourced, e.g., using different

processing speeds and communication capacities). Performance heterogeneity is

the most common form of heterogeneity, found in almost every loosely coupled

system. Due to its prevalence, this work is concerned with performance

heterogeneity. Other forms of heterogeneity are beyond the scope of this study.

• Information freshness. A widely used solution for resource management in a grid

is the Globus MDS [23–26]. It is based on a hierarchical scheme that devises a set

of nodes, each one hosting an Index Service. Each Index Service maintains a

database on current resource availability for a group of grid nodes. Index Services

can be also aggregated in higher-level Index Services, using a hierarchical

approach typical of information repositories for widely distributed systems (such

as the Internet domain name system). Even though it has been proved that

hierarchical approaches are well suited to efficiently manage huge quantities of

information in large distributed systems [27], the MDS approach suffers from a

key problem: since resource information is advertised from grid nodes to index

services, and then forwarded up in the hierarchy, inconsistences due to

propagation latencies are possible, between the real information present in a grid

node and the relevant copy stored in the repositories. As a result, matchmaking is

 7

performed using data that cannot be real. The communication overhead involved

in capturing the load information of sites before making a dispatching decision

can be a major issue negating the advantages of job migration.

• Considerable transfer cost. Since computers within a site are typically connected

by a high speed network, the network cost of remote job execution can be ignored

when a job is scheduled to run on a different computer in the same site. However,

in the grid environment, the related files of a job need to be transferred through

much slower Internet links if the job is scheduled to run in a remote site.

Therefore, the cost of file transfers must be taken into consideration in the

scheduling algorithm.

• Uneven job arrival pattern. In a grid, some computers may be overloaded while

others may be under-utilised. An analysis [28] of the resource usage pattern at

several supercomputer centers (San Diego Supercomputer Center, National Center

for Supercomputer Applications, Cornell Theory Center, KTH Royal Institute of

Technology), shows an interesting “sine wave” pattern. During evenings, the

resource requested reaches and sometimes exceeds the maximum capacity of the

system, while usage dips to a minimum in the early hours of the morning. A

computational grid, in addition to providing more computation power than any

single site can provide, the time-dependent and bursty nature of resource requests

can be better averaged by distributing the requests to different computing sites.

Thus, effective load balancing is important in optimising resource usage, but the

task of load balancing is more complex in a grid environment.

The main motivation of the study is to propose decentralised dynamic load balancing

solutions that can cater for these unique characteristics of grid computing environments.

1.5 Major contributions

We present our research on decentralised dynamic load balancing in heterogeneous

computational grids with the aim of improving the overall utilisation and performance, by

developing effective load-balancing strategies. Before we start to explore the solution

 8

space, we designed a survey for load-balancing solutions. This survey was useful for

discussing and comparing pre-existing approaches. Using the survey, we delimited and

explored apportion of solution space. We also developed a system model to study load-

balancing problems in computational grid environments. This research has made three

main contributions.

1.5.1 Desirability-aware load-balancing algorithm

In Chapter 4, we present an efficient desirability-aware load-balancing algorithm for

heterogeneous computational grids. We give two definitions of desirability of sites based

on how site characteristics will affect the performance of future load balancing:

processing power and transfer delay. Using the desirability of sites, a set of partners and

neighbours are formed for each site. Partners are sites with comparable or greater

processing powers; neighbours are nearby sites with low transfer delays. We have

designed an approach for constructing the partner sites for each site when a site joins the

grid. We determined an approach to enable the set of partners for a site to be updated

dynamically at runtime based on feedback information, and a relatively simple approach

to form neighbouring sites for each grid site. The algorithm consists of two specific

policies for load distribution: Instantaneous Distribution Policy (IDP) and Load

Adjustment Policy (LAP). When a new job arrives at a site, it either remains at that site

or is immediately allocated by IDP to one of its partner sites. Due to the likely fluctuating

behaviour of grid resources, continuous load adjustment is employed among neighbour

sites under the guidance of LAP to better exploit the grid environment. To reduce or

minimise the communication overhead involved in information collection, state

information exchange between sites is performed via mutual information feedback (MIF).

1.5.2 Performance-driven desirability-aware load-balancing algorithm

We developed this algorithm for heterogeneous computational grids in Chapter 5, an

extended study of the algorithm introduced in Chapter 4, by considering the performance

benefit that jobs can gain in the load distribution triggered by IDP and LAP. We

developed another load adjustment policy, the Augmented Load Adjustment Policy

 9

(ALAP). This policy determines whether there is a better placement beyond the

neighbourhood of a site, where IDP has failed to show that a relatively not powerful site

in that neighbourhood is a performance bottleneck.

1.5.3 Performance-driven region-based load balancing algorithm

We developed this algorithm for heterogeneous computational grids. The grid sites are

clustered into regions around a set of well-known broker sites in terms of network

transfer delay, and the regional brokers are organised in a fully decentralised fashion. For

each regional grid, the algorithm integrates static IDP and dynamic LAP to make load

distribution and redistribution driven by the performance benefit that jobs can gain. The

LAP also considers load redistribution across regional grids. The intra-region

communication is minimised by MIF. To control inter-region communication, the

random polling of a remote regional broker site is performed by each regional broker site

at a set time interval. The algorithm achieves a balance between the inherent efficiency of

a centralised approach, and the autonomy, load balancing and fault tolerant features

offered by this distributed approach.

1.6 Evaluation methodology

We have used discrete-event simulation to evaluate the performance of load-balancing

algorithms in heterogeneous computational grids. The simulation programs were

developed using Java object-oriented programming language.

1.7 Structure of the dissertation

In Chapter 2, related work in the literature is briefly reviewed. In Chapter 3, we describe

a heterogeneous computational grid system model that we subsequently consider. In

Chapter 4, we develop a decentralised and desirability-aware load-balancing algorithm

for heterogeneous computational grids, which utilises the desirability of sites for load

distribution. In Chapter 5, we develop a performance-driven load-balancing algorithm for

heterogeneous computational grids. In Chapter 6, we develop a performance-driven and

 10

region-based load balancing algorithm for heterogeneous computational grids. Chapter 7

summarises the main contributions of this dissertation and comments on future directions

for this research.

 11

2

Survey of load balancing

Recent years have been witness to the increasing use of distributed computing systems.

This may be attributed to two main factors: the growth of the Internet, and the emergence

of low-cost solutions for end-user computing devices. Distributed systems are collections

of autonomous processing nodes connected by a communication network. Through the

communication network, the resources of the system can be shared by users at different

locations. However, a fundamental problem arises in making effective use of the total

computing power of a distributed computing system. It is often the case that a certain

node has very few tasks to handle at a given time, while another node has many. It is

desirable to spread the total workload of the distributed system over all of its nodes. This

avoids under-utilisation of power, and decreases response times for work introduced at

more heavily loaded sites. This form of computing power sharing for improving the

performance of a distributed system by redistributing the workload among the available

nodes is commonly called “load balancing”. The purpose of load balancing is to

improve the performance of a system by redistributing the workload among nodes, thus

increasing the processing capacity of the system.

 12

The chapter is structured as follows: in Section 2.1, simple classifications are

introduced to organise the different techniques and methods that have appeared in the

load balancing in distributed computers and Grid systems. Section 2.2 is an overview of

the policies of load-balancing algorithms. Section 2.3 gives a brief overview of

decentralised approaches, which focus on the load-balancing algorithms that utilise

partial information to make decisions.

2.1 Load-balancing algorithms: a simple classification

Many different load balancing algorithms are described in the literature. However, most

of these descriptions are presented in a mixture of text, drawings and pseudo-code, using

inconsistent terminology details. Readers’ ability to evaluate and compare the various

algorithms is severely impaired by the absence of a common reference framework. The

concepts used to classify the algorithms are also useful for the methodical design and

analysis of new load-balancing algorithms. This section presents a simple classification

of load balancing algorithms most relevant to this research.

2.1.1 Static versus dynamic

Load balancing could be done statically at compile-time or, dynamically, at run-time.

Static load-balancing algorithms assume that a priori information about all of the

characteristics of the jobs, the computing nodes and the communication network are

known. Load-balancing decisions are made deterministically or probabilistically at

compile time, and remain constant during run-time. The static approach is attractive

because of its simplicity and the minimised run-time overhead. However, the static

approach cannot respond to a dynamic run-time environment, and may lead to load

imbalance on some nodes and significantly increase the job response time. The majority

of loosely coupled distributed systems exhibit significant dynamic behaviour, having load

varied with time. For these systems, dynamic scheduling, in which policy decisions are

based on the load-state of nodes, is required. As a result, there are fewer studies on static

approaches compared with those on dynamic approaches [43–51].

In contrast, dynamic load-balancing algorithms attempt to use the run-time state

 13

information to make more informative decisions in sharing the system load. Recent

studies have focused on schemes that base decisions directly on the current system state.

Dynamic load-balancing policies [52–135] attempt to dynamically balance the workload

reflecting the current system state, and are therefore thought to be able to further improve

system performance. Thus, compared with static ones, dynamic load-balancing policies

are thought to be better able to respond to system changes and to avoid states that result

in poor performance. The clear disadvantages of dynamic load-balancing policies are that

these policies are more complex than their static counterparts, in the sense that they

require information on the run-time load and activities of state collection. Due to the

communication costs of load information collection and distribution, the communication

cost of job transfer and processing cost of making scheduling decisions, dynamic load-

balancing algorithms definitely incur non-zero run-time overhead. A good dynamic load-

balancing algorithm always makes these costs minimised. Thus, it is now commonly

agreed that, despite the higher run-time complexity, dynamic algorithms potentially

provide better performance than do static algorithms.

Hybrid algorithms [64, 127] combine the advantages of both static and dynamic

strategies. In hybrid algorithms, the static algorithm is considered a “coarse” adjustment,

and the dynamic algorithm a “fine” adjustment. When the static algorithm is used, load

imbalance may result. Once this happens, the dynamic algorithm starts to work and

guarantees that the jobs in the queues are balanced in the entire system. Our algorithms

belong to this category.

2.1.2 Non-preemptive versus preemptive

Dynamic load-balancing policies may be either non-preemptive or preemptive. A non-

preemptive load-balancing policy [53, 90, 110, 117, 119] assigns a newly arriving job to

what appears at that moment to be the best node. Once the job execution begins, it is not

moved, even if its run-time characteristics, or the run-time characteristics of any other

jobs, are changed after assigning the job in such a way as to cause the nodes to become

much unbalanced. An improvement in the spread of load is desirable, but it is accepted

that this does not have to be optimal and that the load at each node need not be fully

 14

equalised. This relaxation allows schemes to be devised that deal with a large-grain

division of the workload, such as at the task level, and that use load transfers sparingly

and thus do not require such high-speed communication between nodes. Non-preemptive

load-balancing policies can be applied to any distributed system; however, they are

particularly suited to loosely coupled systems, which have relatively low-speed inter-

node communication and tend to consist of performance heterogeneous nodes. An

example of such loosely coupled system is computational grids.

By contrast, a preemptive load-balancing policy [80, 89] allows load-balancing

whenever the imbalance appears in the workloads among nodes. If a job that should be

transferred to a new node is in the course of execution, it will continue at the new node.

Since, in most systems, an initial distribution of jobs across nodes makes those systems

appear balanced, they will become unbalanced as shorter jobs complete and leave behind

an uneven distribution of longer jobs. Migration allows these imbalances to be corrected.

However, to migrate a job in execution is much more complex and requires considerable

overheads (caused by gathering and transferring the state of the job, resulting in

performance degradation). If the preemptive policies were attempted in a loosely coupled

large-scale system, the system performance would probably suffer significantly more,

since there would be a large number of messages generated, which would congest the

communication system. The preemptive policies are suitable only for tightly coupled

distributed systems, in which the processing nodes are homogeneous and are connected

by a high-speed low-latency interconnect. Many studies (e.g., [56, 81, 82]) have also

shown that: (1) job migration is often difficult in practice, (2) the operation is generally

expensive in most systems, and (3) there are no significant benefits of such a mechanism

over those offered by non-migratory counterparts. Hence, we consider only non-

preemptive load-balancing strategies.

2.1.3 Site-level versus grid-level

When a job arrives at a site, the load-balancing system of the site will analyse the load

situation of every node in the site and will select a node to run the job. Even though the

site is heavily loaded, each job must queue in the site and wait to be processed. We

 15

classify this kind of load-balancing as site-level load-balancing, for which the objective is

to optimise the system performance in a single site. Many traditional load-balancing

algorithms fall in the category of site-level (e.g., [71, 110, 131]).

On the contrary, if a site lacks sufficient resources to complete the newly arriving

tasks, or the site is heavily loaded, the load-balancing system of the site will transfer

some tasks to other sites, and will increase the system throughput and resource utilisation

in multiple sites. We call this load-balancing as grid-level load-balancing [53, 79, 97,

117, 119, 127, 132]. The focus of this dissertation is on grid-level load-balancing.

2.1.4 Centralised versus distributed

Load-balancing policies can be classified as centralised or distributed. Centralised

policies (e.g., [53, 60, 87]) may be considered as a system with only one load-balancing

decision maker. Arriving jobs to the system are sent to this load-balancing decision

maker, which distributes jobs to different processing nodes. The centralised policies have

the advantages of easy information collection about job arrivals and departures, and

natural implementation that employs the server-client model of distributed processing. It

appears that this policy is closely related to the overall optimal policy, in that there is

only one load-balancing decision maker, which makes all of the load-balancing decisions.

The major disadvantages of centralised policies are the possible performance and

reliability bottleneck due to the possible heavy load on the centralised job load-balancing

decision maker [111]. For this reason, centralised approaches are inappropriate for large-

scale systems; furthermore, failure of the load-balancing decision maker will make the

load-balancing inoperable.

On the other hand, distributed policies delegate job distribution decisions to

individual nodes. Usually, each node accepts the local job arrivals and makes decisions to

send them to other nodes on the basis of its own partial or global information on the

system load distribution. It appears that this policy is closely related to the individually

optimal policy, in that each job (or its user) optimises its own cost (e.g., its own expected

average response time) independently of the others. The distributed load-balancing is

widely used to handle imperfect system load information [64, 111].

 16

There are two kinds of hybrid models. One is a combination of fully centralised

and distributed algorithms [131]. The other is a hierarchical model, which combines

partially centralised and distributed algorithms to overcome some of the limits of fully

centralised algorithms [75, 130, 132]. The first model is applicable only for small-scale

distributed systems; the latter still has fault-tolerance problems, due to single point of

failure in a set of manager nodes of clusters. The system is logically divided into clusters,

and each cluster of nodes will have a single node that maintains the state information on

the nodes within the cluster. The state information on the whole system is maintained in

the form of a tree, where each tree-node maintains the state information on the set of

processing nodes in the sub-tree, rooted by the tree-node. The hierarchical model can be

simplified as two-level if the set of manager nodes are organised in a fully distributed

style [83, 129].

2.1.5 Partial versus global information

How much load information on the system should be collected for load-balancing in the

distributed policies is a major issue. Any dynamic load-balancing algorithms include a

decision part, which may use load information from a subset of the whole system (e.g.,

[69, 119–120]) or information from the whole system (e.g., [90, 118, 127]). The former is

called “partial decision base” and the latter “global decision base”. For an initiating node,

a subset of the whole system may be its nearest neighbours or nodes that are polled at

random or formed by specific criteria. In all cases, the degree of the knowledge of the

system load status and the accuracy of the redistribution decisions conflict. On the one

hand, more load information implies that there is a better chance of reaching a higher

quality of load redistribution decisions. On the other hand, more load information also

means more overhead to collect, and thus more chance for the load information to be out

of date, unpredictably leading to an even worse load imbalance. Therefore, using detailed

load information does not always significantly aid system performance, and a tradeoff

must be made. Xu et al. [105] has shown that nearest-neighbour algorithms using only

local load information work very efficiently.

 17

2.1.6 Sender-initiated versus receiver-initiated

Distributed load-balancing policies can be broadly characterised as sender-initiated and

receiver-initiated. Sender-initiated algorithms [54, 55, 57, 75, 79, 86, 120] let the heavily

loaded sites take the initiative to request the lightly loaded sites to receive the jobs;

receiver-initiated algorithms [54, 55, 75, 79, 86, 120] let the lightly loaded sites invite

heavily loaded sites to send their jobs. Sender-initiated load-balancing algorithms

perform better than receiver-initiated load-balancing algorithms at low or moderate

system loads. At these loads, it is reasoned, the probability of finding a lightly loaded

node is higher than that of finding a heavily loaded node; similarly, at high system loads,

the receiver-initiated policy performs better since it is much easier to find a heavily

loaded node [54].

As a result, adaptive policies have been proposed, which combine the desired

features of both sender and receiver-initiated techniques, and are called symmetrically-

initiated [63, 75, 79, 88]. They seek to find suitable receivers when senders wish to send

jobs, and to find suitable senders when receivers wish to acquire jobs. Efficient

symmetrical policies (e.g., [68]) behave as sender-initiated under low and medium load

conditions, and as receiver-initiated under heavy load conditions, following the result of

Eager, Lazowska, and Zahorjan [55].

2.2 Policies for dynamic load-balancing algorithms

Many issues involved in dynamic load-balancing have already been addressed in load-

balancing algorithms, such as how to measure the load of a processing node, how much

load information we should collect and where they should reside. However, the real

activities happening for different algorithms on differently designed systems may differ

significantly. These issues are usually grouped into several policies (or components) at a

higher level. For example, Xu et al. [112] considers that a dynamic load-balancing

algorithm consists of four components: a load measurement rule, an information

exchange rule, an initiation rule, and a load-balancing operation (defined by location rule,

distribution rule and selection rule); Niranjan et al. [59] groups the issues into a transfer

 18

policy, a selection policy, a location policy, and an information policy. Although the

grouping of the issues and the naming of the policies may differ significantly among

studies, they tend to discuss in common a set of key issues. In this section, we regroup the

issues, name the policies, and discuss their possible choices. The policy names may or

may not mean the same as in other studies.

• Information policy: this decides what, when and where information about states

of other nodes is collected.

• Transfer policy: this determines whether a node is in a suitable state to participate

in a task transfer.

• Selection policy: this decides which task should be transferred, if the node is a

sender.

• Location policy: this locates a suitable transfer partner.

2.2.1 Information policy

Information policy covers most issues related to the load information necessary for

making load-balancing decisions. Information policy decides what information is

collected, and when information about the states of other nodes is to be collected, and

from which nodes. It is also responsible for the dissemination of each node load

information.

2.2.1.1 Load measurement rule

Measuring the load of the various nodes in the system accurately is very important for the

success of a load-balancing algorithm. Measuring the load of the nodes in a distributed

system is an extremely difficult task. Usually, load is measured by a metric, the “load

index” [83]. A number of possible metrics have been studied in the past. These can be

broadly divided into two main categories: simple and complex.

• Simple indices. They consider the load on only a single resource. This approach

usually focuses on the load on the CPU. A simple load index includes processor

queue length, average processor queue length over a given duration, the amount

 19

of memory available, the context switch rate, the system call rate, and CPU

utilisation.

• Complex load indices. They consist of a number of metrics, each relating to a

single resource, such as CPU, disk, memory and network. The metrics that make

up the load index may be combined to give a single load value or may be

represented as a tuple consisting of a number of elements, one per metric. The

load index used in [126] and MOSIX [89] comprises the CPU load and the

amount of free memory. San Luis [115] uses a load index based on the

performance-weighted CPU run-queue length, the amount of free memory, disk

traffic level, and network traffic level. The memory requirements and the desired

response-time of tasks are taken into account in scheduling decisions. Utopia [22]

uses a load index that incorporates: CPU run-queue length, available memory,

disk transfer rate, the amount of swap disk-space available, and the number of

concurrent users. LSF [30] uses the same metrics as Utopia, with three additions:

CPU utilisation, paging rate, and the amount of idle time at processing nodes.

A candidate load index should be easy to compute and correlate well with the parameter

(e.g., the job response time) that is to be optimised. It has been found that simple load

indices are particularly effective and impose less overhead. One of the most effective

load indices is simply the processor queue length, and this choice seems to be unanimous

[54, 83].

In a heterogeneous environment, the load indices from different nodes must be

adjusted to make them comparable. For example, if two different nodes have different

processing power, their CPU utilisation may have to be divided by their processing power

to compare their CPU utilisation load index values. A better measurement may be the

total job execution time [87]. Although in most cases the execution time of a job cannot

be predicted accurately, it can be estimated by parameters such as the size of the program,

the type of the job, or based on past statistics and experience.

2.2.1.2 Load information exchange policies

The information exchange policies can be broadly classified into three types, although

 20

hybrid versions of these types may exist.

• Demand driven policies. Each node collects information when it needs it to make

a load sharing decision. A poll-limit is usually used. The main advantage is that

load information is exchanged only when it is required. This has the following

disadvantages in practice.

• Repeated polling wastes the processing time of the polling sites and polled

sites. This problem becomes significant when the general system load is

heavy. When most of the sites are heavily loaded, they continue to poll each

other for the sparse lightly loaded site. In the worst case, polling may cause

system instability when all the sites are heavily loaded.

• Repeated polling generates a large amount of network traffic. This problem

becomes more significant if the network bandwidth is limited.

• As the job needs to wait for the polling result, polling will increase the

response time of the waiting job. This is a problem if the communication

delay is significant.

• It is difficult to obtain a good value for the probe limit. The probability of a

successful poll (the hit ratio) depends on the load level in the system; no

predetermined number of polls can guarantee a hit. There is little or no benefit

achieved by increasing the poll limit beyond 3 or 4 [91]. Small probe limits,

such as 3, are appropriate as they return most of the benefits of larger values,

at lower cost [62]. In a medium-to-heavily loaded system, if the probe limit is

small, lightly loaded nodes may not be discovered. If the probe limit is large,

then (i) most of the heavily loaded nodes may find the same lightly loaded

nodes and dump their loads to them; and (ii) the problems caused by repeated

polling will multiply.

• Periodic policies. Information is disseminated or collected at regular intervals.

This is simple to implement. However, it is important to determine the most

appropriate dissemination period as overheads due to periodic communication

increase system load and reduce scalability. Here, a fixed amount of state-

collection overhead will be induced in the system because each node collects and

 21

maintains state-information of other nodes, regardless whether this information

will be used. However, there is no polling delay when a task must be transferred.

Mosix [89] used a simple probabilistic model to choose a random subset of hosts

to send information about its available resources at regular intervals and cut down

communication. In one study, the design extended the polling period but maintain

the entire set of hosts to contact [90]. To ensure the system state can still be

reasonably accurate when there are fewer updates, a predictive algorithm based on

L2E predictive filtering model was employed. The image each node has of the

system state (or domain state) may not correspond to the actual system state, due

to delays in the communication network and to the periodic nature of information

collection. In addition, the image a node has about the state may be different from

node to node.

• State-change driven policies. Nodes issue information about their load state only

when it changes by a certain amount [61]. Determining the threshold value is

problematic, because the policy must be sensitive to significant changes but not to

minor fluctuations. State-change policies generally have lower communication

rates than periodic policies. However, if the state at a particular node does not

change for a long period of time, the information held about that node will

become stale. Aged load-state information is unreliable, since there is no way of

telling if the node has crashed or has just not sent a message due to a steady state.

A newly joining node will not receive information concerning steady-state nodes,

even if those nodes are suitable transfer partners. One way to improve the basic

state-change policy is to introduce additional dissemination messages, which are

sent if the load-state does not change for a long period of time. These rules differ

from demand-driven rules in that each node takes the initiative for disseminating

its own state instead of collecting other nodes information.

Various combinations of these types of information exchange policies are possible. An

information exchange policy might be periodic, but a node willing to participate in a task

transfer might poll its best candidate to confirm that its actual state still corresponds to its

local image. A combination of state-change driven and slow periodic update

 22

dissemination was suggested in [58].

2.2.1.3 Where should the load information be maintained?

A central repository can be used to hold load-state information. This is collected from all

of the nodes in the system and made available when a load-sharing decision must be

made. Some centralised implementations are simply responsible for the collection and

dissemination of information, while others additionally act as matchmakers between

sender and receiver nodes. Centralised components can work well in small or moderately

sized systems, but can become communication bottlenecks when the system is scaled up.

Where centralised components are used in the entire system, that system is vulnerable to

the failure of the single component unless some form of backup or replication is provided;

this increases complexity.

Distributed approaches are more difficult to build than their centralised

counterparts. The semantics involved can be complex. Each node collects information

concerning the load state at other nodes in the system. Nodes autonomously base load

sharing decisions on the information they hold. One advantage of distributed

implementations is that the system is not vulnerable to the failure of any single node.

There are also disadvantages: there is no consistent system-wide view of state, and each

node holds different information depending on which other nodes it has communicated

with, how recently that communication took place, and the delay experienced in that

communication. This can lead to instability if there are significant differences in the

views held.

2.2.1.4 How much load information of the system should be collected for load-

balancing?

One extreme option is to collect load information over the global scope, i.e., all of the

processing nodes in the system; another extreme is to use no load information at all of

nodes, other than the node in question. The choices in between these two extremes use

local load information collected from a certain domain of processing nodes in which size

may be either fixed or variable. The global knowledge of the system’s attributes (like the

total work load) is prohibitive, due to the communication overhead produced. This is

 23

especially true for large-scale distributed systems. Thus, the technique of demanding

global information is rejected, and partial information is used instead, such as information

of the neighbourhood of a node.

2.2.2 Transfer policy

A transfer policy determines whether a node is in a suitable state to participate in a task

transfer, either as a sender or a receiver. Many proposed transfer policies are threshold

policies, which may be either based on fixed or adaptive thresholds. One way is to set one

threshold value for the load imbalance (the difference between the largest and smallest

loads on the nodes). If the detected load imbalance is bigger that a preset threshold value,

the transfer is initiated. An equivalent method to this is to set two threshold values, Th and

Tl, by which the nodes are classified into three types, i.e., heavily loaded or sender (if

loads higher than Th), lightly loaded or receiver (if loads lower than Tl), and normally

loaded otherwise [59]. Depending on the algorithms, Th and Tl may or may not have the

same value. The choice of these thresholds is fundamental for the performance of the

algorithm. Clearly, the best threshold values depend on the system load and the task

transfer cost. At low loads and/or low transfer costs thresholds should favour task

transfers, while at high loads and/or high transfer costs remote execution should be

avoided. Although [62] states that the optimal threshold is not very sensitive to system

load, [87] and [93] present techniques that efficiently and in run-time adapt the threshold

to the system load.

Fixed threshold policies mean that the threshold values are not changed when

system loads are changed [119]. There are disadvantages with the fixed threshold policy.

If the fixed threshold value is too small, this still causes “useless” job transfers. If the

fixed threshold value is too large, the effect of using a load-balancing mechanism may be

reduced. Other than using fixed threshold values, thresholds can be set in an adaptive

(relative) fashion, by adjusting them when the global system load is changed. In [61], if

the load of an individual node is above or below the average load over a certain domain

(either the global or some local range) by a preset percentage, then load-balancing actions

are initiated and load is balanced either locally or globally. In another adaptive approach

 24

to determining proper thresholds [87, 93], the average load Lavg is determined first. Two

constant multipliers, H and L, are used in computing the heavy threshold, Th, and light

threshold, Tl. H is greater than one and L is less than one. These two values determine the

flexibility and the effectiveness of a load-balancing mechanism. The heavy threshold, Th ,

is computed as the product of H and Lavg. Similarly, the light threshold Tl is computed as

the product of L and Lavg.

The transfer policy may be either periodic or event-triggered. The algorithm may

periodically check whether the node’s state qualifies itself as a candidate for a task

transfer. However, the great majority of the policies proposed in the literature are event-

triggered. If the state of a node changes, a task transfer may be possible. The state of the

node may change because either a task has ended or a new task has arrived. The transfer

policy can also be triggered because another node is polling the node, either to receive or

to send a task.

For a given policy, a load-balancing policy may be sender-, receiver- or

symmetrically-initiated. Sender-initiated algorithms may be ineffective at high system

loads, because most of the nodes are senders and thus it is unlikely that the majority of

system will ever find a suitable receiver. Even worse, they might overflow some of the

potential receivers with too many tasks. Even if the potential receivers are allowed to

reject additional work sent to them, more control messages will be introduced and useless

work is performed in a system already highly loaded. Under a sender-initiated policy, the

burden of initiating the activity is taken by an already-overloaded node.

Under receiver-initiated policies, this overhead is placed on the underloaded

nodes, which may be adequate. However, if the system is lightly loaded, these policies

will fail to find a suitable sender. How many times, or for so long, should a receiver try to

find this sender? It can suspend its activity after a threshold (or timeout), but then it will

not detect future overloaded nodes unless its activity is periodically reinitiated: a

disadvantage of receiver-initiated algorithms is that the receiver is unaware that the other

nodes became potential senders, because neither these senders notified them.

 25

Symmetrically-initiated transfer policies support load transfers initiated by both

busy and low-loaded nodes [88]. Symmetrically-initiated algorithms are more complex,

but allow the advantages of both sender-initiated and receiver-initiated algorithms to be

exploited. Symmetrically-initiated schemes are potentially unstable: there must be a zone

between the activation thresholds for the sender and receiver parts of the algorithm so

that a node cannot rapidly move between sender and receiver states. Symmetrically-

initiated policies have been found to outperform sender-initiated and receiver-initiated

policies in the presence of small task-transfer delays [92]. However, when the task

transfer delays were increased, the policies were found to perform almost identically.

2.2.3 Selection policy

The role of selection policy is to select tasks for transfer. In sender-initiated schemes,

busy nodes choose tasks to transfer to another node, whereas in receiver-initiated

schemes, lightly loaded nodes inform potential senders of the types of task they are

willing to accept. The policy determines how much load, or how many tasks, to transfer.

A task transfer may be preemptive (e.g., [80, 89]) or non-preemptive (e.g., [52,

119]). Preemptive transfers involve transferring a partially executed task. This is

generally expensive, as it involves collecting all of the task’s state. Non-preemptive-task

transfers involve only tasks that have not begun execution and hence do not require a

transfer of the task state. A node may be overloaded and have no tasks available for non-

preemptive transfer if it is polled by a receiver. A selection policy should consider at least

three factors.

• The overhead incurred in transferring the task should be minimised. Non-

preemptive transfers and small tasks (small amounts of information) carry less

overhead.

• The execution time of the transferred task should be sufficient to justify the cost

of the transfer. Even if task execution is unknown, it should be possible to classify

the tasks as short or long tasks, and to consider only the long tasks for migration.

Some classification errors might be tolerated as load-balancing algorithms are

quite robust with regard to this parameter [56].

 26

• The number of location-dependent resources needed by the selected task should

be minimal.

2.2.4 Location policy

The responsibility of location policy is to find a suitable transfer partner. Location

policies can be distributed, each node selecting a transfer partner on the basis of locally

held information. Location policy, corresponding to information policy, specifies the

balancing domain for load-balancing actions; this could be global, nearest-neighbours, a

group of random polled nodes, or a set or cluster of nodes based on specified criteria.

Alternatively, policies can be devised using a central information source. Busy nodes

attempt to locate transfer partners that have low load levels in sender-initiated schemes.

In receiver-initiated schemes, low-loaded nodes attempt to locate a busy node from which

to transfer work. Five typical policies are listed below.

• Random policies. A transfer partner is selected at random, and its load-state is

ignored. This can result in useless task transfers when an already-busy node

receives extra work, but has been shown to provide performance improvements

over no-load-distribution [58]. The performance improvements stem from the fact

that only busy nodes transmit load, while all nodes are potential receivers.

Random location policies work best when there are few heavily loaded nodes and

many relatively idle nodes. Azar et al. studied an “n-ball n-bin” placement

problem, where n balls are randomly and sequentially placed into n bins. It was

proved that, in the sense of balanced placement, choosing d ≥ 2 bins

independently and uniformly at random and then placing the ith ball in the least-

loaded one of the d bins would improve the result exponentially compared with

that of choosing one bin randomly each time [123]. Mitzenmacher’s works [122]

generalised Azar et al.’s finding, and provided an analytical model to those

randomised schemes used in Zhou’s work [56]. An improved algorithm was

proposed by adding a simple sliding-window technique and a simple, fuzzy

classification technique to the original concept of M. Mitzenmacher’s two choices

(d = 2) in randomised load-balancing [121].

 27

• Threshold policies. The node randomly selects a potential destination node for the

job and probes it to determine its load index. If the load index at the proposed

destination is less than or equal to a preset threshold value, that node becomes the

job’s receiver. Otherwise, another node is randomly selected and probed. Probing

continues until a receiver is found or until the number of nodes probed is equal to

a limit Lp. Threshold location policies are based on the result of the probing

activity; if a receiver has been found, the job is sent there—otherwise the job is

executed locally. The threshold policy was originated by Eager et al., who

referred to it as “Sender’ [55] and “Threshold” [62], and was also simulated by

Zhou [56] and Kremien and Kramer [58]. It corresponds to “Algorithm 1” in the

SAHAYOG tests [77] and to “Forward” in the studies by Mirchandaney et al. [91,

92].

• Lowest policies. Like threshold policies, lowest policies employ a threshold Lp.

However, lowest policies differ from threshold policies in that it probes a group of

nodes until a node with a zero load index is found, or until exactly Lp nodes have

been probed. The lowest location policy is to select the probed node with the

lowest load index as the execution site for the incoming job, provided that the

load index at that node is less than a preset threshold value. Lowest policies have

been simulated by Zhou [56] and are related to an algorithm studied by Theimer

and Lantz [78]. The algorithm originated as “Shortest” in [62], where Eager et al.

concluded that its performance was not sufficiently better than that of threshold

policies to warrant the extra effort expended on information collection.

• Preferred list. Based on the topology of the system, each node orders all other

nodes into a preferred list [124, 125]. A node is the k-th preferred node of one and

only one other node, where k is an integer. If node i is the k-th preferred node of

node j, then node j is also the k-th preferred node of node i. When a node is

overloaded, it will contact the first node found in its preferred list, and attempts to

transfer a task to that node. Although the preferred list of each node is generated

statically, the actual preference of the node in transferring a task may change

dynamically with the states of nodes in its preferred list. If a node’s most

 28

preferred node becomes overloaded, its second preferred node will become the

most preferred.

• Least policies. To differentiate from the location policy lowest, we call this class

of location policies “least”. Least policies differ from lowest policies in that they

do not need to probe nodes, and no threshold is used. The least location policy is

to select the node with the smallest load index as the destination node for

dispatching the jobs on the basis of the information on a specified balancing

domain (e.g., [74, 118, 134]).

In a heterogeneous environment, a node with minimal load, i.e., queue length, does not

mean the best transfer partner for a certain task. Node processing power and task transfer

delay incurred among the node and remote nodes should also be considered in location

policy.

2.3 Existing load-balancing algorithms

Two classes of well-known dynamic and distributed load-balancing algorithms are

presented in this section. The focus is on the load-balancing algorithms utilising partial

information to make decision. Although some algorithms are initially presented for

parallel computers, they are applicable in a distributed computing system with more or

less deficiencies. Thus, these are also introduced here.

Most load-balancing policies execute two activities that require communications:

distribute its own load information and collect other nodes information and transfer tasks.

If each node is required to interact with other nodes, it will have to use mechanisms –

such as broadcast, global gathering, long-distance communication – which are not

scalable and create intolerable overhead or congestion in systems with a large number of

nodes.

To reduce this overhead, in many policies, a node only exchange information and

transfer tasks to its physical and/or logical neighbours. These are usually called

“neighbour-based” load-balancing algorithms. Clustering is another technique to tackle

the problem. The nodes can be partitioned into clusters based on network transfer delay,

 29

where load-balancing operates on two-level: intra-cluster and inter-cluster via cluster

managers or brokers. These are usually called “cluster-based” load-balancing algorithms.

We will give corresponding discussion to these two classes of algorithms below.

2.3.1 Neighbours-based load-balancing algorithms

The neighbours-based approach is a dynamic load-balancing technique that allows the

nodes to communicate and transfer tasks with their neighbours only [65]. Each node

balances the workload with its neighbours so that the whole system will be balanced after

a number of iterations. Since this technique does not require a global coordinator, it is

inherently local, fault tolerant and scalable. Hence, this approach is a natural choice for

load-balancing in a highly dynamic environment [116]. Among of the neighbour-based

algorithms, we are interested in a couple of typical representatives, described as follows.

2.3.1.1 The gradient model

The gradient model (GM) is a demand driven approach [66]. The basic concept is that

underloaded nodes inform other nodes in the system of their state, and overloaded nodes

respond by sending a portion of their load to the nearest lightly loaded node in the system.

The resulting effect is a form of relaxation where tasks transferring through the system

are guided by the proximity gradient and gravitate towards underloaded points. The

scheme is based on two threshold parameters: the Low-Water-Mark (LWM) and the High-

Water-Mark (HWM). A node’s state is considered light if its load is below the LWM,

heavy if above the HWM, and moderate otherwise. A node’s proximity is defined as the

shortest distance from itself to the nearest lightly loaded node in the system. All nodes are

initialised with a proximity of Wmax, a constant equal to the diameter of the system. The

proximity of a node is set to zero if its state becomes light. A node’s proximity may not

exceed Wmax. A system is saturated, and does not require load-balancing if all nodes

report a proximity of Wmax. If the proximity of a node changes it must notify its near-

neighbours. A gradient map of the proximities of underloaded nodes in the system serves

to route tasks through the system in the direction of the nearest underloaded nodes. A task

continues to transfer until it reaches an underloaded node or it reaches a node for which

no neighbouring nodes report a lower proximity.

 30

2.3.1.2 Adaptive contracting within neighbourhood

In the Adaptive Contracting Within Neighbourhood (ACWN) method [74], two

parameters need to be specified to make the contracting decision, min_hops and

max_hops. Here, min_hops specifies the minimum number of hops needed for a drifting

task to travel before it settles into the standing state. This parameter is used to ensure a

newly created task will travel certain distances to reduce the horizon effect. The other,

max_hops, is the upper limit of travelling distance of a drifting task. It ensures that each

newly created task will be sent only to a node within a fixed radius neighbourhood from

its source node. It prevents unbounded message oscillations, and also induces locality

which makes the communication between the creating and created tasks efficient. They

keep track of the number of hops travelled so far for each task c, called c.hops. Thus, at

each node, for a drifting task c, which is either created by themselves or received from

other nodes, we have the following cases: if c.hops < min_hops, a node will contract task

c to its least loaded neighbour no matter its own load; if c.hops > max_hops, task c will

be retained locally, added to the local pool of messages, terminating its drifting state.

Otherwise, the task will be contracted conditionally: if the load on the least-loaded

neighbour is smaller than its own load, the task is contracted out to that neighbour. In this

way, the newly generated task c travels along the steepest load gradient to a local

minimum.

In ACWN, min_hops and max_hops are varied to adapt to the dynamic variations.

Also, each node maintains a separate, independent, version of these parameters. Two

additional parameters, low_mark and high_mark, are used to ascertain the current load

status of a node and its neighbours. A node’s state is considered light if its load is below

the low_mark, heavy if above the high_mark, and moderate otherwise.

In the light-load state, ACWN tends to contract tasks out, since at least one

neighbour is lightly loaded. In the moderate-load state, min_hops set to zero, so that any

new work is kept locally unless a neighbour’s load is smaller than a node's own load by

the value of load-delta. In the heavy-load state, since all neighbours have sufficient work

to do, it is not necessary to balance load between nodes. Therefore, we change max_hops

to zero to retain newly created tasks locally.

 31

This amounts to applying the saturation control technique. They observe from

their experiments the almost same performance for max_hops ≥ 3. Also, the low_mark

between 2 to 5 and high_mark around 8 were found to be satisfactory settings. They also

show that ACWN performed consistently better than the gradient model.

2.3.1.3 Basic (Baseline) diffusion model

Diffusion was first presented as a method for load-balancing in [94]. Diffusion was also

explored in [61] and was found to be superior to other load-balancing strategies in terms

of its performance, robustness, and scalability. In the diffusion method, each node

simultaneously sends workload to its neighbours with lower workload and receives

workload from its neighbours with higher workload. Under the synchronous assumption,

the diffusion method has been proven to converge in polynomial time for any initial

workload distribution given the quiescent assumption that no new workload is generated

and no existing workload is completed during execution of the algorithm [94]. Without

the quiescent assumption, it is possible only to prove that the variance of the unbalanced

workload is bounded [85]. Optimal parameters that maximise the convergence rate have

been derived on mesh, torus, and n-D hypercube [84]. The convergence of the

asynchronous diffusion method has also been proven [95]. A disadvantage of diffusion

approach is that it requires many iterations to achieve load-balancing. Watts and Taylor

[67] overcame this by using a fully implicit diffusion schemes with adaptive time steps.

Another improved diffusion algorithm was derived based on Chebyshev polynomials and

shows significantly faster convergence than baseline diffusion method, but at the

additional cost of calculating two eigenvalues [96].

Diffusion algorithm in heterogeneous environment has been considered. Hui [98,

99] proposed an intuitive approach based on a hydrodynamic analogy, for a

heterogeneous environment characterised by different computing powers and uniform

communication. Diekmann et al. proposed diffusion schemes for a computational

environment characterised by uniform computing powers and different communication

parameters [100]. Elsasser et al. extended these schemes for computational environments

that are heterogeneous both with respect to the processing performances and the

communication speeds [101].

 32

2.3.1.4 Sender initiated diffusion

The Sender Initiated Diffusion (SID) strategy [61] is a, local, nearest-neighbour diffusion

approach which employs overlapping balancing domains to achieve global balancing.

The scheme is purely distributed and asynchronous. Each node acts independently,

apportioning excess load to deficient neighbours. Balancing is performed by each node

whenever it receives a load update message from a neighbour indicating that the

neighbour load is smaller than a preset threshold, LLOW. Each node is limited to load

information from within its own domain, which consists of itself and its immediate

neighbours. All nodes inform their nearest-neighbours of their load levels and update this

information throughout program execution. The profitability of load-balancing is

determined by first computing the average load in the domain. Next, if a node’s load

exceeds the average load by a prespecified amount, Lthreshold, it proceeds to implement the

third phase of the load-balancing process. Task migration is performed by apportioning

excess load to deficient neighbours. Balancing continues throughout program execution

whenever a node’s load exceeds the local average by more than a certain amount Lthreshold.

2.3.1.5 Receiver initiated diffusion

The Receiver Initiated Diffusion (RID) strategy [61] can be thought of as the converse of

the SID strategy in that it is a receiver initiated approach as opposed to a sender initiated

approach. However, besides the fact that in the RID strategy underloaded nodes request

load from overloaded neighbours, certain subtle differences exist between the strategies.

First, the balancing process is initiated by any node whose load drops below a

prespecified threshold (LLow). Second, upon receipt of a load request, a node will fulfill

the request only up to an amount equal to half of its current load (this reduces the effect

of the aging of the data upon which the request was based). Finally, in the receiver-

initiated approach, the underloaded nodes in the system take on the majority of the load-

balancing overhead, which can be significant when the task granularity is fine.

As with the SID strategy, each node is limited to load information from within its

own domain, which consists of itself and its immediate neighbours. All nodes inform

their nearest-neighbours of their load levels and update this information throughout

 33

program execution. When a node’s load drops below the prespecified threshold LLOW, the

profitability of load-balancing is determined by first computing the average load in the

domain. If a node’s load is below the average load by more than a prespecified amount,

Lthreshold, it proceeds to implement the third phase of the load-balancing process. Task

migration is performed by requesting proportionate amounts of load from overloaded

neighbours. However, upon receipt of a load request, a node will fulfill the request only

up to an amount equal to half of its current load. Balancing is activated whenever a node's

load drops below a prespecified threshold and there are no outstanding load requests.

2.3.1.6 Estimated load information scheduling algorithm

In a decentralised dynamic load scheduling algorithm, the Estimated Load Information

Scheduling Algorithm (ELISA), the problem of frequent exchange of information is

alleviated by estimating the load, based on system-state information received at

sufficiently large intervals of time [69]. The algorithm was designed to reduce

communication delays by reducing the need for status exchange.

The basic idea behind ELISA is that at periodic intervals of time, the status

exchange interval, the nodes in the system exchange their status information, which

consists of the queue length at the instant of information exchange and an estimate of the

arrival rate. The instant at which this information exchange takes place is a status

exchange epoch. Each status exchange interval is further divided into equal

subintervals—estimation intervals. The points of division are estimation epochs. At the

estimation epochs, every node estimates the load in the nodes belonging to its buddy set,

which consists of the immediate neighbours only (that is, those nodes which are one hop

away). The status exchange epochs and the estimation epochs together constitute the set

of transfer epochs. At the transfer epochs, rescheduling of jobs is carried out. Thus, the

decision to transfer jobs is taken and the actual transfer of jobs is done at the transfer

epochs. By making the interval between status exchange epochs large, and by restricting

the exchange of information to the buddy set, the communication overheads are kept at a

low value. Finally, by transferring jobs only at the transfer epochs, overheads on the

scheduler are also kept low.

 34

The load scheduling decision is taken as follows: from the estimated queue

lengths of the nodes in its buddy set, and the accurate knowledge of its own queue length,

each node computes the average load on itself and its buddy set. Nodes in the buddy set,

whose estimated queue length is less than the estimated average queue length by more

than a threshold, form the active set. The node under consideration transfers jobs to the

nodes in the active set until its queue length is not greater than the estimated average

queue length. The value of threshold, which is fixed a priori, is of importance to the

performance of ELISA.

A Modified ELISA algorithm is presented in the paper [117]. Their proposed

algorithm considers job migration cost, which is primarily influenced by the available

bandwidth between the sender and receiver nodes, when taking decision for load-

balancing. The job will be transferred only if its expected finish time on destination node

is less than expected finish time on source node. In the sense, the algorithm is similar to

our earlier proposed algorithm Performance-driven Neighbours-based algorithm (P-NB),

which will be introduced in the section 5.3.

2.3.1.7 Recursive search

Arora et al. [119] proposed a highly decentralised, sender-initiated and scalable algorithm

for scheduling tasks and load-balancing resources in heterogeneous grid environments.

Whenever a job is submitted to a node, a decision needs to be made as to whether the job

needs to be transferred according to a preset threshold reflecting by the job queue length.

If the job needs to be transferred to another node, a request is sent to all neighbouring

nodes. Each node, having received a request to send the status of its resources, packs the

information about their current utilisation and sends it back to the requesting node along

the route the request came. This route is piggybacked to the node, which needs to transfer

load. Besides replying to requests, a node recursively pings its neighbours for their

resource status if the total round-trip delay between the sender and its neighbour would

be less than the time for which the internal job queue is emptied at the requesting node.

This allows the time required to look for additional resources to be hidden under

processing. This is a remarkable property of their algorithm. Their goal was to assign

each node a job that utilises its resource in the best possible manner.

 35

2.3.1.8 Discussion

Although a variety of different decentralised algorithms have been studied, most

approaches are not applicable where a system is comprised of heterogeneous nodes

separated by a wide-area broadband network. Previous research [101, 117] that

considered a collection of heterogeneous nodes and different communication capability

among nodes, did not achieve better utilisation of powerful processing nodes in a

heterogeneous system. However, in a computational grid, there are numerous nodes

capable of providing computing resources; some are frequently underutilised and able to

provide powerful computing resources, but others are not. Therefore, when selecting

nodes for distributing tasks, if only a neighbouring node is chosen, the redistribution of

tasks may frequently occur, lowering the execution performance of the system. These

solutions, except the work in [117], do not address the issue of the communication

overhead incurred by frequent message transfer for making better load distribution, even

though the information is restricted to a small domain, such as neighbours.

2.3.2 Cluster-based load-balancing algorithms

Cluster-based load-balancing algorithms have been the subject of several studies (e.g.,

[22, 83, 104, 135]). The nodes can be partitioned into clusters on the basis of network

transfer delay. One node is designated as the cluster manager, which gathers the load

information for other clusters, determines the cluster destination, and determines the

destination within a cluster for a job that has been transferred from another cluster. Each

node communicates only with its cluster manager. These studies involve the following

problems that make them inapplicable for large-scale computing grid environments.

• Each cluster manager needs to have the load information of all other clusters and

all nodes of its cluster for making load-balancing decisions. This introduces

considerable communication overhead.

• Consulting the cluster managers for job dispatching results in non-negligible

overhead and network delay.

• Job migration cost is not considered for load-balancing decision.

 36

• The centralised intra-cluster scheme creates fault-tolerance problems due to single

point of failure.

2.4 Summary

This chapter has provided an extensive overview of existing load-balancing methods,

with a focus on decentralised load-balancing approaches utilising partial information to

make decisions. As discussed in Section 2.3, existing decentralised techniques, which

rely on neighbours or clustering, are not applicable in a large-scale heterogeneous

computational grid. The survey pointed out opportunities for improving the performance

of decentralised load-balancing algorithms, in some cases incorporating good features of

neighbour-based and cluster-based models. In Chapters 4–6, we will describe new

methods to tackle the issues that the existing approaches do not address—issues that are

especially relevant to large-scale heterogeneous computational grids.

 37

3

System model

This chapter presents a scalable, extensible system model for load balancing in a

computational grid. The system model lays the groundwork for the load-balancing

algorithms discussed in the next few chapters. The model is composed of a (1) grid

architecture model, (2) job queue model, (3) communication model, (4) job model, (5)

job migration model, and (6) performance objective. The grid architecture model

provides a representation and organisation of system resources. The job queue model

provides a two-level architecture for the job-waiting queue at each grid site. The com-

munication model provides an estimate of expected communication costs for message

exchange and job transfer among grid sites. The job model provides a representation for

jobs, and defines the job information needed by the load-balancing algorithms. The job

migration model considers techniques for reducing the opportunities for site thrashing

and job starvation. The performance metric for evaluating our load-balancing algorithms

is given in the performance objective.

 38

3.1 Architecture model

It is assumed that the grid system consists of a collection of sites S connected by a

communication network (Figure 3.1). The set S contains n sites, labelled as s1,…,sn.

Logically, the architecture is hierarchical and is divided into four levels: the grid, site,

cluster and node levels. The capacity of resource management is different at different

levels. The node can be a workstation or a processor. The other three levels are now

discussed.

Figure 3.1: Logical view of the grid architecture;
G, S, C are grid, site and cluster levels, respectively.

3.1.1 Cluster level

The cluster level contains a cluster of processors. The processors in a processor cluster

share communication bandwidth and are protected by firewalls from the outside world.

Processor clusters include tightly coupled multiprocessors such as a Sequent (in which

processors communicate via shared-memory), distributed-memory multicomputers such

as a Paragon, and loosely coupled workstations such as a Sun 4 cluster (in which

processors communicate via message passing).

The management of jobs at cluster level has been addressed by many research and

commercial systems, including: Condor [35], Load Sharing Facility (LSF) [30], Portable

Batch System (PBS) [31], LoadLeveler [33], Sun grid Engine/CODEINE [32], Maui [29],

MOSIX [36], COSY [34]. A comprehensive review of seven commercial packages and

12 research packages is given in [42].

 39

3.1.2 Site level

The Site is an organisational entity. Each site contains a processor cluster. Each site has

a broker denoted by the circle (Figure 3.2). On the one hand, each site si can be regarded

as a whole system, and all of its nodes have a common objective. On the other hand, a

site si can fully centrally control the resources of its nodes, but cannot directly operate the

resources of nodes in other sites. In this view, all nodes are cooperative within the same

site.

The site model can be extended to support sophisticated architecture. For

example, a site may contain multiple administration domains. Each site has the freedom

to choose the number of hierarchical levels and of clusters or resources belonging to

each level, such that these numbers will best satisfy its management goals.

To clarify the statement and emphasise our main ideas in the dissertation, we will

simplify the model of grid site to one computing node with a single processor. Our

scheduling can be easily extended to accommodate these complicated cases.

System heterogeneity can be of different kinds—for example, processor speed,

memory and disk I/O. A simpler and more practical solution is to use CPU speed alone.

It is reasonable to assume that a machine with a powerful CPU will have matching

memory and I/O resources. The sites in the grid system may have different processing

power. Processing power of a site si is denoted as APWi. For i≠j, APWi may be different

from APWj. APWi is presented as the number of computational units that the site can

execute per unit of time. The processing power of a grid site si is measured by the

average processing power across all processors within the grid site si if that site has more

than one processor. The most common measure of heterogeneity used in literature is the

ratio of processing power of the system nodes [54]. APWi means the ratio of the average

processing power of site si to the average processing power of the slowest site sj in the

system—in other words, a job that takes one unit of time on the site si requires APWi

units of time on the site sj.

 40

3.1.3 Grid level

All sites at the grid level are organised in a fully distributed way. There is no central

broker in the computational grid. The sites themselves are in a completely connected

graph (Figure 3.1). The grid sites are mutually independent. Each grid site communicates

only with a subset of grid sites while maintaining load information.

3.1.4 Role of site brokers

The site broker handles all communications with other site brokers via core grid

middleware on behalf of the local site, and acts as a grid scheduler. It handles all

communication with local scheduler on behalf of remote sites. Site brokers are software

processes that can run on a computer node in a cluster or on a separate server node.

When the node fails, a predetermined backup node becomes the site broker. The

focus of this dissertation is on the design of algorithmic mechanisms for grid

schedulers.

Figure 3.2: Logical structure of a processing site

3.2 Job queue model

We assume that there is a global job-waiting queue at each site that holds those jobs

waiting to be assigned to local job management system or a remote grid site (Figure 3.2).

Jobs that are submitted to the site are first placed in this queue. The site broker will

 41

determine that the jobs in the global job-waiting queue are processed at local site or at

remote sites. If a job is determined to be processed at the local site, it will be transferred

to the underlying job management system at cluster level within the site. We use GJQ(si)

to denote the global job-waiting queue in site si. The jobs in the global job-waiting queue

are processed in a “first-come-first-serve” order.

The job-waiting queue at site level is different from the job-waiting queue at

cluster level. For the following reasons, we used a job-waiting queue at site level.

• The implementation complexity of pulling a job from the job-waiting queue

managed by cluster-level job management system can be reduced.

• Different load-balancing algorithms can be implemented at site level and have

not any interference with job management system at cluster level. This incurs no

extra work for the underlying job management system.

This approach leads to a flexible and portable solution to the existing grid job

management system. It is a compromise between the benefits obtained from load-

balancing algorithms applied at site level and the implementation complexity introduced

in modifying the job management system running at cluster level. Although a trend is

starting to occur as vendors adopt a grid perspective to scheduling, by combining pairs of

local and grid schedulers into a single scheduler [9, 30, 31, 37], these systems do not

interoperate and are not yet widely used.

3.3 Communication model

The sites S are fully interconnected, such that there is at least one communication path

between any two sites in S. The only way that inter-site communication can occur is

through message passing. There is a non-trivial transfer delay on the communication

network between the sites. The transfer delay is different between different pairs of sites.

The underlying network protocol guarantees that messages sent across the network are

received in the order sent. The sites are interconnected by point-to-point links. There is

no efficient broadcasting service available.

 42

In general, the network performance between any site pair(si, sj) is represented as

two parameters: a transfer delay TDij and a data transmission rate BWij. The

communication time for sending a message of Z bytes between these sites is then given

by TDij+ BWij
Z , where

BWij
Z is the transmission time. The two parameters abstractly

represent the total time for traversing all of the links on the path between si and sj. BWij is

presented as effective data transferring rate in bytes per time of unit, or is characterised in

terms of Kb/s. TDij includes a startup cost and delays incurred by contention at

intermediate links on the path between si and sj. TDij and BWij can be dynamically

forecast by what is known as the Network Weather Service [38]. Other research has been

proposed on estimating host distance between any two IP addresses [39–41].

3.4 Job model

For any site, si∈S, jobs are arriving at si. We assume that the arrival of jobs is a random

process with an average delay, λ
-1, between two successive arrivals (e.g., the arrivals

could be a Poisson process with rate, λ; that is, the delay between two successive arrivals

follows an Exponential law with the same rate of change). The jobs are assumed to be

computationally intensive, mutually independent, and can be executed at any site. Job

execution is not time-shared, but dedicated. As soon as a job arrives, it must be assigned

to exactly one site for processing. When a job is completed, the executing site will return

the results to the originating site of the job. We use J to denote the set of all jobs

generated at S, J = {j1,…, jr}. The following parameters related to the job are created

automatically by the system:

• bornSite(ji) denotes the originating site of the job ji

• exeSite(ji) denotes the executing site of the job ji

• arrTime(ji) denotes the arrival time of job ji, which is the time when the job is

generated at bornSite(ji)

• endTime(ji) denotes the finish time of ji; this includes the job communication time

from bornSite(ji) to exeSite(ji), waiting time queued at the exeSite(ji), processing

times at the exeSite(ji), and the communication time it takes to return the

 43

processing results from exeSite(ji) to bornSite(ji)

• respTime(ji) denotes the finish time of ji. respTime(ji) ≡ endTime(ji) − arrTime(ji).

Each job jx that arrives at a grid site si is represented in two parameters: the amount of

computation and the amount of communication. The values for these two parameters may

be unknown or can be estimated from prediction techniques. The amount of computation

normally has one of the following formats.

• An expected execution time ETC(jx, sstd), that is, the time that would be taken at a

standard platform (with a APW equal to 1) for processing that job. On a site si

with APWi, the expected execution time of a job ETC(jx, si) will therefore be

ETC(jx, sstd)/APWi. We assume that the expected execution time ETC(jx, sstd)

follows a type of probabilistic distribution (for instance, an Exponential,

Hyperexponential or Bounded Pareto distribution).

• The number of computation unit in a job jx is denoted as NCUx. Thus, the

expected execution time for the job jx on site si is
iAPW

NCUx .

In a grid environment, the related file of a job needs to be transferred through much

slower internet links if the job is scheduled to run in a remote site. Therefore, the cost of

file transfers or the amount of communication must be considered in the scheduling

algorithm. The amount of communication is calculated in one of two ways.

A. The file size of a job jx includes input file size A1x and output file size A2x. Assume

that, on average, A1x bytes are required to profile a job and that A2x bytes are required to

return a response for the job. A1x and A2x are represented as the number of packets needed

to be transferred. Thus, the communication time for job jx needed for transfer purpose is

denoted as follows:

commTime(jx) = xj
comT (si, sj) + xj

comT (sj, si)

xj
comT (si, sj) = TDij+

ij

x

BW

A1

xj
comT (sj, si)= TDji+

ji

x

BW

A2

 44

where xj
comT (si, sj) denotes the communication time of the job jx from si to sj, and

xj
comT (sj, si) denotes the communication it takes to return the processing results from sj to

si.

However, due to the changes in the load situations that might occur during the

transmission of the job, this job may have to make several moves before it reaches its

final destination where it will be processed. Thus, we assume that the job jx has been

transferred from the site si to the site sj through the path si= s x1, s x2 , …, s xk =sj, where

si = s x1and sj = s xk . The communication cost is given by the following formula:

j x
comT (si, sj) = ∑

−

=

1

1

k
jx

q
comT (s xq , s xq 1+)

B. The communication time for running a job in a remote site is set to the computation

time divided by CCR, where CCR is the computation to the communication ratio. By

using a range of CCR values, different communication time incurred in transit can be

accommodated. The computation time is the expected execution time ETC(jx, sstd). The

communication time means the total of the communication time of transferring a job

from its bornsite(ji) to its final exesite(ji) and the communication time of sending the

execution results from its exesite(ji) to its bornsite(ji).

3.5 Job migration model

Because each site scheduler acts independently, there is a small probability that a job can

shuttle between sites. This can be prevented in various ways. One approach used

throughout our simulation makes the job join not at the end of the queue, but at the

position where it is computed by an ageing scheme if the job had arrived at that queue

[52]. This can significantly reduce the probability that the job will be transferred again

and can guarantee the minimising of its response time. The ageing scheme is given

below.

∀sx ∈ S, ∀jx ∈ J, a job jx is transferred to the site sx, its position in the global job

queue of the site sx is defined as

 45

POS = 
ζ

xQL


ζ = 1+
η

age

where

• POS is the position of the job jx in the global job queue at site sx.

• QLx is the queue length of global job queue at site sx.

• ζ is an ageing factor and is computed for each job. The ageing factor is used to

enhance the probability that an “older” job will start before the jobs that would

otherwise start.

• The age of a job is set to 1 when it is moved for the first time, and is incremented

by 1 each time the job is moved again.

• η is a constant that can be adjusted empirically to change the extent to which

ageing affects the operation of the scheduler.

The approach promotes the position of transferred job in the global job queue of that site

sx, instead of adding it at the end of the queue. This can considerably reduce the

probability that the job will be transferred again, and guarantees the minimisation of its

response time. We used the approach throughout our simulation to improve the

performance of the proposed algorithm.

A more conservative approach was used to reduce the rate at which jobs are

moved from one site to another. This can be achieved by restricting the maximum

number of jobs transmitted between sites to one job at any given time. This approach is

more robust and requires minimal processing time at each site.

3.6 Performance objective

Our major objective is to minimise the average (overall) response time for a collection of

jobs, here denoted as ART. Minimising the ART of the jobs submitted for processing in a

parallel/distributed system is a critical performance metric for improving the overall

 46

performance of the system. Many load-balancing algorithms have striven to meet this

objective of minimising the ART [45, 54, 56, 97, 118, 128].

The average response time for a collection of jobs is defined by:

ART =
u

u

i
)j(meresponseTi i∑

=1

where u represents the total number of jobs completed for evaluation purpose.

Note that u < r.

To evaluate the performance of our algorithms that developed in Chapter 4–6, we define

the improvement factor of algorithm F over another algorithm G as follows in terms of

average response time of jobs:

)G(ART

)F(ART)G(ART −

where ART(F) denotes the average response time of jobs using algorithm F.

ART(G) denotes the average response time of jobs using algorithm G. A positive value of

the improvement factor indicates an improvement, while a negative value implies

degradation. The value of the improvement factor is presented in terms of percent (%).

3.7 Summary

This chapter has described both a model for presenting grid resource architecture, and a

model for presenting job queue. Then a communication model and job model are also

presented. These two models define the information needed to construct cost functions

for computation and communication. The migration considerations and major

performance objectives were then discussed. The system model forms the cornerstone of

our load-balancing algorithms that are described in the next three chapters.

 47

4

Decentralised and desirability-

aware load-balancing algorithm

This chapter presents a novel load-balancing algorithm for heterogeneous grid

systems, with consideration of site desirability. It provides two definitions of site

desirability: processing power and communication delay. Using site desirability, a set

of partners and neighbours are formed for each site. For each site si in the grid, our

algorithm uses the desirability of other sites to si to form k number of partners and p

number of neighbours for si. The corresponding approaches for constructing partners

and neighbours are also given. A new job arriving at si is immediately distributed to si

or its partner sites. Continuous load adjustment is employed among neighbour sites.

To reduce or minimise the state-collection overhead in our load-balancing algorithm,

state information exchange is performed via Mutual Information Feedback (MIF).

Our algorithms are dynamic, sender-initiated and decentralised.

Section 4.1 describes in detail a desirability-aware load-balancing algorithm.

In Section 4.2, the performance of our algorithm is evaluated in a series of

simulations.

 48

4.1 Desirability-aware load-balancing algorithm

4.1.1 Load index

Most algorithms in the literature have used the instantaneous run-queue length (the

number of jobs being served or waiting for service at the sampling instant) as the load

index [56, 136]. The load index is easily obtained and calculated with minimum

overhead. Thomas Kunz [136] reported that the simple CPU queue length load index

is the most effective. If a site has more than one CPU, a simple modification is to

divide the total queue length by the number of CPUs.

4.1.2 Site desirability

Our objective is achieved by using site desirability to guide load assignments. Site

desirability is based on how site characteristics will affect the performance of future

load balancing. We give two definitions of the desirability of sj to si: desirability based

on the average processing power of sj, and desirability based on transfer delay

between sj and si.

4.1.3 Site-clustering algorithm

Here, the site desirability of average processing power accounts for the site cluster.

Our site-clustering algorithm uses a set of reference sites of size m. The reference

sites are chosen at random, with the only condition that the reference sites be

separated from each other by a big enough difference in processing power to avoid the

situation where two identical or very close reference sites are chosen. Similar

approaches have been widely used to generate proximity information [e.g., 41, 137].

This information is based on the intuition that sites close to each other in processing

power are likely to be similar distances from several selected sites.

These reference sites are sorted by APW in descending order before applying

sites clustering approach. For each grid site si, the clustering algorithm first measures

the difference in APW of site si to the reference sites and calculate a reference vector

<d1, d2,…, dm>. Two grid sites with similar reference vector are ‘close’ to each other

in terms of average processing power. The grid sites are then clustered into C1, C2, …,

Cm clusters. Finally, empty clusters in C1, C2, …, Cm are removed so that we have C1,

 49

C2, …, Cq (q ≤ m), which are also in decreasing order of APW. We denote the cluster

ID containing si as Ωi, with values of positive integers between 1 and q. Sufficient

reference sites will be required to reduce the probability of false clustering where sites

that have very different processing power have similar/close reference vectors.

The approach outlined above is a coarse-grained approximation and is not

effective in differentiating closely located sites. Nevertheless, our simulation results

show that the method works well for our load-balancing scheme. This is largely

because our load-balancing scheme does not require very precise measurements. The

clusters generated are then used to generate partner sites, as described in 4.1.4.

4.1.4 Partners

Each site si automatically maintains k number of partner sites PSeti, which the site

scheduler will use to select a partner site for processing new arriving jobs. When a site

joins the grid system, it will determine its partners. We employed a simple heuristic to

Algorithm 4.1 (Procedure FindPartners(si, k))

Find all sites sj ∈ S (i≠j) with Ωj < Ωi. Denote this set of sites as
Qi
If γ ≥ k /* γ is the size of Qi */
 Select k sites from Qi randomly and add them to PSeti
Else {

l ← k − γ
Add Qi to PSeti.
v ← Ωi
While l > 0 {

Qi ← Qi ∪ Cv
If γ+ ≥ l { /* γ +is the size of Cv */

Select l sites from Cv randomly and add them to PSeti
Break

}
Else {

Add Cv to PSeti.
l ← l − γ+
v ← v+1

}
}

}

 50

find partner sites in terms of their processing power. It is natural to consider more

powerful sites as partners. Here we consider the heterogeneity of sites. The optimal

partners are sites with lightly loaded and greater average processing powers. Pseudo-

code for our partners’ selection procedure is given in Algorithm 4.1. Qi is a preferred

collection of sites of si and are also used in our Partners Adjustment Policy. The sites

in Qi have greater or comparable processing power to site si. In the algorithm, the set

of preferred sites Qi may be updated as necessary. Although the approach described

here does not guarantee the finding of optimal partners, the methodology provides a

scalable and performance-efficient approach to the initial formation of partner sites.

4.1.5 Neighbours

Each site si maintains p number of neighbouring sites, NSeti, which the site scheduler

will use to select a neighbouring site for offloading jobs. This can reduce the cost of

load movement, and enable quick response to load imbalances. Neighbours for each

site are formed in terms of the site desirability of transfer delay. For si, sj is considered

as its neighbouring site as long as the transfer delay between sj and si is within ε times

of the transfer delay with high probability between si and the nearest site. For each

site, the other sites are sorted by transfer delay in ascending order. After this process,

the first-ranked site is chosen as the nearest site. This is described as follows:

ε
nearest

ji

TD

TD=

where TDji denotes the transfer delay from site sj to si. TDnearest denotes the

transfer delay from the nearest site of site si to itself.

Any number of set relationships between PSeti and NSeti is possible, including

intersect, disjoint and include.

4.1.6 Partners Adjustment Policy

The dynamic Partners Adjustment Policy is triggered whenever a site si receives load

information message from a neighbour or partner. If a site sj in the preferred sites Qi

of si is found in the message, it will be involved in the partner adjustment of si. It is

possible that sj becomes a partner site of site si if its load is lower than the highest load

in the partner sites of si. Algorithm 4.2 describes the procedure of Partners

 51

Adjustment Policy when sj receives an information message from its neighbour or

partner site si.

4.1.7 Information policy

We use MIF for load-state information exchange. The information exchange is

restricted to partners and neighbours. Algorithm 4.3 describes the procedure when a

site si transfers a job jx to its neighbour or partner site sj for processing. si appends the

load information of itself and ωP (a small positive integer) random neighbours or

partners to the job transfer request TR sent to sj by piggybacking. sj then updates the

corresponding load information in its state object by comparing the timestamps, if the

sites contained in the transfer request belong to its neighbours or partners. Similarly, sj

inserts its current load information, and ωP random sites from its NSetj and PSetj in

the job acknowledge AR or completions reply CR to si, so si can update its state

objects.

For any site si∈S, if the state object element Oi[j] (∀sj ∈ NSeti ∪ PSeti, i ≠ j)

has not been updated for a predefined period TP, then the load-balancing scheduler

will send an information exchange message to sj. The procedure is the same as the

algorithm 4.3.

The MIF method is an alternative to the periodic information exchange

method and its correspondingly high messaging overhead. Under the MIF method, the

processing site will return its current load and the load of ωP random sites, along with

the ACK message or completion reply CR, back to the forwarding site. As such, the

overhead is minimal.

Algorithm 4.2 (Procedure PartnersAdjustment (sj, k)):

S1 ← φ
∀sy ∈ Y: If (sy ∉ NSetj ∪ PSetj) AND (sy ∈ Qj) S1 ← S1 ∪ sy
If S1 ≠ φ {

S1 ← S1 ∪ PSetj
Sort S1 by LD in ascending order
Remove all sites from PSetj
Select the first k sites from S1 and add them to PSetj

}

 52

The MIF method has another advantage: the rate of load dissemination is

directly tied to the job arrival rate. An increase in the job arrival rate means that each

node receives initial job requests more frequently, which means that each node

forwards job requests more frequently and in turn receives load information more

frequently. Therefore, the load dissemination rate is automatically adjusted to the

request rate.

4.1.8 Transfer policy and location policy

Our transfer and location policies are a combination of two policies—Instantaneous

Distribution Policy (IDP) and Load Adjustment Policy (LAP). These are described

below.

4.1.8.1 Instantaneous Distribution Policy

When a new job arrives at site si, the policy decides whether it is to be sent to the

Algorithm 4.3 (procedure of job transfer and information exchange):

Steps processed in si:
1. Y ← si + {ωP random sites from NSeti∪PSeti − sj}

// si select neighbours or partners for information exchange
2. ∀sy ∈ Y, si appends (Oi[y].LD, Oi[y].LT) to the job transfer request TR
3. si appends bornsite(jx) to TR
4. si sends message TR to sj

Steps processed in sj:
Upon receiving TR:
1. ∀sy∈Y: If (Oi[y].LT > Oj[y].LT) AND (sy∈NSetj∪PSetj) Oj[y] ← Oi[y]

// sj updates the state object using si’s info
2. Z ← sj + {ωP random sites from NSetj∪PSetj-si}
3. ∀sz∈Z, sj appends (Oj[z].LD, Oj[z].LT) to the acknowledge reply AR
4. sj sends message AR to si

Upon completion of job jx:

1. Z ← sj + {ωP random sites from NSetj∪PSetj − si}
2. ∀sz∈Z, sj appends (Oj[z].LD, Oj[z].LT) to the completion reply CR
3. sj sends message CR to bornsite(jx) = si

Steps processed in si:
Upon receiving the reply AR or CR:

∀sz∈Z: If (Oj[z].LT > Oi[z].LT) AND (sz∈NSeti ∪ PSeti) Oi[z] ← Oj[z]

 53

global job queue of si or one of its partner sites. If the existing partner sites are already

overloaded, it is placed in the global job queue of si and involved in load balancing

performed by another policy at a later time (Section 4.1.8.2). The policy has two

advantages: First, the policy try to control the job processing rate on each site in the

system; Second, the policy makes more powerful sites carry more loads, and jobs

executed at fast sites are more likely to execute at a high speed. If there are two

partner sites with the same minimum load, the nearest partner site is chosen.

Algorithm 4.4 describes the IDP for si.

4.1.8.2 Load Adjustment Policy

The Load Adjustment Policy for a site si tries to continuously reduce load difference

among si and its neighbours NSeti by transferring jobs from heavily loaded sites to

lightly loaded neighbouring sites. The policy is triggered whenever si receives load

information from a neighbour. The policy will use the most recent load status

information to decide whether a transfer is initiated. An adaptive threshold policy is

used so that the thresholds are adjusted as the system load changes. Sites with loads

Algorithm 4.4 (Instantaneous Distribution Policy):

∀jx ∈ J with bornSite(jx) = si ∈ S

Let LDmin ← Min{ Oi[k].LD | sk ∈ si + PSeti} /* the minimum
load among site si and its PSeti */
If (Oi[i].LD – LDmin < θ) /* θ is a positive real constant close to
zero */

GJQ(si) ← enqueue(jx) /* put the job jx in the global job
queue GJQ(si) */

Else {
Transfer the job jx to the partner site sj having LDmin
Update Oi[j].LD

 }

Algorithm 4.5 (Load Adjustment Policy):

If Oi[i].LD > LDavg {
jx ← dequeue(GJQ(si))
Transfer the job jx to a neighbour site sj where Oi[j].LD =
Min{ Oi[k].LD | sk ∈ NSeti}

}

 54

that are higher than the average load are considered as senders. Once si makes a

transfer decision, the last job waiting in GJQ(si) is considered first for transfer. If

there are two neighbouring sites with the same minimum load, the faster neighbouring

site is chosen. The algorithm 4.5 describes the LAP for a site si.

4.2 Performance evaluation

We consider only sender-initiated algorithms. In the simulation, our algorithm

(labelled as DA) is compared with the Neighbours-based load-balancing algorithm

(e.g., [105, 106]) (labelled as NB). For the NB, each site is limited to load information

from within its own domain, which consists of itself and its neighbours. If the load of

a site load exceeds the computed average load in its domain, load balancing is

initiated. We select the algorithm because it represents a typical class of decentralised

approaches and bears similarity to our work. The definition of neighbours and

approach for information update in the NB is the same as ours.

4.2.1 Simulation model

In this section, we use simulations to study the performance of the algorithms under

different system parameters. Nine assumptions were devised for the simulation model.

These are:

• All of the work is carried out on a grid system that consists of n sites. The

average processing power of sites is assigned in a specified range. According

to the different degrees of heterogeneity in the average processing power of

sites, several different heterogeneous systems are produced.

• The reference sites are chosen randomly and are separated from each other at

least Df percent difference in processing power.

• Jobs arrive at each site si, i=1, 2,…, n according to a Poisson process with rate

λi = λ × Pi, where Pi=1/n. The actual inter arrival time of jobs is adjusted to

give the required overall average system loading (see last bullet point).

• The expected execution times of jobs are assumed to follow an exponential

distribution with a mean of X time unit.

• The transfer delay that may be incurred between any site pairs in the grid

system is chosen from a lognormal distribution with a mean of τ time unit and

 55

a standard deviation σc.

• The CCR is chosen randomly in a specified range.

• The partner set of each site need to be provided before our algorithm starts to

run. It is based on the method described in Section 4.1.3.

• The neighbours of each site are fed to the simulator before the algorithms

starts to run. They are based on the transfer delay generated from the

distribution of mean transfer delay. The sites are chosen as its neighbours,

according to the method described in Section 4.1.4.

• Let ρ be the required average system load for our simulation, which is the

average job arrival rate divided by the average job processing rate. Using this

definition, we adjust the job mean inter-arrival time 1/λ required to get the

desired ρ.

Table 4.1: Simulation parameters (tu = time unit, pt = percent)

Simulation parameter Value
Size of system, n 32
The number of reference sites, m 12
The difference of APW among reference sites,
Df

10 pt

Mean processing time of system jobs, X 1.0 tu
The computation to communication ratio, CCR {0.1, 02, 0.5, 1, 2, 5, 10}
Mean transfer delay, τ 0.05 tu
Standard deviation of transfer delay, σc 50 pt
Distance coefficient to from a site to its nearest
site, ε

1.5

Period for periodic information exchange, Tp 10 tu
Number of partners, k 4
Number of random partners/neighbours for
information update, ωP

2

Table 4.1 shows the values of the parameters used in the simulations. Table 4.2 shows

heterogeneous system configurations, in which the third column contains the APW of

each of the four site types. The second column contains four site types and the number

of sites in the system corresponding to each site type. An exception for heterogeneous

system HS3 is that a value is first randomly chosen from a range of [10, 100], and

then the value is divided by 10 to generate the APW of a site. We used the first 2000

jobs to bring the system to a steady state. We traced the arrival time, processing time

 56

and finish time from j2000 to j9999. Here u equals to 8000 (for evaluation purpose). The

simulation does not end until all jobs between j2000 and j9999 have completed. For each

site, we recorded the number of completed jobs. After each simulation run, we

computed the average response time of jobs (ART). We carried out each measurement

five times with different random seeds.

Table 4.2: Heterogeneous system configurations

Heterogeneous systems Sites split (fraction) APW
HS1 3/8, 1/4, 1/4, 1/8 [1, 2, 5, 10]
HS2 12, 8, 6, 6 [1, 1.5, 2, 3]
HS3 Random [10, 100] / 10

4.2.2 Effect of system heterogeneity

We carry out a series of simulations with the algorithms described above for three

different heterogeneous systems shown in Table 4.2, under different system utilisation

parameter ρ.

We first considered only situations where the fastest sites have up to 10 times

higher relative processing power than the slowest site, because this is true of most of

the current heterogeneous grid systems. In Table 4.2, we present a highly

heterogeneous system configuration HS1 with four different processing powers. We

varied the system loading by varying the mean inter-arrival time (initiation time) of

the jobs, 1/λ. Results are shown in Figure 4.1 and Table 4.3.

1
2
3
4
5
6
7
8
9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.1: Effect of system with high heterogeneity

 57

Table 4.3: Improvement factor (in percent) of DA over NB in Figure 4.1

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

NB 33.34 35.32 34.41 33.69 36.92
Average system loading, ρ

 0.6 0.7 0.8 0.9
Average
(0.1–0.9)

NB 32.62 22.96 20.72 17.14 29.68

We can conclude that NB behaves poorly in a highly heterogeneous system. DA gives

the minimum ART across all values of ρ. At light or medium system loading (10–

60%), DA performs significantly better than NB. For example, at system loading of

50%, the ART using DA is 36.92% less than NB and the difference reaches the

highest point. When the system loading becomes high, the difference between the

ART of NB and DA decreases. At high system loading of 90%, DA yields the ART,

which is 17.14% less than NB. DA has an average improvement factor of 29.68%

over NB. Analysis of the results revealed the following reasons for the relative

performance of each algorithm in terms of the ART.

• When the system loading is light or moderate for DA, IDP plays a crucial role

and LAP makes little influence on the ART of the jobs. NB transfers a job to

an idle neighbouring site, which can be much slower in a highly

heterogeneous system than a faster non-neighbouring site that has only a small

amount of jobs in the queue (or that is currently processing a job and has an

empty queue).

• At high system loading, NB tends to dispatch jobs to a neighbouring site

independently of its relative processing power. In contrast, DA first dispatches

new jobs to faster partner sites with minimum load, which means that it is

more likely for faster sites to shorten the queue length and reduce the ART. As

a result, the ART is smaller compared with NB, which contributes to a better

ART.

 58

1
2
3
4
5
6
7
8
9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.2: Effect of system with low heterogeneity

Table 4.4: Improvement factor (in percent) of DA over NB in Figure 4.2

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

NB 17.50 20.97 14.58 17.25 19.17
Average system loading, ρ

 0.6 0.7 0.8 0.9
Average
(0.1–0.9)

NB 18.30 15.54 8.86 5.73 15.32

Secondly, we focused our analysis on the case where the system is much less

heterogeneous. We consider a low heterogeneous system HS2 that the processing

power of the fastest site is only three times as high as the processing power of the

slowest site. By observing the results shown in Figure 4.2 and Table 4.4, we conclude

that DA has a lower ART than NB under all loads, but that the difference is not

significant. DA has an average improvement factor of 15.32% over NB. The

conclusion is due to the fact that IDP makes main contribution at low or medium

system loading.

Lastly, we studied a system with randomly generated heterogeneity. We randomly

generated one heterogeneous grid system HS3 and computed the ART by using NB

and DA. On average, DA performs better than NB (Figure 4.3 and Table 4.5), by

22.41%.

 59

1
2
3
4
5
6
7
8
9

10
11
12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)
NB

DA

Figure 4.3: Effect of system with randomly generated heterogeneity

Table 4.5: Improvement factor (in percent) of DA over NB in Figure 4.3

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

NB 38.29 32.07 28.07 23.09 26.41
Average system loading, ρ

 0.6 0.7 0.8 0.9
Average
(0.1–0.9)

NB 18.45 15.44 11.50 8.33 22.41

4.2.3 Job completion statistics

One of the aims of this study was to obtain insight into how best to allocate the

workload among the component sites of a heterogeneous grid system. This could then

be used to develop heuristics for designing and evaluating load-balancing algorithms.

This section looks at the utilisations of the different class of sites in the HS1 and HS2

heterogeneous systems, at overall system loadings of 0.5 and 0.9, for the two

algorithms DA and NB, as shown in Figures 4.4–4.7. The fractions of total jobs are

computed as the total number of jobs that completed at each type of sites divided by u.

At the average system loading of 0.5 for HS1 and HS2 heterogeneous systems,

DA tends to underload the less powerful sites, and thus allocates a disproportionate

share of the work to the more powerful sites. The difference between the algorithms is

more marked for the highly heterogeneous system HS1, where there are more

powerful sites. However, NB tends to overload the weaker sites (50% system loading);

this is because NB algorithm does not consider heterogeneity in average processing

power among sites while assigning load. At the system loading of 0.9 for HS1 and

 60

HS2 heterogeneous systems, NB reduces load at weaker sites and increases load at

more powerful sites. On the contrary, DA increases some loads at weaker sites and

reduces some loads at more powerful sites, because jobs may transfer to a less

powerful neighbouring site.

0.21
0.24

0.29
0.26

0.07

0.16

0.35

0.42

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 5 10

APW of four site types in the system HS1

F
ra

ct
io

n
s

of
 t
ot

a
l j

o
bs

NB

DA

Figure 4.4: Job completion statistics at the system loading of 0.5 in the system
HS1

0.29
0.36

0.170.18

0.32
0.38

0.18
0.12

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 5 10

APW of four site types in the system HS1

F
ra

ct
io

ns
 o

f
to

ta
l j

ob
s

NB

DA

Figure 4.5: Job completion statistics at the system loading of 0.9 in the system
HS1

 61

0.32

0.26 0.28
0.33

0.18

0.26
0.24

0.13

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

1 1.5 2 3

APW of four site types in the system HS2

F
ra

ct
io

n
s

o
f
to

ta
l j

o
b
s

NB

DA

Figure 4.6: Job completion statistics at the system loading of 0.5 in the system

HS2

0.27 0.25
0.29 0.27

0.23 0.22
0.28

0.19

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

1 1.5 2 3

APW of four site types in the system HS2

F
ra

ct
io

ns
 o

f
to

ta
l j

ob
s

NB

DA

Figure 4.7: Job completion statistics at the system loading of 0.9 in the system

HS2

4.2.4 Scalability

To explore how the size of the system (in terms of computing sites) affects the

performance of the algorithms according to ART, we tried to simulate them at system

loadings of 0.5 and 0.9 while increasing the number of the sites. Results are presented

for system sizes from 16 to 450. We created 18 different systems, with sizes of 16, 25,

32, 50, 64, 80, 100, 120, 140, 160, 200, 220, 250, 280, 300, 350, 400, and 450. For

each system size, we used the heterogeneous system HS3. The performance of both

algorithms at the system loading of 0.5 and 0.9 is given in Figure 4.8–4.9 and Table

4.6–4.7. The improvement that DA offers to NB varies from 13.47–27.33% at the

 62

system loading of 0.5, and from 3.78–12.53% at the system loading of 0.9, depending

mainly on the heterogeneity of system. DA had an average improvement of 19.23%

and 7.88% over NB at system loading of 0.5 and 0.9, respectively.

4

5

6

7

8

9

10

16 46 76 106 136 166 196 226 256 286 316 346 376 406 436 466

System size, n

A
R

T
 (

tim
e

 u
n

it)

NB

DA

Figure 4.8: Evaluation of scalability with different size at the system loading of
0.5

Table 4.6: Improvement factor (in percent) of DA over NB in Figure 4.8

System size, n
 16 25 32 50 64 80 100

NB 24.97 22.21 25.31 27.33 16.56 13.47 16.62
System size, n

 120 140 160 200 220 250 280
NB 18.53 14.75 20.24 19.68 15.47 23.44 15.53

System size, n
 300 350 400 450

Average

NB 16.80 15.73 22.21 17.33 19.23

 63

11

12

13

14

15

16

17

16 46 76 106 136 166 196 226 256 286 316 346 376 406 436 466

System size, n

A
R

T
 (

tim
e

u
ni

t)

NB

DA

Figure 4.9: Evaluation of scalability with different size at the system loading of
0.9

Table 4.7: Improvement factor (in percent) of DA over NB in Figure 4.9

System size, n
 16 25 32 50 64 80 100

NB 3.78 4.59 9.43 4.48 7.21 5.87 8.40
System size, n

 120 140 160 200 220 250 280
NB 7.98 7.31 10.60 8.58 7.30 12.53 9.02

System size, n
 300 350 400 450

Average

NB 6.55 8.94 8.60 10.73 7.88

4.2.5 Effect with different job arrival patterns

All the results discussed in the previous simulations are generated under the

assumption that all sites have the same job arrival rate. In reality, job arrival rates

usually differ from one site to another. To evaluate the effect of different job arrival

rate on the ART, we have conducted another simulation, in which we randomly chose

ten of the sites as lightly loaded site (ρ = 0.3), eleven of the sites as moderately

loaded sites (ρ = 0.6) and eleven of the sites as highly loaded sites (ρ = 0.9). The HS1,

HS2 and HS3 system setting were used as the base configurations in the section. The

results shown in the Figure 4.10 and Table 4.8 illustrate that DA has an average

improvement of 27.13%, 11.19% and 19.23% over NB in the HS1 system, the HS2

 64

system and the HS3 system, respectively.

5.64
4.20

7.80

4.11 3.73

6.30

0

2

4

6

8

10

HS1 HS2 HS3

Heterogeneous grid systems

A
R

T
 (

tim
e

 u
ni

t)
NB

DA

Figure 4.10: Effect with different job arrival patterns in three different kinds of

heterogeneous grid systems

Table 4.8: Improvement factor (in percent) of DA over NB in Figure 4.10

 HS1 HS2 HS3
NB 27.13 11.19 19.23

4.2.6 Sensitivity to the variance in job inter-arrival times

The burstiness of the job arrivals may cause performance deterioration [48, 56]. The

burstiness can be measured by the coefficient of variation (CV) of the job inter-arrival

times (the CV of a random variable is calculated as its standard deviation divided by

its mean) [48, 56]. For a Poisson arrival, the CV of the inter-arrival times is 1.

However, the job arrivals in real environments tend to be burstier than this. Job traces

in a real computing system are analysed in [56], which showed that the CV of the

inter-arrival times is 2.64. Job arrivals can be modelled using a Hyperexponential

distribution [48].

In this simulation, the system HS3 is used. The job arrivals are modelled by a

two-stage hyperexponential distribution, in which the CV can be adjusted by changing

the distribution parameters. Figure 4.11 and 4.12 show the effect of the CV of the

inter-arrival times on the ART, where the CV increases from 1.0–3.0 with increments

of 0.5, while the average arrival rate remains unchanged. We show only the results for

 65

the case where the average system loading is 0.5 and 0.9 as the results for other

workload levels demonstrate similar patterns.

5.5
6

6.5
7

7.5
8

8.5

1 1.5 2 2.5 3

CV of the job inter-arrival times

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.11: Sensitivity to the variance in job inter-arrival times (at the system
loading of 0.5)

Table 4.9: Improvement factor (in percent) of DA over NB in Figure 4.11

CV of the job inter-arrival times
 1 1.5 2 2.5 3

Average

NB 26.41 27.04 27.85 27.81 27.20 27.26

10
11
12
13
14
15
16

1 1.5 2 2.5 3

CV of the job inter-arrival times

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.12: Sensitivity to the variance in job inter-arrival times (at the system

loading of 0.9)

 66

Table 4.10: Improvement factor (in percent) of DA over NB in Figure 4.12

CV of the job inter-arrival times
 1 1.5 2 2.5 3

Average

NB 8.33 10.12 9.04 10.21 10.85 9.71

It can be seen in Figure 4.11 and 4.12 that, under these two algorithms, the ART

increases as the CV increases, as is to be expected. When the system loading is 0.5

(Table 4.9), DA outperforms NB by 27.26%, while there still is an average

improvement factor of 9.71% over NB at the system loading of 0.9 (Table 4.10).

These results suggest that the burstiness of job arrivals does not notably impair the

advantages of the DA workload allocation strategy.

Figure 4.13 shows the ART as a function of the workload level when the CV is

set to 3.0. The performance curves of DA and NB demonstrate similar patterns to

those previously seen in Figure 4.3. When the system loading is 0.1 (Table 4.11), DA

outperforms NB by 38.87%, while the advantage is 10.85% when the system loading

is 0.9. These results indicate once again that DA consistently performs better than NB,

even if there is higher burstiness in job arrivals.

2
4
6
8

10
12
14
16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.13: Sensitivity of performance to different system loading (CV equals to
3)

 67

Table 4.11: Improvement factor (in percent) of DA over NB in Figure 4.13

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

NB 38.87 36.43 28.72 24.32 27.20
Average system loading, ρ

 0.6 0.7 0.8 0.9
Average
(0.1–0.9)

NB 19.32 15.71 10.56 10.85 23.55

4.2.7 Sensitivity to highly variable job sizes

We assume Exponentially distributed job sizes in previous simulations. The studies

[80, 109] have found that job size distributions exhibit a heavy-tailed property in most

computing systems. In this section, we examine jobs with a Bounded Pareto

distribution that has considerably more variability in job size. We use a Bounded

Pareto distribution to bound the mean job size while retaining a large variance of job

sizes.

The probability density function of the Bounded Pareto Distribution B(min,

max,α) is defined as follows [109]:

f (x) =
()

1

1
−−

−
α

α

αα
x

maxmin/

min
 maxmin ≤≤ α

where min and max are the lower and upper bounds of job size, respectively,

and α is a parameter that reflects the variability of job size.

Figure 4.14 shows performance under a Bounded Pareto workload (α = 1.2,

min = 0.203901, max = 1000) with three different values for the arrival rate λ and the

max value. This means that the maximum job size is 1000 times the average job size;

min was chosen to set the mean job size at 1.0 for these values of α and max.

Once again, DA performs substantially better than NB over a range of

situations of system HS3 loading. When the system loading is 0.1 (Table 4.12), DA

outperforms NB by 39.44%, while the advantage is 8.73% when the system loading is

0.9. This is mainly because, the large jobs are dispatched to faster site for processing

with high probability. For NB, the larger jobs may be placed at slower sites for

 68

processing. This suggests that site selection may play a more important role under

workloads with highly variable job sizes. Thus, NB is more sensitive to the highly

variable job sizes and it is more likely to reduce the ART for DA.

0
5

10
15
20
25
30
35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.14: Sensitivity of performance to highly variable job size

Table 4.12: Improvement factor (in percent) of DA over NB in Figure 4.14

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

NB 39.44 36.91 29.31 31.33 27.84
Average system loading, ρ

 0.6 0.7 0.8 0.9
Average
(0.1–0.9)

NB 26.02 16.35 14.68 8.73 25.62

4.2.8 Sensitivity to the transfer delay ττττ

The delay in load information update is an important issue in grid load balancing. The

lag time in disseminating load information is typically much larger than that in a LAN

and can vary greatly due to network congestion. The probability that the messages

carry up-to-date information depends on the distance between the sending and

receiving site and on the load dynamics at the sending site. Therefore, it is necessary

to study the effect of transfer delay on the load balancing.

In this simulation, we compared information exchange policy via MIF with

Periodic information exchange policy. The Periodic information policy here means

each site disseminates its load information at regular interval to all its neighbouring

sites and all sites that has chosen them as partners. The value of time interval for

 69

Periodic information policy was set to 1 time unit.

10

15

20

25

30

0.05 0.1 0.15 0.2 0.25 0.3

Mean transfer delay, τ

A
R

T
 (

tim
e

 u
ni

t)
Periodic(1)

MIF

Figure 4.15: Sensitivity of information exchange policy MIF to the transfer delay

Table 4.13: Improvement factor (in percent) of MIF over Periodic in Figure 4.15

Average system loading, ρ
 0.05 0.1 0.15 0.2 0.25 0.3

Average

Periodic (1) 4.47 7.48 14.96 21.63 25.49 27.50 16.92

The system HS3 loading is kept same while the mean transfer delay τ is changed from

0.05 to 0.30 at a step of 0.05. We show only the result for the case where the system

loading is 0.9 as the difference between these two information policies is insignificant

under the light or moderate system loading. Figure 4.15 shows that the ART for using

both information policies increases when the mean transfer delay increases. This is

because the transfer delay between sites and rapid changes in state of site sometimes

make the status information messages obsolete by the time they reach their

destination. It is possible that the scheduler has not received the updated load

information from a remote site when a new job arrives. Figure 4.15 illustrate the

following points:

The increasing rate of MIF policy is very smaller than that of Periodic policy.

It is especially apparent when the mean transfer delay exceeds 0.20. The MIF policy

has an average improvement of 16.92% over Periodic policy (Table 4.13). For

Periodic policy, a lightly loaded site can quickly become overloaded because a few

schedulers send jobs to it before the new load information is available. This is known

as the Herd effect [72] and often leads to incorrect job distribution and poor

 70

performance. The effect becomes more serious if the transfer delay is significant. In

contrast, the MIF policy appears to include a “random” component that makes the per-

site updates desynchronise the sites enough to reduce the herd effect; this may benefit

jobs arriving in the future, thereby reducing the ART. The stochastic approach can

avoid system instability when all sites transfer the jobs to the site estimated to have

minimum load.

4.2.9 Sensitivity to the number of random sites ωωωωP

We investigated the sensitivity of MIF policy to the number of random sites for

information update, ωP with different values. We varied the number of random sites

while keeping the HS3 system loading at a constant ρ = 0.9. It is intuitive that the

larger the number of sites included in the information exchange message from each

site, the better the performance. However, the simulation results illustrate that

including more than two sites did not further improve system performance (Figure

4.16). Therefore, we selected two sites in the information exchange message from

each site. We did not give the result for the case where the system loading ρ is light or

moderate, as there is little difference by applying different number of random sites.

10

11
12

13

14

1 2 3 4

The number of random
partners/neighbours, ω p

A
R

T
 (

tim
e

 u
ni

t)

MIF

Figure 4.16: Sensitivity of MIF to the number of random sites

4.2.10 Sensitivity to interval Tp

The relationship was explored for ART and Tp (Figure 4.17), which shows results for

the MIF policy for updated intervals of several values of Tp in the system HS3. The

system loading was kept at 0.9. The best performance is yielded when the update

interval is shortest (Tp equal to 1). This is due to the quality of the information on

 71

which the load-balancing algorithm acts, which improves in proportion to the

frequency with which information is distributed. However, it is clear that the

improvement is slight for Tp of 1, 5, and more than 10. If a site has not received the

updated information from another site at time interval Tp, it sends a request message

to that site, which replies with the required information. This generates a high volume

of messages when a shorter interval is used.

10.5
10.6
10.7
10.8
10.9

11

0 5 10 15 20

Period of periodic information exchange, T p

A
R

T
 (

tim
e

 u
ni

t)

MIF

Figure 4.17: Sensitivity of information exchange policy MIF to the period for
periodic information exchange

We suggest that an update interval of 10 is appropriate for the MIF policy, because it

is a compromise between the performance obtained by the policy and the network

overhead introduced in the system by the policy.

4.2.11 Sensitivity to the number of partner sites

We varied the number of partners of a site while keeping the system HS3 loading ρ at

a constant 0.5 and 0.9. Figure 4.18 illustrates this from 1–8 partner sites.

5

7

9

11

13

1 2 3 4 5 6 7 8

Number of partner sites, k

A
R

T
 (

tim
e
 u

ni
t)

0.5

0.9

Figure 4.18: Sensitivity of algorithm DA to the number of partner sites

 72

The ART goes down as the number of partner increases. However, the improvements

come at a decreasing rate. In moving from 4 to 8 partner sites, the benefits of load

balancing are very few or do not exist, and there seems to be a saturation point. This

suggests that a small number of partner sites are more effective with respect to load

balancing.

4.2.12 Sensitivity to distance coefficient εεεε

The HS3 system was employed as the base configuration. All runs were performed at

system loadings of 0.5 and 0.9. The system loading was kept the same while the value

of ε was changed from 1.2 to 1.75. Figure 4.20 illustrates the following points. The

ART goes down as the value of ε increases. However, the improvements come at a

decreasing rate. In moving from a value of 1.5 to 1.75, the benefits of load balancing

do not exist, but there seems to be a saturation point. This suggests that a value of 1.5

can be more effective with respect to load balancing. At a system loading of 0.5, the

same conclusion was drawn. Thus, we do not give the result here.

10
11
12
13
14
15
16

1.25 1.5 1.75

Distance coefficient, ε

A
R

T
 (

tim
e

 u
ni

t)

NB

DA

Figure 4.19: Sensitivity of algorithm DA to distance coefficient εεεε

4.2.13 Sensitivity to the number of reference sites

We varied the number reference sites at different system size while keeping the HS3

system loading ρ at constants 0.5 and 0.9 (Figures 4.20 and 4.21).

 73

4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450

System size, n

A
R

T
 (

tim
e

 u
ni

t) 8

10

12

14

16

Figure 4.20: Sensitivity of algorithm DA to the number of reference sites (at
system loading of 0.5)

10
11
12
13
14
15
16
17
18
19

0 50 100 150 200 250 300 350 400 450

System size, n

A
R

T
 (

tim
e

 u
ni

t) 8

10

12

14

16

Figure 4.21: Sensitivity of algorithm DA to the number of reference sites (at

system loading of 0.5)

At a low system loading of 0.5 (Figures 4.20), the ART goes down with increasing

numbers of reference sites. However, this improvement stops from 12 to 16 reference

sites. There was a very small difference in the ART between 10 and 12 reference sites.

As a small number of reference sites are used for sites clustering, the less powerful

sites may be partitioned into a reference site with higher processing power, because

there is no reference site closer to the less powerful sites. Thus, when a site cannot

find a site from a cluster for which the ID is greater, there is a high probability that the

site will find less powerful sites as its partner sites, because it randomly select partner

 74

sites from the cluster it belongs to.

At a high system loading of 0.9 (Figures 4.21), there is a similar trend to the

low system loading of 0.5. Except for the reasons mentioned above, the Partner

Adjustment Policy also increase the possibility of choosing less powerful sites as

partner sites, because the policy plays a important role with the increasing of the

system loading.

4.2.14 Effectiveness of load balancing

This section presents the effectiveness of load balancing, showing when it is

beneficial to perform load balancing. The effectiveness of load balancing is given by:

E =
Local

DA

ART
ART

where ARTDA is the ART run by DA. ARTLocal is the ART completely processed

at their originating sites (without running load-balancing algorithm).

Where E is less than 1, this means that the ART after load balancing is more

than that before load balancing, and thus that the load balancing is not effective. Where

the value of E is 1, it means that there is no change in the ART. Where the value of E is

more than one, it means that the ART after load balancing is less than that before load

balancing; thus, the load balancing is effective.

To calculate the effectiveness of load balancing, the DA algorithm was

executed on a heterogeneous grid system HS3. The setting of system loading is the

same as one in the Section 4.2.5. The ART with and without load balancing was

calculated for different computation and communication costs, within a range of {1, 2,

3, 4, 5, 6, 7}. Figure 4.22 presents the effectiveness of DA as the ratio of computation

costs to communication costs changes. The graph clearly shows that as this ratio

changes from 1 to 7, the effectiveness of load balancing increases. Figure 4.23 plots

the crossover point, clearly showing when it is beneficial to perform DA. When the

computation to communication ratio CCR is less than 1.75, the load balancing is

ineffective; but when this ratio is higher than 1.75, DA becomes very effective.

 75

7 6 5 4 3 2 1
1

2
3

4
5

6
7

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

E

CCR

CCR

1.60-1.80

1.40-1.60

1.20-1.40

1.00-1.20

0.80-1.00

0.60-0.80

0.40-0.60

0.20-0.40

0.00-0.20

Figure 4.22: Sensitivity of algorithm DA to the number of reference sites (at
system loading of 0.9)

Figure 4.23: Effectiveness of algorithm DA as the ratio of computation to
communication cost of jobs increases

4.3 Summary

We have proposed a desirability-aware decentralised dynamic load-balancing

algorithm, which considers scalability of grid system, heterogeneous processing

 76

power of grid sites and considerable communication overheads involved in

information collection.

We conducted extensive simulation studies to analyse the performance of the

load-balancing algorithm. The algorithm was compared with the neighbours-based

load-balancing algorithm. Our experiment results show that the algorithm performs

better than the neighbours-based algorithm, and reduces the average response time of

jobs over a wide range of system parameters.

 77

5

Decentralised and performance-

driven load-balancing algorithm

This chapter presents a dynamic and decentralised load-balancing algorithm for

computationally intensive jobs in the heterogeneous grid computing systems. The time

spent by a job in the system is the main issue that needs to be minimised. This is an

extended work of a desirability-aware load-balancing algorithm by considering

performance benefit that jobs can gain in the load distribution triggered by Instantaneous

Distribution Policy (IDP) and Load Adjustment Policy (LAP). Here, we propose another

load adjustment policy, Augmented Load Adjustment Policy (ALAP); this policy

determines whether there is a better placement beyond the neighbourhood of a site, where

IDP has failed to show that a less powerful site in that neighbourhood is a performance

bottleneck.

Section 5.1 describes in detail a performance-driven load-balancing algorithm. In

Section 5.2, the performance of our algorithm is evaluated in a series of simulations.

5.1 Performance driven load-balancing algorithm

The proposed algorithm uses the desirability of sites to guide load assignments (Chapter

4).

 78

5.1.1 Load index

∀si ∈ S, the load index of si at a particular instant of time t is defined as

LDi,t = TETi,t + RETi,t

where TETi,t is the total estimated job execution time of all jobs currently waiting

in the job queue of si at time instant t, and RETi,t is the estimated remaining time of the

job currently being processed by si at time instant t.

The assumption that the expected job execution times can be estimated is

commonly made when studying scheduling and load-balancing techniques for

heterogeneous computer systems [13, 52, 53, 97, 133]. Some approaches for doing this

estimation are discussed in [38, 138–141].

5.1.2 Region and region load

The region ri of a site si includes the site si and its neighbours. The region load is

measured by the average load across all sites within the region. The load of region ri at a

particular instant of time t is defined as:

 RDi,t =
q

LD
q

j
t,j∑

=1

where LDj,t is the load of site sj at time instant t , q is the number of grid sites in

the region ri.

The average load between a region ri and another remote region rj at a particular

instant of time t is defined as:

Λi,t =
d

RD
j,ik

t,k∑
=

where RDk,t is the load of region rk at time instant t , d equals to 2.

 79

5.1.3 Threshold policy

Two kinds of threshold policies can be considered for a load-balancing algorithm: a fixed

threshold policy and an adaptive threshold policy. As the former name suggests, a fixed

threshold policy has predetermined thresholds that will not change when the system load

changes. As the latter name suggests, an adaptive threshold policy has thresholds that are

adjusted as the system load changes [87, 93]. Hence, an adaptive threshold policy is

applied to load balancing between regions.

Based on the average load value calculated earlier, a region ri can be defined as:

• A heavy region if Πi,t > H × Λi,t

• A light region if Πi,t < L × Λi,t

• A normal region if Πi,t ≥ L × Λi,t and Πi,t ≤ H × Λi,t

where H and L are two threshold parameters, which are used to determine whether a

region is a heavy or light load. The magnitude of the threshold parameters reflects the

sensitivity of the system to load fluctuation. H and L are set to 1.2 and 0.8, respectively

[87, 93].

5.1.4 Execution cost

We include dynamic communication cost in the cost calculation. This is because dynamic

and considerable communication cost may have a significant influence on the

performance of a load-balancing algorithm in the grid environment. It may be more

efficient to send a job to a site with heavier load but smaller communication cost.

∀ si, sj ∈ S, the execution cost of sending a job jx ∈ J from si to sj at time instant t

is estimated by si as

If TRAN_IN(jx, si, sj, t) ≥ LDj,t

 EC(jx, si, sj, t) = TRAN_IN(jx, si, sj, t) + ETC(jx, sj) + TRAN_OUT (jx, sj, si, t)

Else

 EC(jx, si, sj, t) = LDj,t + ETC(jx, sj) + TRAN_OUT(jx, sj, si, t)

where TRAN_IN(jx, si, sj, t) measures how long it takes to transfer a job from si to

 80

sj. TRAN_OUT(jx, sj, si, t) measures how long it takes to transfer a job result from sj to si.

LDj,t is the recent load index of sj at the time instant t that are recorded in si.

5.1.5 Performance benefit

The performance benefit associated with a job jx is based on the idea that better migration

can be done by assigning a job to a grid site that would “benefit” most in terms of

expected response time if that grid site is assigned to it. If a job jx is transferred from its

current site si to a remote site sj for execution, the value of performance benefit of a job,

labelled as Bx, is computed as follows:

∀ si, sj ∈ S, si ≠ sj

Bx = EC(jx, si, si, t) − EC(jx, si, sj, t)

where EC(jx, si, sj, t) is the estimated execution cost at sj while EC(jx, si, si, t) is the

estimated execution cost at si.

5.1.6 Information policy

We use the same Mutual Information Feedback policy for state information exchange, as

shown in Algorithm 4.3 in Chapter 4. The state object Oi of a site si includes a new

property, called Region Load, RD. The Oi[j].RD is maintained through message

exchanges with neighbours by appending it to the message.

5.1.7 Transfer and location policy

Our transfer and location policy is a hybrid of three policies: IDP, LAP and ALAP. The

policies use the most recent load status information to decide whether a migration is

initiated. These are described below.

5.1.7.1 Instantaneous Distribution Policy

This is a static load-balancing policy. When a new job arrives at a site si, the policy

decides whether it is to be sent to si or other partner sites. The decision depends on

whether it can gain performance benefit if it is distributed to a partner site. The policy

 81

aims to control the job processing rate on each site in the system. Algorithm 5.1 describes

the IDP for si.

5.1.7.2 Load Adjustment Policy

The LDP for a site si tries to continuously reduce load difference among si and its

neighbours NSeti by transferring jobs from heavily loaded sites to lightly loaded

neighbouring sites. The LDP is triggered whenever si receives load information from a

neighbour. The load-balancing algorithm will use the most recent load status information

to decide whether a migration is initiated. The job that benefits most in the global job

queue GJQ(si) is considered first for migration. If two neighbouring sites give the same

performance benefit, the faster neighbouring site is chosen. The LDP for si is described in

Algorithm 5.2.

Algorithm 5.1 (Instantaneous Distribution Policy):

∀jx ∈ J with bornSite(jx) = si ∈ S
For each sj in PSeti{
 Calculate EC(jx, si, sj, t)
 Calculate related benefit value Bx
}
Find the partner site sj that gives the maximum Bx
If Bx > θ { /* θ is a positive real constant close to zero */
 Transfer the job jx to the partner site sj
 Update load index of site sj recorded at the site si
}
Else
 GJQ(si) ← enqueue(jx) /* put the job jx in the job queue
GJQ(si) */

 82

5.1.7.3 Augmented Load Adjustment Policy

If a site si receives the load information from a neighbour sj, after the application of the

LAP, no load adjustment occurs; this implies that si is the best suited site for the jobs in

its global job waiting queue, with respect to the neighbourhood. If a better placement can

be found, it should be beyond the neighbourhood of si, NSeti. This also implies that may

sj operate like a bottleneck to LAP, and this could be the triggering point of the ALAP.

The sample of a less powerful site causing the bottleneck of LAP to its overlapping

neighbourhoods structure, is given below.

Algorithm 5.2 (Load Adjustment Policy):

aFlag = true /* flag for initiating ALAP algorithm */
For each sx in NSeti

 For each Job jx in GJQ(si)
 Calculate EC(jx, si, sx, t)

End for
End for
For each Job jx in GJQ(si) {
 Find the site sy that gives the minimum execution cost
 Calculate related benefit value Bx
}
Sort the jobs in GJQ(si) in ascending order by their benefit value

Select the Job jy with the biggest benefit value By
Find the neighbouring site sj that gives the maximum By to jy
If By > θ { /* θ is a positive real constant close to zero */
 Remove the job jy from GJQ(si)
 Transfer the job jy to the neighbouring site sj
 Update load index of site sj recorded at the site si
 aFlag = false
}
Else {
 If aFlag = true
 Call ALAP algorithm
}

 83

Figure 5.1: A heterogeneous grid system of five sites (special case)

A heterogeneous grid system of five sites {s1, s2, s3, s4, s5} is assumed (Figure 5.1). Here,

we do not consider partner sites. They are of average processing powers (APW) 3, 1, 1,

1 and 6. The sites are assumed idle. For clarity, the communication cost between sites

is the same here, taking one time unit for each transferred job at each link. Assume

that there are three jobs {j1, j2, j3} at s1. They consist of 6, 9 and 12 computational units,

respectively. According to the LAP algorithm, no job could migrate to s4, because s4 is

less powerful site and no performance could be gained from execution at the site s4. This

means that the more powerful s5 is still idle. As a result, the response time of jobs j1, j2

and j3 is 2, 5, and 11 time units, respectively. This leads to an average response time of 6

time units for these three jobs. The job j3 can benefit most compared with other two jobs

if it migrates to s5 for processing. If this happens, the response times of j1, j2, and j3 can be

changed into 2, 5, and 6 time units, respectively. Thus, the three jobs have an average

response time of 4.3 time units, an improvement of 28.33%.

How to trigger the ALAP is a critical problem. Refer to Algorithm 5.5 for the

triggering policy we have incorporated into our algorithm. It is based on the simple

heuristic that the heavier the load in a region, the less inclined it will be to accept

future loads. Triggering is initiated if the region load of si is heavy and the region load

of sj is light. A request message from si is then sent to sj. Having received a request to

send the status of its neighbours back to the requesting si, sj packs the information

about their current load and sends it back. If the information of the neighbours of si is

included in the requested information, the neighbours of si are excluded and the

remaining sites are considered as potential sites for load adjustment; these are called

 84

augmented neighbours of si. Then, we apply ALAP among the site and its augmented

neighbours, as shown in Algorithm 5.4.

5.2 Performance evaluation

In the simulations, our algorithm (labelled as P-DA) is compared with the following

Algorithm 5.5 (NeedForTriggering (si, sj)):

Calculate RDi,t
Calculate Λi,t
If ri is heavy AND rj is light

Return true
Else

Return false

Algorithm 5.4 (Augmented Load Adjustment Policy):

NeedForTriggering (si, sj)
If (NeedForTriggering return true) {
ANSeti ← Find the augmented neighbours of site si

For each sx in ANSeti{

 For each Job jx in GJQ(si)
 Calculate EC(jx, si, sx, t)
}
For each Job jx in GJQ(si) {
 Find the site sy that gives the minimum execution cost
 Calculate related benefit value Bx
}
Sort the jobs in GJQ(si) in ascending order by their benefit value

Select the Job jy with the biggest benefit value By
Find the neighbouring site sj that gives the maximum By to jy
If By > θ { /* θ is a positive real constant close to zero */
 Remove the job jy from GJQ(si)
 Transfer the job jy to the augmented neighbouring site sj
}
}

 85

algorithms.

• Central. This is a dynamic load-balancing algorithm. A central load balancer

(Central) coordinates load distribution among sites. It tries to balance the load

by assigning each job to the computing site that yields the earliest completion

time. On receipt of a message notifying a job arrival, the Central finds the site

that gives the shortest completion time, and if the site is different from the

job’s current site, the job is sent to that site. Otherwise, the job is executed at

its current location. If several sites give the same shortest completion time for

the job, one of them is selected randomly. The Central updates its load vector

to reflect the load distribution decision, and the originating site is informed of

the execution site. The originating site subsequently moves the job to its

destination if necessary. Central has been studied in [56, 87] and in [113]

(where it was referred to as CENTEX) and implemented in Utopia [22]. It is

related to the LBC algorithm [60] and to an algorithm studied by Theimer and

Lantz in [78]. Central has also been studied in the computational grids [43].

Central assumes that the load balancer retrieves the current load value of all

other grid sites without cost, but considers the transfer cost of the job from a

site to another site. We selected the algorithm because it represents a typical

class of centralised approaches, and used it as an estimate for a load-balancing

algorithm with “perfect” information.

• Performance-driven neighbour-based. It is labelled as P-BA. In this algorithm,

the performance heterogeneity in processing power among grid sites is not

considered. A new job is sent to local site or one of neighbouring sites

immediately (IDP). Then continuous load adjustment is employed among

neighbouring sites (LAP). A job is assigned or redistributed to the site that it

would benefit most. State information exchange is done via MIF among a site

and its neighbour sites. The algorithm is a partial version of algorithm P-DA. It

is regarded as an improved version of traditional neighbour-based algorithms

because the remote execution cost has been considered. We selected the

algorithm because it represents a typical class of decentralised approaches.

 86

Table 5.1: Simulation parameters (time unit = tu, pt = percent)

Simulation parameter Value
Size of system, n 32
Number of computational unit in a job jx, NCUx [100, 30000]
Number of packets in a job jx, A1x [1, 100]
Ratio of the computation unit to the number of
packet for the job, Rf

[1, 300]

Mean transfer delay, τ 0.05 tu
Standard deviation of transfer delay, σc 50 pt
Bandwidth between any two sites, BWij [1, 100]
Distance ratio from a site to its nearest site, Rd 1.5
Updated interval, Tp 10 tu
Number of partners, k 4
Number of random partners/neighbours for
information update, ωP

2

5.2.1 Simulation model

In this section, we studied the performance of the algorithms under different system

parameters via simulations. Eleven assumptions were devised for the simulation model.

• All of the work is carried out on a grid system that consists of n sites. The average

processing power of sites APW is randomly assigned in the range [P1, P2].

According to the different degrees of heterogeneity in the average processing

power of sites, several different heterogeneous systems are yielded.

• Jobs arrive at each site si, i=1, 2,…, n according to a Poisson process, with rate λi

= λ × Pi, where Pi=1/n. The actual inter arrival time of jobs is adjusted to give the

required overall average system loading (see last bullet point).

• The number of computational units in a job is randomly chosen in the interval

[W1, W2]. The number of packets in a job is chosen in the range [F1, F2] at

random. We choose A1x = A2x.

• The transfer delay that may be incurred between any site pairs in the grid system

is chosen from a lognormal distribution with a mean of τ time unit and standard

 87

deviation σc.

• The bandwidth between any two sites is chosen randomly in the range [B1, B2].

• The ratio between the computational unit for a computing intensive job and the

packets of the same job needed to migrate is chosen randomly as Rf =
xA

NCUx

1
∈

[Y1, Y2].

• Once a job is created, several attributes are assigned to it. These attributes include

Job ID, the file size (number of packets), the creation time and the required

computation time. These attributes remain unchanged throughout the lifetime of

the job.

• The parameters of network between different pairs of sites need to be provided for

the simulator, including transfer delay and bandwidth.

• For the algorithm P-DA, the partner set of each site needs to be provided before

our algorithm runs. The partner set is based on the processing power generated

from the distribution of average processing power. The sites are selected as its

partners according to the method described in Section 4.1.4.

• For algorithms P-NB and P-DA, the neighbours of each site are fed to the

simulator before the algorithms run. The neighbours are based on the transfer

delay generated from the distribution of mean transfer delay. The sites are

selected as its neighbours according to the method described in Section 4.1.5.

• Let ρ be the required average system load for our simulation, which is the average

job arrival rate divided by the average job processing rate. Using this definition,

we adjust the job mean inter-arrival time 1/λ needed to obtain the desired ρ.

Table 1 displays the values of the parameters used in the simulations. Considering a 100

MB/s fast ethernet network, and jobs such as the calculation of prime numbers or

Fibonacci numbers, the ratio Rf chosen in Table 1 is very close to the reality. The

same model can be used for internet connection using either low-speed dial-up lines

(average 44 KB/s), to high-speed fibre-optic connections (2–100 MBs). Thus, the

simulation results are as close to the reality as possible.

 88

Heterogeneous systems introduce additional parameters that make performance

evaluation much more difficult than for homogeneous systems. To simplify, we

considered three types of heterogeneous systems: HS1, HS2, and HS3. Table 2 shows

heterogeneous system configurations. The third column contains the APW of each of the

four site types. The second column contains four site types and the fractions of sites in

the system corresponding to each site type. An exception for heterogeneous system HS3,

the APW of each site is generated randomly in a range of U[10, 100].

Table 5.2: Heterogeneous system configurations

Heterogeneous Systems Sites split (fraction) APW
HS1 3/8, 1/4, 1/4, 1/8 10, 20, 50, 100
HS2 3/8, 1/4, 1/4, 1/8 10, 15, 20, 30
HS3 Random / no split [10, 100]

Unless explicitly mentioned otherwise, the default system parameters are applied to all

simulations in the simulation model. For each simulation run, to eliminate the start-up

transients, we ignored the first 1000 jobs. After the warm-up time, we traced the jobs’

arrival, processing and finish times from j1000 to j4999. Here u equals to 5000 (for

evaluation purpose). After each simulation run, we computed the average response time

of jobs (ART). We conducted each measurement five times with different random seeds.

5.2.2 Effect of system heterogeneity

Intuitively, heterogeneous system reinforces the advantages of using load balancing,

since is expected that the presence of different job processing power at different sites will

lead to an increased probability of load-balancing success. In this simulation, we created

three heterogeneous systems by using different processing power at the various sites

(Table 2). The performance of the three load-balancing algorithms is compared for these

three heterogeneous systems under different system loading ranging from 0.1 to 0.9.

Figures 5.2–5.4 and Table 5.3-5.5 summarise the results of this simulation.

At all of the loads tested, the general trend is a decrease in performance with

increasing system load. Up to an approximate load level of ρ = 0.6, the performance

decrease is slight, but after this point it deteriorates rapidly.

 89

900
1100
1300
1500
1700
1900
2100
2300
2500
2700
2900
3100
3300
3500
3700
3900

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

un
it)

Central

P-NB

P-DA

Figure 5.2: Effect of system with high heterogeneity

Table 5.3: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.2

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5 0.6

Average
(0.1–0.6)

P-NB 22.16 20.58 21.34 22.18 21.46 18.24 20.99
Central -13.78 -17.55 -20.35 -20.00 -23.83 -27.72 -20.54

Average system loading, ρ
 0.7 0.8 0.9

Average
(0.7–0.9)

Average
(0.1–0.9)

P-NB 17.26 13.32 10.08 13.55 18.51
Central -19.00 -15.31 -9.81 -14.71 -18.59

For the highly heterogeneous system HS1, P-DA has an average improvement

factor of 18.51% over P-NB. At light or medium loads (10–60%), it is seen that P-DA is

better than P-NB by a substantial margin of 20.99%. When the system loading is light or

moderate, for P-DA, IDP plays a crucial role and the LAP has little influence on the

average response time of the jobs. For P-NB, the less powerful neighbouring sites with

either idle or very light load may become the bottleneck, because a better placement can

be found beyond the neighbourhood of a site. Thus, the more powerful non-neighbouring

sites are not exploited at low or moderate system loading. However, this advantage of P-

DA decreases as the loading increases. At high loadings, remarkably, even at a system

 90

loading as high as 0.9, P-DA still yields an improvement of 10.08% in ART than P-NB.

One reason for this is that new jobs are first dispatched to faster partners, giving the

performance benefit, which means that it is more likely for jobs to shorten ART at faster

sites. Another reason is that ALAP of P-DA contributes to a reduction in ART; hence, P-

DA gives a better performance. As may be expected, P-DA performs worse than the

nonrealistic Central. However, P-DA generates close performance to the Central. For

instance, at ρ = 0.9, P-DA is 9.81% worse than Central.

For the low heterogeneous system HS2, P-DA is notably still 11.03% better than

P-NB; at light and medium loads (10–60%), P-DA is 12.33% better; at high system

loading (70–90%), P-DA is 8.43% better. The performance improvement is due to the

fact that the IDP and ALAP of P-DA make the main contributions. Another interesting

observation is that, as expected, the comparison against the nonrealistic Central at high

system load is not significant. For instance, P-DA at ρ = 0.9 is about 11.14% worse than

the Central.

1600
2000
2400
2800
3200
3600
4000
4400
4800
5200
5600
6000
6400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
ni

t)

Central

P-NB

P-DA

Figure 5.3: Effect of system with low heterogeneity

 91

Table 5.4: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.3

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5 0.6

Average
(0.1–0.6)

P-NB 11.29 10.16 12.60 12.32 14.92 12.66 12.33
Central -17.66 -16.32 -20.00 -23.45 -20.55 -18.38 -19.39

Average system loading, ρ
 0.7 0.8 0.9

Average
(0.7–0.9)

Average
(0.1–0.9)

P-NB 9.74 8.71 6.83 8.43 11.03
Central -18.20 -16.68 -11.14 -15.34 -18.04

For systems with randomly generated heterogeneity, the same conclusion is drawn. P-DA

performs 17.31% better than P-NB, with a performance close to the optimal value of the

Central at high system loading.

800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

un
it)

Central

P-NB

P-DA

Figure 5.4: Effect of system with randomly generated heterogeneity

 92

Table 5.5: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.4

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5 0.6

Average
(0.1–0.6)

P-NB 19.23 20.89 21.61 22.27 18.13 14.96 20.99
Central -21.63 -19.88 -19.17 -19.97 -20.58 -16.49 -19.62

Average system loading, ρ
 0.7 0.8 0.9

Average
(0.7–0.9)

Average
(0.1–0.9)

P-NB 13.82 13.52 11.37 13.55 17.31
Central -17.78 -16.26 -12.01 -15.35 -18.20

2639 2494
1841

2845

1893

3752

2027

3257

2098

0
500

1000
1500
2000
2500
3000
3500
4000
4500

HS1 HS2 HS3

Heterogeneous grid systems

A
R

T
 (

tim
e

 u
ni

t)

Central

P-NB

P-DA

Figure 5.5: Effect of different job arrival patterns in three different kinds of
heterogeneous grid systems: HS1, HS2 and HS3

Table 5.6: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.5

 HS1 HS2 HS3
P-NB 20.50 13.19 18.73

Central -10.83 -14.48 -10.10

5.2.3 Effect with different job arrival patterns

Our observations in the preceding section were in the context of uniform job arrival rates,

 93

but the average job arrival rate in grid systems is often heterogeneous. In the simulation,

to reduce complexity we considered three classes of job arrivals, each with a different

average job arrival rate. We randomly chose 10 of the sites as lightly loaded (ρ = 0.3), 11

of the sites as moderately loaded sites (ρ = 0.6), and 11 as highly loaded (ρ = 0.9). The

HS1, HS2 and HS3 system settings were used as the base configurations in the section.

The ART with P-DA is an average improvement of 20.50%, 13.19% and 18.73% over P-

NB in the HS1, HS2 and HS3 systems, respectively (Figure 5.5 and Table 5.6). However,

P-DA was on average 10.83%, 14.48% and 10.10% less than Central in the HS1 system,

HS2 system and HS3 system, respectively.

5.2.4 Sensitivity to the coefficient of variation in the inter-arrival times

of jobs

The simulation examines the effect of the coefficient of variation (CV) in inter-arrival

times of jobs to the ART in a heterogeneous system HS3. Figures 5.6 and 5.7 provide the

ART for different CVs of job inter-arrival rate. The system utilisation is a constant of 0.5

and 0.9. The CVs of job inter-arrival rate has little effect on the ART when the system

loading is uniformly low, and there is a significant effect when the system loading is high.

1400

1600

1800

2000

2200

2400

1 1.5 2 2.5 3

CV in the inter-arrival times of jobs

A
R

T
 (

tim
e

un
it)

Central
P-NB
P-DA

Figure 5.6: Sensitivity to the variance in the inter-arrival times of jobs (system
loading equals to 0.5)

 94

Table 5.7: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.6

 1 1.5 2 2.5 3 Average
P-NB 18.13 19.30 14.51 15.26 16.69 16.78

Central -20.58 -22.00 -23.63 -25.23 -26.32 -23.55

2400
2600
2800
3000
3200
3400
3600
3800
4000

1 1.5 2 2.5 3

CV in the inter-arrival times of jobs

A
R

T
 (

tim
e

un
it)

Central
P-NB
P-DA

Figure 5.7: Sensitivity to the variance in the inter-arrival times of jobs (system

loading 0.9)

Table 5.8: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.7

 1 1.5 2 2.5 3 Average
P-NB 11.37 11.18 11.68 13.15 12.68 12.01

Central -11.96 -9.16 -9.44 -9.06 -11.55 -10.23

When the system loading is 0.5 (Table 5.7), DA outperforms NB by 16.78%, while there

still is an average improvement factor of 12.01% over NB at the system loading of 0.9

(Table 5.8). P-DA is that at the instant clustered job arrival at a site, it initiates load

distribution immediately to powerful partner sites. The ALAP of P-DA algorithm plays a

major role because jobs can be dispatched to the powerful sites beyond neighbours. P-NB,

on the other hand, attempts load distribution only among its neighbouring sites and does

not consider the heterogeneous processing power of sites. This delays the job execution

and is especially apparent under low and moderate loading.

 95

Figure 5.8 presents the ART for three algorithms under different system loading

when the inter-arrival times of jobs is set to 3.0. The simulation results for P-DA with

gradually increasing CV lead to similar conclusions, i.e., the burstiness in job arrivals

does not significantly weaken the advantage of P-DA over P-NB in terms of the ART, and

the performance difference between P-DA and Central remains small at high system

loading (Table 5.9).

800
1200
1600
2000
2400
2800
3200
3600
4000
4400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
(t

im
e

un
it

)

Central
P-NB
P-DA

Figure 5.8: Sensitivity of performance to different system utilisation (CV of 3)

Table 5.9: Improvement factor (in percent) of P-DA over other algorithms in Figure
5.8

Average system loading, ρ
 0.1 0.2 0.3 0.4 0.5

P-NB 20.25 20.67 20.22 17.72 16.69
Central -25.00 -26.79 -25.78 -22.22 -26.32

Average system loading, ρ
 0.6 0.7 0.8 0.9

Average
(0.1–0.9)

P-NB 15.77 17.61 14.29 12.68 17.32
Central -22.35 -19.23 -16.13 -11.55 -21.71

5.2.5 Job completion statistics

This section looks at the utilisations of the different class of sites in the HS1 and HS2

heterogeneous systems, at overall system loadings of 0.5 and 0.9 for Central, P-NB and

 96

P-DA algorithms, as shown in Figures 5.9–5.12. The fractions of total jobs are computed

as the total number of jobs that completed at each type of site divided by u.

0.32

0.13

0 0.02

0.44
0.54

0.23
0.18

0.27

0.03

0.38
0.46

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 5 10

APW of four site types in the system HS1

F
ra

ct
io

ns
 o

f
to

ta
l j

ob
s

Central

P-NB

P-DA

Figure 5.9: Job completion statistics at the system loading of 0.5 in the system HS1

0.06
0.11

0.38
0.45

0.13
0.17

0.33
0.37

0.09
0.15

0.36
0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 5 10

APW of four site types in the system HS1

F
ra

ct
io

n
s

o
f

to
ta

l j
ob

s

Central

P-NB

P-DA

Figure 5.10: Job completion statistics at the system loading of 0.9 in the system HS1

At the system loading of 0.5, for both HS1 and HS2, P-DA tends to underload the less

powerful sites, and consequently allocates a disproportionate share of the work to more

powerful sites. The difference between the algorithms is more marked for the highly

heterogeneous HS1, where there are more powerful sites. However, P-NB tends to assign

loads to less powerful neighbouring sites. This is because P-NB does not consider

heterogeneity in APW among sites while assigning load. At the system loading of 0.9, for

both HS1 and HS2, although P-NB reduces load at weaker sites and loads more at more

 97

powerful sites, there remains the issue of neglecting processing power. On the contrary,

P-DA increases loads at less powerful sites and at more powerful sites, because its LAP

can migrate jobs to a less powerful neighbouring site when a more powerful site cannot

provide performance benefit for the queued jobs at the site. However, due to the major

contribution from the IDP of P-DA, the algorithm still has a higher throughput for each

class of sites than P-NB. The results correspond to the analysis in Section 5.2.2. P-DA

has close load assignments to Central for both system loadings in two heterogeneous

systems.

0.17

0.41
0.33

0.09

0.37

0.16

0.31

0.16

0.39
0.32

0.16
0.13

0
0.1
0.2
0.3
0.4
0.5
0.6

1 1.5 2 3

APW of four site types in the system HS2

F
ra

ct
io

n
s

of
 t

o
ta

l j
o

b
s

Central

P-NB

P-DA

Figure 5.11: Job completion statistics at the system loading of 0.5 in the system HS2

0.310.34
0.42

0.48

0.070.03

0.210.19
0.29

0.44

0.15
0.09

0
0.1
0.2
0.3
0.4
0.5
0.6

1 1.5 2 3

APW of four site types in the system HS2

F
ra

ct
io

ns
 o

f
to

ta
l j

o
bs

Central

P-NB

P-DA

Figure 5.12: Job completion statistics at the system loading of 0.9 in the system HS2

 98

5.2.6 Scalability

Figures 5.13 and 5.14 present the simulation results for Scenarios 1a and 1b, respectively.

The system size employed in the scenarios varies from 32 to 512. In Scenario 1a, an

under-utilisation system is simulated, with overall system loading ρ = 0.5. In Scenario 1b,

the overall system loading is selected as ρ = 0.9.

The results for Scenario 1a show that P-DA performs 15.52% better than P-NB

and worse than the nonrealistic Central by about 15.18% (Table 5.10). The results for

Scenario 1b show that P-DA has 9.60% better than P-NB (Table 5.11). Although P-DA is

worse than the nonrealistic Central, the difference is smaller – 9.43%. In both scenarios,

P-DA is efficient in load balancing. The advantage of P-DA over P-NB does not depend

on the size of grid.

2000

2500

3000

3500

4000

4500

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

System size

A
R

T
 (

tim
e

un
it)

Central
P-NB
P-DA

Figure 5.13: Evaluation of scalability with different size at the system load of 0.5

1400

1900

2400

2900

3400

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

System size

A
R

T
 (

tim
e

un
it)

Central
P-NB
P-DA

Figure 5.14: Evaluation of scalability with different size at the system load of 0.9

 99

Table 5.10: Improvement factor (in percent) of P-DA over other algorithms in
Figure 5.13

System size, n
 32 64 96 128 160 192

P-NB 18.13 17.49 19.09 18.73 16.96 12.63
Central -20.58 -11.21 -13.61 -15.12 -14.79 -13.82

System size, n
 224 256 288 320 352 384

P-NB 16.32 20.20 15.09 13.24 14.93 12.64
Central -12.49 -14.59 -11.72 -20.47 -14.12 -14.94

System size, n
 416 448 480 512

Average

P-NB 11.75 10.83 12.74 17.46 15.52
Central -17.36 -20.34 -12.88 -14.84 -15.18

Table 5.11: Improvement factor (in percent) of P-DA over other algorithms in
Figure 5.14

System size, n
 32 64 96 128 160 192

P-NB 11.37 10.23 8.78 8.16 8.41 10.17
Central -12.01 -9.35 -8.58 -7.2 -8.36 -6.94

System size, n
 224 256 288 320 352 384

P-NB 10.12 7.11 9.05 8.70 8.24 12.20
Central -5.71 -6.74 -10.83 -9.88 -12.35 -13.58

System size, n
 416 448 480 512

Average

P-NB 11.85 9.54 7.43 12.20 9.60
Central -8.82 -9.91 -13.61 -7.06 -9.43

5.2.7 Sensitivity to accuracy of estimation of job execution cost

Estimated job execution cost is needed in P-DA. We assessed the impact of incorrect job

execution cost estimation on P-DA. Suppose that the actual execution cost of job ji is xi

and that the predictive error, denoted by yi, is a random variable in the range [−axi, bxi]

 100

following some probability density function, gi(yi), where the possible value fields of a

and b are [0, 100%] and [0, ∞], respectively. The parameters a and b represent the range

of estimated errors. It is assumed that the estimated errors of different jobs are

independent random variables. The estimated execution cost of job ji, denoted by zi, is

computed as follows:

zi = xi + yi

The estimated error (yi) follows uniform probability distribution. Therefore, the

relation between the estimated execution cost (zi) and the actual execution cost is

expressed linearly.

To calculate the effect of accuracy of estimation of job execution cost, P-DA was

executed in a heterogeneous grid system HS3. The setting of the system loading is the

same as the one in Section 5.2.3. Figure 5.15 shows the performance for P-DA when job

execution cost is accurately estimated and estimated with a range size of errors. The

Figure also shows the performance of the algorithm without load balancing. a and b

increase from 10% to 90%, in increments of 10 points. This results in the range of

estimation errors for the actual execution time of x increasing from [−0.1x, 0.1x] to

[−0.9x, 0.9x], while the average estimation errors remains unchanged (at 0).

2000
2500
3000
3500
4000
4500
5000

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]

Range size of estimation errors

A
R

T
 (

tim
e

un
it)

P-DA (Accurate)
No load balancing
P-DA (Estimated)

Figure 5.15: The impact of range size of estimation errors on the performance of
algorithm P-DA

Figure 5.15 shows that a and b increase, there is an overall increase in average response

time. However, this does not affect the performance significantly as a and b change from

 101

[1, 1] to [3, 3]. This is because the jobs are first dispatched to more powerful partner sites

and may be processed fast even if there is a low estimation error rate. With the increasing

of a and b, the advantage of P-DA is offset by highly inaccurate information, especially

when the error is large. However, the performance of algorithm P-DA is still better than

the situation without load balancing when a and b reaches to [9, 9].

5.3 Summary

A performance-driven, decentralised load-balancing algorithm has been proposed

for computational grids. The proposed algorithm still uses the desirability of sites to

guide load assignments while taking into account the performance benefit that jobs can

gain as a migration decisions are made.

The algorithm has been extensively evaluated using simulations. The algorithm

consistently outperforms another performance-driven neighbour-based algorithm (P-NB)

by requiring shorter average response times of jobs. The results of simulations show that

the performance of the algorithm is similar to that of unrealistic algorithm Central.

 102

6

Performance-driven and region-

based load-balancing algorithm

This chapter presents another performance-driven load-balancing algorithm based on the

regional grids, where grid sites are clustered into regions around a set of well-known

broker sites in terms of network transfer delay, and the regional brokers are organised in a

fully decentralised fashion. For each regional grid, our algorithm integrates static

Instantaneous Distribution Policy (IDP) and dynamic Load Adjustment Policy (LAP) to

make load distribution and redistribution driven by the performance benefit that jobs can

gain. The LAP also considers load redistribution across regional grids. To keep intra-

region and inter-region communication at low levels, our information policy combines

Mutual Information Feedback (MIF) inside regions with the random polling of a remote

regional broker site, performed by each regional broker site at a set time interval. Our

algorithm achieves a balance between the inherent efficiency of a centralised approach,

and the autonomy, load balancing and fault tolerant features offered by distributed

approach.

Section 6.1 describes in detail a performance-driven, region-based load-balancing

algorithm. In Section 6.2, the performance of our algorithm is evaluated in a series of

simulations.

 103

6.1 Performance-driven and region-based load-balancing

algorithm

The algorithm is partially based on research that was presented in Chapter 5. The

definitions used in this chapter for site load index, region load, average region load,

threshold policy, execution cost and performance benefit are the same those used in

Chapter 5, although here the definition of region is different.

6.1.1 Region construction

We assume that there is a known set of h sites in the computational grid. A grid site si

measures the relative distances to the set of h sites and sorts the obtained vector <d1,

d2,…, dh> in order of increasing transfer delay. Based on these transfer delays, si has an

associated ordering of sites. This ordering represents the region that si belongs to.

The set of h sites is called the “regional brokers”. The regions are denoted as r1,…,

rh. The region is actually a subset of S. If a site si is located in a certain region ra, we call

the region ra, as a local or current region of si. Each regional broker site does not function

as a central load balancer in the region; it is responsible for exchanging information with

other broker sites and forwarding the received information to potential sender in its

region.

6.1.2 Information policy

The information policy comprises two parts: intra-region information and inter-region

information policy.

 104

6.1.2.1 Intra-region information policy

We use the same MIF policy for state information exchange, as shown in Algorithm 4.3

(Chapter 4). However, the following changes are made.

Algorithm 6.1 (Modified procedure of job transfer and information
exchange):

si ∈ ra, sj ∈ rb

Steps processed in si:

If ra = rb {/* sites si and sj are in the same region

1. Y ← si + {ωP random sites from ra -sj}
// si select neighbours or partners for information exchange

2. ∀sy∈Y, si appends (Oi[y].LD, Oi[y].LT) to the job transfer request TR
3. si appends bornsite(jx) to TR
}
4. si sends job transfer request message TR to sj

Steps processed in sj:

Upon receiving TR:
If rb = ra { /* sites si and sj are in the same region

1. ∀sy ∈ Y: If (Oi[y].LT > Oj[y].LT) Oj[y] ← Oi[y]
// sj updates the state object using si’s info

2. Z ← sj + {ωP random sites from rg -si }
3. ∀sz∈Z, sj appends (Oj[z].LD, Oj[z].LT) to the acknowledge reply AR
}
4. sj sends acknowledge reply message AR to si

Upon completion of job jx:

If rb = ra { /* sites si and sj are in the same region

1. Z ← sj + {ωP random sites from rg -si }
2. ∀sz∈Z, sj appends (Oj[z].LD, Oj[z].LT) to the completion reply CR
}
3. sj sends completion reply message CR to bornsite(jx)= si

Steps processed in si:

Upon receiving the reply AR or CR:

If ra = rb { /* sites si and sj are in the same region

∀sz∈Z: If (Oj[z].LT > Oi[z].LT) Oi[z] ← Oj[z]

}

 105

• For a site, ωp number of random sites for information exchange is chosen from

its local region instead of partners or neighbours.

• Whenever a site receives a message from or sends a message to another site

beyond its local region, it does not need to update the load information of the

ωp number of random sites that have been stored in its local site, or appends

them to the outgoing message.

The modified procedure of job transfer and information exchange is described in

Algorithm 6.1.

6.1.2.2 Inter-region information policy

Each regional broker site collects the load information from remote regions. The regional

broker site is not a central storage source of load information of its local region. Its roles

are described in this section. Let us assume that both su and sv are regional broker sites.

Algorithm 6.2 outlines the procedure of processing messages at a regional broker site su.

In the description of Algorithm 6.2, messageuv denotes a message sent from su to sv. There

are three types of message used in the algorithm, which are Request, Heavy, and Light.

Except the type of Heavy message, su appends the load information of its region and least

loaded site of its region to the messages.

su sends a Requestuv message to petition sv for the load status of its region at a

periodic interval of time TS. At most, one polling is performed at a time interval TS to

reduce the communication overhead across regions.

When su receives a Requestvu message from sv, it will append the load information

of the least loaded site sl of its local region in the Lightuv message sent to sv, if the local

region is a light region and the remote region is a heavy region. Otherwise, unless a

Heavyuv message is sent to sv, it needs to forward the message as Light message to the

heaviest loaded site sh in its current region according to information stored at su, if the

local region is a heavy region and the remote region is a light region.

As soon as su has received the Lightvu message from sv, it forwards the message to

the heaviest loaded site sh in its current region, according to information stored in the

 106

broker site su. If the received message is Heavyvu, the regional broker site su does not need

to act.

6.1.2.3 Fault-tolerance for regional broker sites

To guard against the possibility that the regional broker sites may fail, a second site is

given the responsibility for each region. If a site finds that its regional broker site fails,

this is reported to the backup broker site. The site can act as regional broker site

immediately and notifies other regional broker sites of the failure. Any intra-region sites

may be assigned this duty. The load information does not need to be replicated from

nonfunctional regional broker site to the new regional broker site, because each site has

had load information of all sites of its local region in terms of our intra-region

Algorithm 6.2 (Procedure of processing messages at the regional broker site su):

Switch (msgType) {

 case msgType = “Heavyvu”:
 Do nothing
 case msgType = “Lightvu”:
 Forward the least loaded site of the remote region to the heaviest loaded

site of local region
 case msgType = “Requestvu”:
 Compute RDu,t / * the load of local region
 Compute Λu,t /* the average load between local and remote region
 Determine the load status of local region
 If the local region is light region {
 Add the load information of least loaded site to the Light message
 Send the Light message to the regional broker site sv
 }
 Else {
 Send a Heavy message to the regional broker site sv
 If (local region is heavy region) AND (the remote region is light

region) then
 Forward the least loaded site of the remote region to the heaviest

loaded site of local region
 End if

 }
}

 107

information policy. But there may be a difference with respect to the load information of

the remaining sites of its local region, due to distributed information storage.

6.1.3 Transfer policy and location policy

As in Chapters 4 and 5, our transfer and location policies adopt a hybrid policy, which is

a combination of IDP and LAP. The policies will use the most recent load status

information to decide whether a migration is initiated. These are described below.

6.1.3.1 Instantaneous Distribution Policy

This is a static load-balancing policy. When a new job arrives at site si, the policy decides

whether it is to be sent to the site si or other sites of its local region. The decision depends

on whether it can obtain performance benefit if it is distributed to one of the sites in the

local region. The policy aims to control the job processing rate on each site in the system.

Algorithm 6.3 describes the Instantaneous Distribution Policy for a site si.

Algorithm 6.3 (Instantaneous distribution policy)

∀jx∈J with bornSite(jx) = si∈S, si, sj ∈rg
For each sj in rg{

 Calculate EC(jx, si, sj, t)
 Calculate related benefit value Bx
}
Find the site sj that gives the maximum Bx
If Bx > θ { /* θ is a positive real constant close to zero */
 Transfer the job jx to the site sj
 Update load index of site sj recorded at the site si
}
Else
 GJQ(si) ← enqueue(jx) /* put the job jx in the job queue
GJQ(si) */

 108

6.1.3.2 Load Adjustment Policy

This is a dynamic load-balancing policy, which is triggered at each site. Algorithm 6.3

describes the Load Adjustment Policy for a site si. The job that’s benefits most in the

Algorithm 6.4 (Load adjustment policy at site si):

si ∈ r+ /* si belongs to region r+

Switch (msgType) {

 Case msgType=“Light”: /* upon receiving the information of least
loaded site of a remote region forwarded by local regional broker */

 s+ ← the least loaded site in the remote region

 Case msgType=“TR” or “AR” or “CR”: /* upon receiving the messages
sent from other sites of local region */

 s+ ← all sites of the local region
}
j+ ← all waiting jobs that enqueue at the GJQ(si)
Found = true
While Found = true {
 For each sx in s+ {

 For each Job jx in j+
 Calculate EC(jx, si, sx, t)
}
For each Job jx in j+ {
 Find the site sy that gives the minimum execution cost
 Calculate related benefit value Bx
}
Sort the jobs in j+ in ascending order by their benefit value

Select the Job jy with the biggest benefit value By
Find the site sj that gives the maximum By to jy
If By > θ { /* θ is a positive real constant close to zero */
 j+ ← j+ - jy // Remove the job jy from j

+
 if sj ∈ r+

 Update load index of site sj recorded at the site si
 Transfer the job jy to the site sj
}
Else
 Found=False
}

 109

global job queue GJQ(si) is considered first for migration. The policy has three major

advantages.

• Whenever si receives updated load information of other sites in its current region,

the policy is triggered. This means that the policy can continuously reduce load

differences among si and other sites in its current region by migrating jobs from

heavily loaded to lightly loaded sites. Thus, intra-region-wide dynamic job

scheduling and load balancing may be implemented.

• Whenever si receives the information of the least loaded site of a remote region

forwarded by the local regional broker site, the policy is triggered. This means

that the policy can reduce load difference between si and another site of remote

region by transferring jobs from the heavily loaded local site to the lightly loaded

remote site. Thus, inter-region-wide dynamic job scheduling and load balancing is

implemented.

• Whenever si has migrated some of its jobs to a remote region, it reports its current

load status to its regional broker site and ωP heavily loaded sites in its current

region, which means that a multi-round intra-region-wide load balancing can be

triggered.

6.2 Simulations

In the simulation, our algorithm (P-RB) is compared with the Minimum Completion

Time Algorithm (MCT), a distributed algorithm. Each site tries to balance the load by

assigning each job to the computing site that yields the earliest completion time. It is

assumed that each grid site retrieves the current load value of all other grid sites without

cost, although the transfer cost of the job is considered. During the job transfer, the load

of the destination site may be changed. On receipt of a message notifying a job arrival,

MCT finds the site that gives the shortest completion time, and if the site is different from

the job’s current site, the job is sent to that site; otherwise, the job is executed at its

current location. If several sites give the same shortest completion time for the job, one of

them is selected randomly. The originating site subsequently moves the job to its

destination if necessary. MCT has been studied in [42] and [118] (where it is referred to

 110

as Shortest Expected Delay) and implemented in AppLes [13] and Nimrod/G [14]. We

selected the algorithm because it represents a typical class of distributed approaches with

“perfect” information of all sites in the system at the scheduling instant.

6.2.1 Simulation model

We studied the performance of the algorithms under different system parameters via

simulations. Twelve assumptions were devised for the simulation model.

• All of the work is carried out on a grid system consisting of n sites. The average

processing power (APW) for each site is assigned in the range [P1, P2]

• It is assumed that the simulated grid system includes a fixed h number of regions.

The size of each region nr is randomly assigned in the range [R1, R2]. The

maximum system size is the product of h and R2; the minimum system size is the

product of h and R1.

• Jobs arrive at each site si, i = 1, 2,…, n according to a Poisson process, with rate

λi = λ × Pi, where Pi = 1/n. The actual inter-arrival time of jobs is adjusted to give

the required overall average system loading (see last bullet point).

• The number of computational unit in a job jx is randomly chosen within the

interval [W1, W2]. The number of packets in a job jx is randomly chosen within

the range [F1, F2] (A1x = A2x).

• The transfer delay TDij that may be incurred between any site pairs across

different regions is chosen from a lognormal distribution, with a mean of τex time

unit and a standard deviation σex.

• The transfer delay TDij that may be incurred between any site pairs in a region is

chosen from a lognormal distribution with a mean of τin time unit and a standard

deviation σin.

• The bandwidth between any two sites is chosen randomly in the range [B1, B2].

• The ratio between the computational unit for a computing intensive job jx and the

packets of the same job needed to transfer is chosen randomly as Rf =
xA

NCUx

1
∈

 111

[Y1, Y2].

• The number and size of the regions need to be fed into the simulator before the

algorithms start to run.

• The network parameters between different pairs of sites need to be fed into the

simulator, including transfer delay and bandwidth.

• Once a job is created, several attributes are assigned to it. These attributes include

job ID, creation time, required computational unit, file size (number of packets),

and ratio Rf. These attributes remain unchanged throughout the lifetime of the job

in the system.

• Let ρ be the required average system load for our simulation, which is the average

job arrival rate divided by the average job processing rate. Using this definition,

we adjust the job mean inter-arrival time 1/λ needed to obtain the desired ρ.

Table 6.1: Simulation parameters (time unit = tu, pt = percent)

Simulation parameter Value
Number of regions or regional broker sites, h 12
Size of each region, nr [10, 30]
Average processing power of site si, APWi [10, 100]
Number of computational unit in a job jx, NCUx [100, 30000]
Number of packets in a job jx, A1x [1, 100]
Ratio of the computation unit to the number of packet for
the job, Rf

[1, 300]

Mean transfer delay within a region, τin 0.05 tu
Standard deviation of transfer delay, σin 50 pt
Mean transfer delay across regions, τex 0.1 tu
Standard deviation of transfer delay, σex 50 pt
Bandwidth between any two sites, BWij [1, 100]
Period for periodic intra-region information exchange, Tp 10 tu
Polling interval for inter-region information exchange, TS 1 tu
Number of random sites for information update in a region,
ωP

2

Table 1 displays the values of the parameters used in the simulations. Unless explicitly

mentioned, the default system parameters are applied to all simulations. For each

simulation run, to eliminate the start-up transients, we ignore the first 2000 jobs. After the

 112

warm-up time, we trace the jobs’ arrival, processing and finish times from j2000 to j9999.

Here u equals to 8000 (for evaluation purpose). After each simulation run, we computed

the average response time of jobs (ART). We carried out each measurement five times

with different random seeds.

6.2.2 Effect of system loading

We conducted a series of simulations with MCT and P-RB under medium and high

system loading, ranging from 0.5 to 0.9. Figure 6.1 and Table 6.2 summarise the results

of this simulation.

2000
2500
3000
3500
4000
4500
5000
5500

0.5 0.6 0.7 0.8 0.9

Average system loading, ρ

A
R

T
 (

tim
e

 u
n

it)

MCT

P-RB

Figure 6.1: Effect of system loading

Table 6.2: Improvement factor (in percent) of P-RA over MCT in Figure 6.1

Average system loading, ρ
 0.5 0.6 0.7 0.8 0.9

Average

NB 9.60 12.95 17.48 23.80 28.93 18.55

At all of the loads tested, the general trend is of a decrease in performance with

increasing system load. When the system loading is high, the difference in the ART

between MCT and P-RB is high. P-RB has an average improvement factor of 18.55%

over MCT. At medium or high system loading, MCT may result in the transfer of

multiple jobs to the site that provides the shortest job completion time. The jobs have to

 113

wait longer to reach the execution stage, and increase the queuing time component of the

response time of jobs. MCT and P-RB have different response to this situation. MCT

takes no action, but waits at the site for processing. On the contrary, the LAP in our

algorithm plays a critical role. The jobs may be involved in the load balancing of the

local region. Another reason is that inter-region load balancing in the algorithm happens

only when a light region is found. The IDP also has an effect on the ART at medium and

high system loading. We suggest that it may be better for a job to be processed in a site of

the local region at high system load, because each site maintains more accurate load

information of other sites in its local region than a site in a remote region.

6.2.3 Effect with different job arrival patterns

Our observations in the preceding section were in the context of uniform job arrival rates,

but the mean job arrival rate in grid systems is often heterogeneous. In the simulation, to

reduce the simulation complexity, we consider three classes of job arrivals, each with a

different average job arrival rate. We randomly chose a third of the sites as lightly loaded

site (ρ = 0.3), a third of the sites as moderately loaded sites (ρ = 0.6) and other sites as

highly loaded sites (ρ = 0.9). Figure 6.2 shows that ART with P-RB has an 18.21%

improvement over those with MCT.

3202
2619

0

1000

2000

3000

4000

MCT P-RB

A
R

T
 (

tim
e

 u
ni

t)

Figure 6.2: Effect with different job arrival patterns

 114

2500

2800
3100

3400

3700
4000

4300

1 1.5 2 2.5 3

CV in inter-arrival times of jobs

A
R

T
 (

tim
e

 u
n

it)

MCT

P-RB

Figure 6.3: Sensitivity to the variance in the inter-arrival times of jobs

Table 6.3: Improvement factor (in percent) of P-RA over MCT in Figure 6.3

 1 1.5 2 2.5 3 Average
MCT 18.21 17.01 16.69 18.53 23.04 18.69

6.2.4 Sensitivity to the coefficient of variation in the inter-arrival times

of jobs

The simulation examines the effect of the coefficient of variation (CV) in inter-arrival

time to the ART in the heterogeneous system. The setting of system loading was the same

as that in Section 6.2.3. Figure 6.3 shows the ART for different CVs of job inter-arrival

rate. The figure shows that the advantage of P-RB over P-NB has not been weakened in

terms of ART. P-RB has an average improvement of 18.69% over MCT (Table 6.3).

A higher CV in inter-arrival time implies that job arrivals at each node in the

system are clustered; the higher the CV, the more clustered the job arrival process.

Clustered arrivals mean that there are large gaps between job arrivals, but that the

average job arrival rate remains the same. The more clustered the arrival process, the

more attempts the site makes at load distribution. For P-RB, this means that each site

 115

receives load information more frequently and accurately from other sites in its local

region.

The long gaps between arrivals provide more opportunities for P-RB in

distributing the load during the gap. When there are long gaps between arrivals, the

probability that a site will move into a lightly loaded state increases. Thus, the probability

that the LAP in P-RB will locate a lightly loaded site within and across regions increases

with increasing CV in the inter-arrival times. In contrast, MCT does not make load

adjustments, even though the jobs may be dispatched to overloaded sites or some sites

have become lightly loaded during the long gaps.

1500
1700
1900
2100
2300
2500
2700
2900
3100
3300
3500

8 12 16 20 24 28 32

The number of regions, h

A
R

T
 (

tim
e

un
it)

MCT

P-RB

Figure 6.4: Evaluation of scalability with different number of regions

Table 6.4: Improvement factor (in percent) of P-RA over MCT in Figure 6.4

 8 12 16 20 24 28 32 Average
MCT 14.08 18.21 25.64 17.75 14.39 25.51 19.86 19.35

6.2.5 Sensitivity to the number of regions

This section presents the performance of both algorithms to the different number h of

regions. We varied the number of regions from 8 to 32, in increments of 4. The setting of

system loading was the same as that in Section 6.2.3. All other parameters were set to

their default values (Table 6.1). The simulation results are presented in Figure 6.4 and

 116

Table 6.4. The results show that P-RB performs 19.35% better than MCT. Figure 6.4

shows that the advantage of P-RB over MCT does not depend on the number of regions.

2200
2300
2400
2500
2600
2700
2800
2900
3000

1 2 3 4 5 6 7 8 9 1011 1213 1415

Polling interval for inter-region

information exchange, T S

A
R

T
 (

tim
e

un
it)

P-RB

Figure 6.5: Sensitivity of performance to different polling intervals at system
loading 0.5

3600
3700
3800
3900
4000
4100
4200

1 2 3 4 5 6 7 8 9 101112131415

Polling interval for inter-region

information exchange, T S

A
R

T
 (

tim
e

 u
ni

t)

P-RB

Figure 6.6: Sensitivity of performance to different polling intervals at system
loading 0.9

6.2.6 Sensitivity to polling interval TS

The parameter TS controls the trade-off between inter-region network traffic and the

quality of load balancing: intuitively, a smaller value of TS provides a better balance at

the expense of greater inter-region network traffic. To observe the impact of this

 117

parameter on the performance, we conducted simulations for various values in the range

1–15. We set the system loading to 0.5 and 0.9. Selected results are shown in Figures 6.5

and 6.6.

At the low system loading (ρ = 0.5), the average response time increases as we move

from left to right. This is because more lightly loaded sites are available in the system at

low system loading. At the high system loading (ρ = 0.9), performance is not sensitive to

a range of values (from 1 to 10) since lightly loaded sites become fewer and fewer. This

suggests that at high system loading it is more preferable to make load balancing inside

regions than across regions.

6.2.7 Sensitivity to accuracy of estimation of job execution cost

P-RB requires estimated job execution cost. We assessed the impact of incorrect job

execution cost estimation on the algorithm. The evaluation method is the same as

described in Section 5.3.8. The setting of system loading is the same as one in Section

6.2.3. Figure 6.7 shows the performance for P-RB when job execution cost is estimated

(1) accurately, and (2) with a range size of prediction errors. The Figure also shows the

performance of the algorithm without load balancing.

2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]

Range size of estimation errors

A
R

T
 (

tim
e

un
it)

P-RB(Accurate)
No load balancing
P-RB (Estimated)

Figure 6.7: The impact of range size of prediction errors on the performance of
algorithm P-RB

In Figure 6.7, a and b increase from 10% to 90%, in increments of 10%. This results in

the range of predicted error for the actual execution cost of x increasing from [−0.1x, 0.1x]

to [−0.9x, 0.9x], while the average predicted error remains unchanged (at 0). The Figure

 118

shows that as a and b increase, there is an overall increase in the ART; this was due to

highly inaccurate information, especially when the error is large. But the performance of

P-RB is still better than the situation without load balancing when a and b reach [9, 9].

6.3 Summary

A performance-driven, region-based load-balancing algorithm has been proposed for

computational grids. Our algorithm does not require a centralised decision scheme.

Instead, we developed a decentralised load-balancing mechanism for the intra-region and

inter-region load balancing directly in the sites. Intra-region communication can be

minimised by MIF. To control inter-region communication, at most a remote regional

broker site is queried at a given time interval.

We extensively evaluated the algorithm using simulations. The results have

shown that it performs better than MCT, by requiring shorter average response times of

jobs.

 119

7

Conclusion and future work

This dissertation has studied the issue of load-balancing in large-scale heterogeneous

computational grids. To explore the solution space for load-balancing in such

environments, we designed a survey for load-balancing solutions. We have developed a

system model to study load balancing problems in computational grid environments. In

particular, we have developed three decentralised algorithms for job dispatching and

load-balancing that use only partial information. All of them are scalable, dynamic,

decentralised and sender-initiated. We have built decentralised schemes that are capable

of efficient load assignment and redistribution to minimise the average response time of

jobs, despite the scalability of grid systems, the heterogeneous processing power of grid

sites, and considerable communication overheads involved in information collection.

This chapter concludes the dissertation by summarising the major contributions and

describing future research directions.

Section 7.1 highlights the main contributions. Section 7.2 focuses on future

directions, which are extensions of our past and current research on decentralised load-

balancing support for heterogeneous computational grids.

 120

7.1 Main contributions

7.1.1 Desirability-aware load-balancing algorithm

Chapter 4 presented a new desirability-aware load balancing algorithm for heterogeneous

computational grids.

We gave two criteria for site desirability: processing power and transfer delay.

For each site si in a grid, our algorithm uses the desirability of other sites to si to form k

number of partners and p number of neighbours for the site si. Partners are sites with

comparable or greater processing power, and neighbours are nearby sites with low

transfer delays. We have designed an approach for constructing the partner sites for each

site when a site joins the grid. We determined an approach to enable the set of partners

for a site to be updated dynamically at runtime based on feedback information, and a

relatively simple approach to form neighbouring sites for each grid site.

Rather than using the conventional periodic or polling approaches, state

information exchange between a site and its partners or neighbours is performed via

Mutual Information Feedback (MIF) to reduce communication overheads.

The algorithm comprises two specific policies for load distribution: Instantaneous

Distribution Policy (IDP) and Load Adjustment Policy respectively (LAP). When a new

job arrives at a site, it either remains at that site or is immediately allocated by IDP to it

or to one of its partner sites. Due to the likely fluctuating behaviour of grid resources,

continuous load adjustment is employed among neighbour sites under the guidance of

LAP to better exploit the grid environment.

Extensive simulation studies were conducted to analyse the performance of our

load-balancing algorithm. The algorithm was compared to the Nearest Neighbour load-

balancing algorithm. The results show that our algorithm performs better than the Nearest

Neighbor algorithm, and reduces the average job response time over a wide range of

system parameters.

 121

Our algorithm (which considers the heterogeneity of sites) makes more powerful

sites carry higher loads, because jobs executed at fast sites are more likely to execute at

high speed. From the system perspective, our load-balancing scheme – which takes into

account the different network transfer delay between sites – enables quick responses to

load imbalances. In other words, the desirability-aware approach is “greedy” in the sense

that it tries, at each step, to make jobs assignments at lightly loaded sites.

7.1.2 Performance-driven desirability-aware load-balancing algorithm

Chapter 5 presented a novel performance-driven load-balancing algorithm for

heterogeneous computational grids while considering the site desirability.

The accumulated job execution time is defined as load index of a site. We

included the dynamic communication cost in the cost calculation for job execution at a

remote site, and how to determine the performance benefit that a job can gain for

execution at a remote site. The state information exchange is done via MIF.

The algorithm uses site desirability to guide load assignments (Chapter 4), and

integrates three dynamic approaches to make load distribution and redistribution driven

by the performance benefit that jobs can gain: IDP, LAP, and Augmented Load

Adjustment Policy (ALAP).

• IDP. A new job arriving at a site is immediately allocated to that site or one of its

partner sites, giving the job maximum performance benefit.

• LAP. The load adjustment policy aims to continuously reduce load difference

among a site and its neighbours by transferring the job that benefits most in the

global job queue of that site.

• ALAP. LAP causes a bottleneck in less powerful sites and their overlapping

neighbourhoods. The load adjustment can be further accomplished by transferring

to an augmented neighbour the job that benefits most from being in the global job

queue. How to find the augmented neighbour and how to trigger the ALAP were

described.

 122

The performance-driven approach is “greedy” in the sense that it tries, at each step, to

make job assignments at the site that can provide most performance benefit. We

extensively evaluated the algorithm using simulations. Those results showed that our

algorithm outperforms the Performance-driven Neighbours-based algorithm, while

having a closer performance to the unrealistic algorithm, Central.

7.1.3 Performance-driven Region-based load-balancing algorithm

Chapter 6 presented a Performance-driven Region-based load-balancing algorithm for

heterogeneous computational grids by applying clustering approach. The algorithm is

partially based on research that was presented in Chapter 5.

The grid sites are clustered into regions around a set of known broker sites in

terms of network transfer delay; the regional brokers are organised in a fully

decentralised fashion. We developed a decentralised load-balancing mechanism for the

intra-region and inter-region load balancing directly in the sites. For each regional grid,

our algorithm integrates static IDP and dynamic LAP to make load distribution and

redistribution driven by the performance benefit that jobs can gain. The LAP also

considers load redistribution across regional grids. The intra-region communication is

minimised by MIF. To control inter-region communication, the random polling of a

remote regional broker site is performed by each regional broker site at a set time interval.

We used simulations to extensively evaluate the algorithm, and showed that it

performs better than Minimum Completion Time algorithm (MCT).

7.1.4 Discussion

Optimising workload allocation for heterogeneous grid systems is not an easy task. The

assignment of jobs to processing sites is done in such a way as to minimise the

average response time of jobs while minimising the overhead from communication

delay. Owing to the dynamic nature of the grid computing environment, designing an

ideal load-balancing algorithm on it remains a challenge. We hope our algorithms can

serve as examples for continuing work on research into decentralised load-balancing

solutions.

 123

7.2 Future work

In the course of designing and evaluating decentralised load-balancing schemes for

heterogeneous computational grids, we have found several interesting issues that need

further investigation. These open issues are as follows.

7.2.1 Replication as fault-tolerant strategy

Our work points to the need to address the problem of efficient utilisation and satisfactory

response time, and the problem of fault-tolerance for job scheduling and load-balancing

in computational grids. Therefore, as grids are increasingly used for jobs requiring high

levels of performance and reliability, the ability to tolerate failures while effectively

exploiting resources in a scalable and transparent manner must be an integral part of grid

computing resource management systems.

One future direction is to integrate job replication strategy and our load-balancing

algorithms. Replication strategy has been widely used for job scheduling in

computational grids. It attains good performance without relying on information about

the grid or the job, although consuming a few more cycles. It can provide fault-tolerance

and decreased completion time.

7.2.2 Incorporation of security concerns

Grids are mostly formed with resources owned by many organisations and thus are not

dedicated for certain users. As such, jobs that are dispatched to a remote site may

experience security and reliability problems if the site is attacked by malicious users,

such that the jobs it is executing are destroyed. A grid job scheduler must be security-

driven, in that it must consider the risk involved in dispatching jobs to remote sites. Each

grid site can be modelled by a parameter called the security level that a grid site can offer

to remote jobs. Applying the notion of security into our load balancing algorithms is

clearly a research opportunity.

 124

7.2.3 Consideration of resource availability

In the grid environment, numerous sites are capable of providing computing resources.

Some of these sites are frequently idle and able to constantly share computing resources;

some, however, are not. Therefore, when selecting sites for distributing jobs, if an

inefficient site is chosen, redistribution of jobs may frequently occur, and thus a reduction

in the execution performance of the system. How to select efficient sites is an issue

worthy of further investigation. This is an interesting research direction – to integrate the

idle-time concept with our load-balancing algorithms.

Most computing sites have daily routines with few idle day-time cycles and large

chunks of idle night or early-morning time cycles. In addition, the computing sites are

geographically distributed in different time zones on the grids. During a 24-hour cycle,

the area that contains the most idle computers can change. The jobs may be distributed to

sites located in idle night or early-morning time zones around the global.

7.2.4 Applying economic models for load balancing

The economic approaches have recently attracted considerable attention for job

scheduling and load balancing in large distributed system environments. The goal of grid

economy is not necessarily to determine the best resource for the execution of every job,

but to improve the distribution of the overall workload to maximise the number of jobs

that can simultaneously achieve a Quality of Service (QoS) objective, while limiting the

massive complexity and the computational overhead of the scheduling process.

This opens the possibility of investigating the dynamic adjustment of resource

prices, thus enabling a site broker to make load-balancing decisions on the basis of

economic models – for example, the use of queue waiting time as a stimulus for price

adjustment.

 125

7.2.5 Load-balancing scheme for data grid

A data grid is a collection of geographically dispersed storage resources over a wide area

network. The goal of a data grid system is to provide a large virtual storage framework

with unlimited power through collaboration among individuals, institutions and resources.

We expect that heterogeneity will be a big challenge for data-intensive

applications running on data grids, where interconnections are relatively slow and

network latencies high. Some data sites may be over-utilised, while others may be under-

utilised. In designing an efficient load-balancing mechanism for data grids, the

performance of our load-balancing algorithms in such environments needs to be

investigated.

 126

References

1. I. Foster, C. Kesselman (Eds.), The Grid: blueprint for a new computing

infrastructure, Morgan-Kaufmann Publishers, 1st Edition 1999, 2nd Edition 2003.

2. W. M. Jones, L. W. Pang, D. Stanzione, W. B. III. Ligon, Job communication

characterization and its impact on meta-scheduling co-allocated jobs in a mini-

grid, in: Proceedings of the 18th International Parallel and Distributed Processing

Symposium, 26-30 April 2004, pp:253-260.

3. I. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: enabling scalable

virtual organizations, The International Journal of High Performance Computing

Applications 15 (3) (2001) 200–222.

4. M. Anirban, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu, L.

Johnsson, Scheduling strategies for mapping application workflows onto the grid,

in: Proceedings of the 14th IEEE International Symposium on

High Performance Distributed Computing (HPDC-14), 24-27 July 2005, pp:125 –

134.

5. R. Buyya (ed.), High performance cluster computing: architectures and systems,

vol. 1 and vol. 2, Prentice-Hall: Englewood Cliffs, NJ, 1999.

6. Community scheduler framework.

http://www.globus.org/toolkit/docs/4.0/contributions/csf.

 127

7. Foster, I., Kesselman, C., and Tuecke, S., The anatomy of the Grid: enabling

scalable virtual organizations, International Journal of High Performance

Computing Applications, 15 (3) (2001) 200–222.

8. Platform Enterprise Grid Orchestrator (EGO).

http://www.platform.com/Products/Platform.Enterprise.Grid.Orchestrator/Product

.Information/.

9. Moab grid suite. http://www.clusterresources.com/pages/products/moab-grid-

suite.php.

10. Globus, http://www.globus.org/.

11. I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit,

International Journal of Supercomputer Applications, 11 (2) (1997) 115–128.

12. Chapin, S., Karpovich, J., and Grimshaw, A. (1999). The Legion resource

management system. In: Proceedings of the 5th Workshop on Job Scheduling

Strategies for Parallel Processing, April 16, 1999, San Juan, Puerto Rico, Lecture

Notes in Computer Science (LNCS), Vol. 1659, pp. 162-178.

13. H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, Heuristics for

scheduling parameter sweep applications in Grid environments, in: Proceedings of

the 9th Heterogeneous Computing workshop (HCW'2000), May 1, 2000, Cancun,

Mexico, pp. 349-363.

14. R. Buyya, J. Abramson, and J. Giddy, Nimrod/G: architecture for a resource

management and scheduling system in a global computational Grid, in:

Proceedings of 4th IEEE Conference on High-Performance Computing in the

Asia-Pacific Region, 14-17 May 2000, Beijing, China, pp. 283-289.

15. M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima and H. Takagi,

Ninf: a network based information library for global world-wide computing

infrastructure, in: Proceedings of the International Conference on High

Performance Computing and Networking Europe (HPCN Europe), Vienna,

Austria, 28-30 April 1997, Lecture Notes in Computer Science (LNCS), Vol.

1225, pp. 491-502.

16. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, Condor-G: a

computation management agent for multi-institutional Grids, in: Proceedings of

 128

the Tenth IEEE Symposium on High Performance Distributed Computing

(HPDC10), San Francisco, CA, USA, 7-9 August 2001, pp. 55-63.

17. S. Venugopal, R. Buyya and L. Winton, A Grid service broker for scheduling e-

science applications on global data Grids, Concurrency and Computation: Practice

and Experience, 18(6) (2005) 685-699

18. T. Hey and A. E. Trefethen, The UK e-science core programme and the Grid,

Future Generation Computer Systems, 18(8) (2002) 1017-1031.

19. W. Hoschek , J. Jaen-Martinez, A. Samar , H. Stockinger , K. Stockinger, Data

management in an international data Grid project, in: Proceedings of the first

IEEE/ACM International Workshop on Grid Computing, Bangalore, India, 7

December 2000, Lecture Notes in Computer Science (LNCS), Vol. 1971, pp. 77-

90.

20. Grid Physics Network (GriPhyN).http://www.griphyn.org/

21. W. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing

environments: The engineering aspects of NASA’s Information Power Grid. In:

Proceedings of the Eighth IEEE International Symposium on High Performance

Distributed Computing, Redondo Beach, CA, USA, 3-6 August 1999, pp. 197-

204.

22. S. Zhou, X. Zheng, J. Wang, P. Delisle, Utopia: a load sharing facility for large

heterogeneous distributed computer systems, Software - Practice and Experience,

23(12) (1993) 1305-1336.

23. J.M. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, C. Kesselman,

Monitoring and discovery in a Web services framework: Functionality and

performance of the Globus Toolkit’s MDS4, in: Technical Report ANL/MCS-

P1248-0405, Argonne National Laboratory, Argonne, IL, 2005.

24. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid information services

for distributed resource sharing. In: Proceedings of the 10th IEEE International

Symposium on High-Performance Distributed Computing (HPDC 2001), San

Francisco, CA, USA, 6–9 August 2001, pp. 181-194.

25. X. Zhang, J.L. Freschl J, J.M. Schopf, A performance study of monitoring and

information services for distributed systems. In: Proceedings of the 12th IEEE

 129

International Symposium on High-Performance Distributed Computing (HPDC

2003), Seattle, WA, USA, 22–24 June 2003.

26. X. Zhang, J.M. Schopf, Performance analysis of the Globus Toolkit monitoring

and discovery service, MDS2, in: Proceedings of the International Workshop on

Middleware Performance (MP 2004) at IPCCC 2004, April 2004.

27. G. Coulouris, J. Dollimore, K. Kinderberg, Distributed Systems: Concepts and

Design. Addison-Wesley: Reading, MA, 1995.

28. V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, Distributed job

scheduling on computational grids using multiple simultaneous requests, in:

Proceedings of the 11th International Symposium for High Performance

Distributed Computing, 23-26 July 2002, pp. 359-366.

29. Maui. http://www.clusterresources.com/pages/products/maui-cluster-

scheduler.php.

30. Load Sharing Facility. http://www.platform.com/Products/Platform.LSF.Family/.

31. Portable Batch System. http://www.openpbs.org/.

32. Sun Grid Engine / CODEINE. http://www.sun.com/software/gridware/index.xml.

33. LoadLeveler. http://www-03.ibm.com/systems/clusters/software/loadleveler.html.

34. COSY. http://www.ccrl-nece.de/~falk/COSY/cosy.shtml.

35. Condor. http://www.cs.wisc.edu/condor/.

36. MOSIX. http://www.mosix.org/.

37. A. Barak A. and A. Shiloh, The MOSIX2 management system for linux clusters

and organizational Grids, white paper, March 2007.

38. R. Wolski, N. Spring, J. Hayes, The network weather service: A distributed

resource performance forecasting service for metacomputing, Journal of Future

Generation Computing Systems, 15 (5–6) (1999) 757–768.

39. P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, IDMaps: a

global internet host distance estimation service, IEEE/ACM Transactions on

Networking, 9 (5) (2001) 525–540.

40. A. Agrawal, H. Casanova, Clustering hosts in P2P and global computing

platforms, in: Proceedings of the 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid, 12–15 May 2003, pp. 367–373.

 130

41. S. Ratnasamy, M. Handley, R.M. Karp, S. Shenker, Topologically-aware overlay

construction and server selection, in: Proceedings of IEEE INFOCOM, 23–27

June 2002, volume 3, pp. 1190–1199.

42. M.A. Baker, G.C. Fox, and H.W. Yau, Review of cluster management software,

NHSE Review, July 1996, available at http://

http://nhse.cs.rice.edu/NHSEreview/CMS/.

43. H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal load balancing in distributed

computer systems, Springer, London, 1997

44. J. Li, H. Kameda, Load balancing problems for multiclass jobs in

distributed/parallel computer systems, IEEE Transactions on Computers 47 (3)

(1998) 322–332

45. X. Tang, S.T. Chanson, Optimizing static job scheduling in a network of

heterogeneous computers, in: Proceedings of the International Conference on

Parallel Processing, 21-24 August 2000, pp. 373–382.

46. D. Grosu, A.T. Chronopoulos, M.Y. Leung, Load balancing in distributed systems:

an approach using cooperative games, in: Proceedings of the International Parallel

and Distributed Processing Symposium, 15-19 April 2002, pp. 52–61, IEEE

Computer Society Press.

47. D. Grosu, A.T. Chronopoulos, Algorithmic mechanism design for load balancing

in distributed systems, IEEE Transactions on Systems, Man and Cybernetics -

Part B, 34(1) (2004) 77-84.

48. Z. Zeng and B. Veeravalli, Design and analysis of a non-preemptive decentralized

load balancing algorithm for multi-class jobs in distributed networks, Computer

Communications, 27(7) (2004) 679-694.

49. D. Grosu, A.T. Chronopoulos, Noncooperative load balancing in distributed

systems, Journal of Parallel and Distributed Computing, 65(9) (2005) 1022-1034.

50. S. Penmatsa, A.T. Chronopoulos, Cooperative load balancing for a network of

heterogeneous computers, in: Proceedings of the 20th IEEE International Parallel

and Distributed Processing Symposium, 25-29 April 2006 Page(s):8.

 131

51. S. F. El-Zogdhy, H. Kameda, and J. Li, Numerical studies on a paradox for non-

cooperative static load balancing in distributed computer systems, Computers and

Operations Research, 33(2) (2006) 345-355.

52. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. Freund, Dynamic mapping

and scheduling of a class of independent tasks onto heterogeneous computing

systems, Journal of Parallel and Distributed Computing, 59 (2) (1999) 107-131.

53. V. Berten, J. Goossens, and E. Jeannot, On the distribution of sequential jobs in

random brokering for heterogeneous computational Grids, IEEE Transactions on

Parallel and Distributed Systems, 17 (2) (2006) 113-124.

54. S.P. Dandamudi, Sensitivity evaluation of dynamic load sharing in distributed

systems, IEEE Concurrency, 6 (3) (1998) 62-72.

55. Eager D. L., Lazowska E. D., and Zahorjan J. A comparison of receiver-initiated

and sender-initiated adaptive load sharing. Performance Evaluation, 6(1) (1986)

53–68.

56. S. Zhou, A trace-driven simulation study of dynamic load balancing, IEEE

Transactions on Software Engineering, 14 (9) (1988) 1327–1341.

57. P. Krueger and N.G. Shivaratri, Adaptive location policy for global scheduling.

IEEE Transaction Software Engineering, 20(6) (1994) 432–444.

58. O. Kremien and J. Kramer, Methodical analysis of adaptive load sharing

algorithms. IEEE Transactions on Parallel and Distributed Systems, 3(6)

(1992)747–760.

59. N.G. Shivaratri, P. Krueger, M. Singhal, Load distributing for locally distributed

systems, Computer, 25 (12) (1992) 33–44.

60. H.-C. Lin, C. S. Raghavendra, A dynamic load-balancing policy with a central job

dispatcher (LBC), IEEE Transactions on Software Engineering, 18 (2) (1992)

145–158.

61. M.H. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load balancing on

highly parallel computers, IEEE Transactions on Parallel and Distributed Systems,

4 (9) (1993) 979–993

 132

62. Eager D. L., Lazowska E. D., and Zahorjan J. Adaptive load sharing in

homogeneous distributed systems. IEEE Transactions on Software Engineering,

12 (5) (1986) 662–675.

63. K. Benmohammed-Mahieddine, P.M. Dew, and M. Kara, A periodic

symmetrically initiated load balancing algorithm for distributed systems. In:

Proceedings of the 14th International Conference on Distributed Computing

Systems, 21-24 June 1994, Poznan, Poland, pp. 616–623.

64. M.J. Zaki, W. Li, S. Parthasarathy, Customized dynamic load balancing for a

network of workstations, Journal of Parallel and Distributed Computing 43 (2)

(1997) 156–162.

65. C.Z. Xu and F.C.M. Lau, Iterative dynamic load balancing in multicomputers,

Journal of the Operational Research Society, 45 (7) (1994) 786-796.

66. F. C. H. Lin and R. M. Keller, The gradient model load balancing method, IEEE

Transaction on Software Engineering, 13 (1) (1987) 32-38.

67. J. Watts, S. Taylor, A practical approach to dynamic load balancing, IEEE

Transactions on Parallel and Distributed Systems 9 (3) (1998) 235–248.

68. K. Antonis, J. Garofalakis, P. Spirakis, A competitive symmetrical transfer policy

for load sharing, in: Proceedings of the 4th International Euro-Par Conference on

Parallel Processing, 1-4 September 1998, UK, Lecture Notes in Computer Science

(LNCS), Vol. 1470, pp. 352-355.

69. L. Anand, D. Ghose, V. Mani, ELISA: an estimated load information scheduling

algorithm for distributed computing systems, Computers and Mathematics with

Applications 37 (8) (1999) 57–85.

70. M. C. Luis and D. S. Isaac, Rate of change load balancing in distributed and

parallel systems, Parallel Computing, 26 (9) (2000) 1213–1230.

71. M. Mitzenmacher, How useful is old information?, IEEE Transactions on Parallel

and Distributed Systems, 11 (1) (2000) 6–20.

72. M. Dahlin, Interpreting stale load information, IEEE Transactions on Parallel and

Distributed Systems, 11(10) (2000) 1033–1047.

 133

73. Y. Amir, B. Awerbuch, A. Barak, R. Sean Borgstrom, A. Keren, An opportunity

cost approach for job assignment in a scalable computing cluster, IEEE

Transactions on Parallel and Distributed Systems, 11 (7) (2000) 760–768.

74. W. Shu and L.V. KaleÂ, A dynamic scheduling strategy for the chare-kernel

system, in: Proceedings of the 1989 ACM/IEEE conference on Supercomputing,

November 1989, Reno, Nevada, USA, pp. 389-398.

75. K. Antonis, J. Garofalakis, I. Mourtos, and P. Spirakis, A hierarchical adaptive

distributed algorithm for load balancing, Journal of Parallel and Distributed

Computing, 64 (1) (2004) 151-162.

76. Z. Zeng and B. Veeravalli, Design and performance evaluation of queue-and-

rate-adjustment dynamic load balancing policies for distributed networks, IEEE

Transactions on Computers, 55 (11) (2006) 1410-1422.

77. P. Dikshit, S. K. Tripathi and P. Jalote, SAHAYOG: A test bed for evaluating

dynamic load sharing policies, Software - Practice and Experience, 19 (5) (1989)

411–435.

78. M. M. Theimer and K. A. Lantz, Finding idle machines in a workstation-based

distributed system, IEEE Transactions on Software Engineering, 15(11) (1989)

1444–1458.

79. H.Shan, L.Oliker, and R.Biswas, Job superscheduler architecture and performance

in computational grid environments, in: Proceedings of the ACM/IEEE

conference on Supercomputing, 15-21 November 2003.

80. M. Harchol-Balter, A. B. Downey, Exploiting process lifetime distributions for

dynamic load balancing, ACM Transactions on Computer Systems, 15 (3) (1997)

253-285.

81. W. Zhu, P. Socko, B. Kiepuszewski, Migration impact on load balancing—an

experience on Amoeba, ACM SIGOPS Operating Systems Review, 31(1) (1997)

43–53.

82. D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance benefits of

migrating active processes for load sharing, ACM SIGMETRICS Performance

Evaluation Review, 16 (1) (1988) 63–72 .

 134

83. S. Lu and L. Xie. A scalable load balancing system for nows. ACMSIGOPS

Operating Systems Review, 32 (3) (1998) 55–63.

84. C.Z. Xu and F.C.M. Lau, Optimal parameters for load balancing with the

diffusion method in mesh networks, Parallel Processing Letters, 4 (1-2) (1994)

139-147.

85. X. Qian, and Q. Yang, Load balancing on generalized hypercube and mesh

multiprocessors with LAL, in: Proceedings of 11th International Conference on

Distributed Computing Systems. 20-24 May 1991, pp. 402 –409.

86. B. Shirazi, A.R. Hurson, K. Kavi, Scheduling and Load Balancing in Parallel and

Distributed Systems, IEEE book, May 1995.

87. Y. Lan and T. Yu, A dynamic central scheduler load-balancing mechanism, in:

Proceedings of IEEE 14th Annual International Phoenix Conference on

Computers and Communications, 28-31 March 1995, pp. 734-740.

88. Shivaratri N. G. and Krueger P. Two adaptive location policies for global

scheduling algorithms. In: Proceedings of the 14th International Conference

Distributed Computer Systems, 28 May – 01 June 1990, pp. 502–509.

89. A. Barak and O. La'adan, The MOSIX multicomputer operating system for high

performance cluster computing, Future Generation Computer Systems, 13 (4-5)

(1998) 361-372.

90. D. Z. Gu, L. Yang and L. R. Welch, A Predictive, Decentralized Load Balancing

Approach, in: Proceedings of the 19th IEEE International Parallel and Distributed

Processing Symposium, Denver, Colorado, 04-08 April 2005.

91. R. Mirchandaney, D. Towsley, J. A. Stankovic, A adaptive load sharing in

heterogeneous distributed systems, Journal of Parallel and Distributed Computing,

9 (4) (1990) 331-346.

92. R. Mirchandaney, D. Towsley, J. A. Stankovic, A Analysis of the effects of

delays on load sharing, Transactions on Computers, 38 (11) (1989) 1513-1525.

93. A.Y. Zomaya, and Teh Yee-Hwei, Observations on using genetic algorithms for

dynamic load-balancing, IEEE Transactions on Parallel and Distributed Systems,

12 (9) (2001) 899 – 911.

 135

94. G. Cybenko, Dynamic load balancing for distributed memory multi-processors,

Journal of Parallel and Distributed Computing, 7 (1989) 279–301.

95. J. Song, A partially asynchronous and iterative algorithm for distributed load

balancing, Parallel Computing, 20 (6) (1994) 853-868.

96. Y. F. Hu, R. J. Blake, An improved diffusion algorithm for dynamic load

balancing, Parallel Computing 25 (4) (1999) 417–444.

97. L. He, S. A. Jarvis, D. P. Spooner, X. Chen, G. R. Nudd, Hybrid performance-

based workload management for multiclusters and grids, IEE Proceedings

Software, 151(5) (2004) 224-231.

98. C. C. Hui and S. T. Chanson, Theoretical analysis of the heterogeneous dynamic

load balancing problem using a hydrodynamic approach, Journal of Parallel and

Distributed Computing, 43 (2) (1997) 139–146.

99. C.C. Hui, S.T. Chanson, Hydrodynamic load balancing, IEEE Transactions on

Parallel and Distributed Systems, 10 (11) (1999) 1118–1137.

100. R. Diekmann, A. Frommer, B. Monien, Efficient schemes for nearest

neighbor load balancing, Parallel Computing, 25 (7) (1999) 789–812.

101. R. Elsasser, B. Monien, R. Preis, Diffusion schemes for load balancing on

heterogeneous networks, Theory of Computing Systems, 35 (3) (2002) 305–320.

102. K. Benmohammed-Mahieddine, P. Dew, A Periodically symmetrically

initiated load balancing algorithm for distributed systems, Operating Systems

review 28 (1) (1994) 66–77.

103. Y.Wong, K.Leung, and K.Lee, A stochastic load balancing algorithm for

i-computing, Concurrency and Computation: Practice and Experience, 15(1)

(2003) 55-78.

104. D. J. Evans and W. U. N. Butt, Load balancing with network partitioning

using host groups, Parallel Computing, 20(3) (1994) 325-345.

105. C. Xu, F. Lau, B. Monien, and R. Luling, Nearest neighbor algorithms for

load balancing in parallel computers, Concurrency: Practice and Experience, 7 (7)

(1995) 707-736.

106. P. Sanders, Analysis of nearest neighbor load balancing algorithms for

random loads. Parallel Computing, 25 (8) (1999) 1013-1033.

 136

107. T. Thanalapati and S. Dandamudi, An efficient adaptive scheduling

scheme for distributed memory multicomputers, IEEE Transactions on Parallel

and Distributed Systems, 12 (7) (2001) 758–768.

108. V. Stergios and K. C. Sevcik, Parallel application scheduling on networks

of workstations, Journal of Parallel and Distributed Computing, 43(1) (1997)

1159–1166.

109. M. Harchol-Baker, M. E. Crovella, and C. D. Murta, On choosing a task

assignment policy for a distributed server system, Journal of Parallel and

Distributed Computing, 59 (2) (1999) 204-228.

110. H.Y. Sit, K.S. Ho, R.W.P. Luk, L.K. Ho, An adaptive clustering approach

to dynamic load balancing, in: Proceedings of the 7th International Symposium on

Parallel Architectures, Algorithms and Networks (ISPAN’04), 2004, pp. 415–420,

IEEE Computer Society Press.

111. X. Deng, H. Liu, J. S. Long, and B. Xiao, Competitive analysis of network

load balancing, Journal of Parallel and Distributed Computing, 40 (2) (1997) 162–

172.

112. C. Xu and F. Lau, Load balancing in parallel computers. Theory and

Practice. Kluwer Academic Publishers, 1997.

113. K. K. Goswami, M. Deverakonda and R. K. Iyer, Prediction-based

dynamic load-sharing heuristics, IEEE Transactions on Parallel and Distributed

Systems, 4 (6) (1993) 638–648.

114. P.K.K. Loh, W.J. Hsu, C. Wentong, N. Sriskanthan, How network

topology affects dynamic load balancing, IEEE Parallel and Distributed

Technology 4 (3) (1996) 25-35.

115. D. Arredondo, M. Errecalde, S. Flores, F. Piccoli, M. Printista, R. Gallard

Embedded intelligent assistance for load distribution and balancing, in:

Proceedings of the 9th International Conference on Parallel and Distributed

Computing and Systems, October 1997, pp.188-195.

116. A. Corradi, L. Leonardi, F. Zambonelli, Diffusive load-balancing policies

for dynamic applications, IEEE Concurrency, 7 (1) (1999) 22-31.

 137

117. S. Ruchir, V. Bharadwaj, and M. Manoj, On the design of adaptive and

de-centralized load balancing algorithms with load estimation for computational

grid environments, To appear in IEEE Transactions on Parallel and Distributed

Systems, 2007.

118. K. Y. Kabalan, W. W. Smari, and J. Y. Hakimian, Adaptive load sharing

in heterogeneous systems: Policies, modifications, and simulation, International

Journal of Simulation, Systems, Science and Technology, 3 (1-2) (2002) 89-100.

119. M. Arora, S.K. Das, R. Biswas, A de-centralized scheduling and load

balancing algorithm for heterogeneous Grid environments, in: Proceedings of the

International Conference on Parallel Processing Workshops, 18–21 August 2002,

pp. 499–505.

120. R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal,

Efficient load balancing for wide-area divide-and-conquer applications,

in: Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP'01),

Snowbird, UT, 18-19 June 2001, pp. 34-43.

121. W. Yibing, R. Hyatt, An improved algorithm of two choices in

randomized dynamic load-balancing, in: Proceedings of the Fifth International

Conference on Algorithms and Architectures for Parallel Processing,

23-25 October 2002, pp. 440-445.

122. M. Mitzenmacher, The power of two choices in randomized load

balancing, IEEE Transactions on Parallel and Distributed Systems 12 (10) (2001)

1094–1104.

123. Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal, Balanced allocations,

SIAM Journal on Computing, 29 (1) (1999) 180-200.

124. K. G. Shin, C. Yi-Chieh, A coordinated location policy for load sharing in

hypercube-connected multicomputers, IEEE Transactions on Computers,

 44 (5) (1995) 669 – 682.

125. C. Hou and K. G. Shin, Implementation of decentralized load sharing in

networked workstations using the condor package. Journal of Parallel and

Distributed Computing, 40 (2) (1997) 173-184.

 138

126. X. Zhang, Y. Qu, and L. Xiao, Improving distributed workload

performance by sharing both CPU and memory resources, in: Proceedings of the

20th International Conference on Distributed Computing Systems (ICDCS'2000),

Taipei, Taiwan, 10-13 April 2000, pp. 233-241.

127. K.Q. Yan, S.C. Wang, C.P. Chang and J.S. Lin, A hybrid load balancing

policy underlying grid computing environment, Computer Standards & Interfaces,

29 (2) (2007) 161-173.

128. H. Chi-Chung, S.T. Chanson, Improved strategies for dynamic load

balancing. IEEE Concurrency, 7 (3) (1999) 58 – 67.

129. S. T. Chanson, D. Wantao, H. Chi-Chung, T. Xueyan, T. Mingyan,

Multidomain load balancing, in: Proceedings of International Conference on

Network Protocols, 14-17 November 2000, pp. 315 – 324.

130. S. P. Dandamudi, K. C. M. Lo, A hierarchical load sharing policy for

distributed systems, in: Proceedings of the Fifth International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS '97), 12-15 Janauary 1997, pp:3 – 10.

131. M. Avvenuti, L. Rizzo, and L. Vicisano, A hybrid approach to adaptive

load sharing and its performance, Journal of Systems Architecture, 42 (9-10)

(1997) 679-696.

132. C. Junwei, D. P. Spooner, S. A. Jarvis, S. Saini, G. R. Nudd, Agent-based

grid load balancing using performance-driven task scheduling, in: Proceedings.

International Parallel and Distributed Processing Symposium,

22-26 April 2003.

133. S. Vadhiyar, J. Dongarra, Self adaptivity in Grid computing,

Concurrency and Computation: Practice and Experience 17 (2-4) (2005) 235-257.

134. E. A. Billard and J. C. Pasquale, Load balancing to adjust for proximity in

some network topologies, Parallel Computing, 22 (14) (1997) 2007-2023.

135. K. Nishimura, H. Ueno, M. Yamamoto, H. Ikeda, A dynamic load

balancing method based on network delay for large distributed systems,

Electronics and Communications in Japan (Part I: Communications), 84 (6) (2001)

11-21.

 139

136. T. Kunz, The influence of different workload descriptions on a heuristic

load balancing scheme, IEEE Transactions on Software Engineering, 17 (7) (1991)

725–730.

137. Z. Xu, C. Tang, and Z. Zhang, Building Topology-Aware Overlays Using

Global Soft-State, in: Proceedings of the 23rd International Conference of

Distributed Computing Systems, 19–22 May 2003, pp. 500-508.

138. S. Xian-He, W. Ming, GHS: A performance system of Grid computing, in:

Proceedings of the 19th IEEE International Symposium on Parallel and

Distributed Processing, 4–8 April 2003.

139. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, D.

V. Wilcox, PACE – A toolset for the performance prediction of parallel and

distributed systems, International Journal of High Performance Computing

Applications, 14 (3) (2000) 228–251.

140. M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task

execution times through analytic benchmarking for scheduling in a heterogeneous

environment, IEEE Transactions on Computers, 48 (12) (1999) 1374–1379.

141. M. Dobber, R. D. van der Mei and G. Koole, A prediction method for job

runtimes on shared processors: Survey, statistical analysis and new avenues

Performance Evaluation, 64 (7-8) (2007) 755-781.

Publications from thesis

Journal Paper

 K. Lu, R. Subrata, and A. Y. Zomaya, On the performance-
driven load distribution for heterogeneous computational Grids,
Journal of Computer and System Science, 73 (8) (2007) 1191-
1206 (Elsevier)

Conference Papers

 K. Lu, R. Subrata, and A. Y. Zomaya, An efficient load
balancing algorithm for heterogeneous grid systems considering
desirability of grid sites, in: Proceedings of the 25th IEEE
International Conference on Performance, Computing, and
Communications, 10–12 April 2006, Phoenix, Arizona, USA.

 K. Lu, R. Subrata, and A. Y. Zomaya, Towards decentralized
load balancing in a computational grid environment, in:
Proceedings of the first International Conference on Grid and
Pervasive Computing, May 3-5, 2006, Taichung, Taiwan,
Lecture Notes in Computer Science (LNCS), Vol. 3947, pp. 466-
477, Springer-Verlag Press.

 K. Lu and A. Y. Zomaya, A hybrid policy for job scheduling and
load balancing in heterogeneous computational grids, in:
Proceedings of the 6th IEEE International Symposium on
Parallel and Distributed Computing, 5-8 July 2007, Hagenberg,
Austria.

