Metadata, citation and similar papers at core.ac.uk

Provided by Sydney eScholarship

DECENTRALIZED LOAD BALANCING IN
HETEROGENEOUS COMPUTATIONAL GRIDS

A thesis submitted for review

Kai Lu

November 11, 2007

https://core.ac.uk/display/41237145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

With the rapid development of high-speed wide-area networks and powerful yet low-cost
computational resources, grid computing has emerged as an attractive computing paradigm.
The space limitations of conventional distributed systems can thus be overcome, to fully
exploit the resources of under-utilised computing resources in every region around the world
for distributed jobs. Workload and resource management are key grid services at the service
level of grid software infrastructure, where issues of load balancing represent a common
concern for most grid infrastructure developers. Although these are established research areas
in parallel and distributed computing, grid computing environments present a number of new
challenges, including large-scale computing resources, heterogeneous computing power, the
autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites,
considerable job transfer costs, and considerable communication overhead involved in

capturing the load information of sites.

This dissertation focuses on designing solutions for load balancing in computational
grids that can cater for the unique characteristics of grid computing environments. To explore
the solution space, we conducted a survey for load balancing solutions, which enabled
discussion and comparison of existing approaches, and the delimiting and exploration of the
apportion of solution space. A system model was developed to study the load-balancing
problems in computational grid environments. In particular, we developed three decentralised
algorithms for job dispatching and load balancing—using only partial information: the
desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware
load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing
algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We
conducted extensive simulation studies to analyse the performance of our load-balancing
algorithms. Simulation results showed that the algorithms significantly outperform pre-

existing decentralised algorithms that are relevant to this research.

Acknowledgements

It is with great pleasure that I wish to acknowledge several people that have helped me
tremendously during the difficult, challenging, yet rewarding and exciting path towards a

Ph.D. Without their help and support, none of this work could have been possible.

First and foremost, I wish to express my sincere gratitude to my research advisor,
Prof. Albert Y. Zomaya for his guidance, encouragement, motivation, and continued
support throughout my academic years at the University of Sydney, Australia. Albert has
allowed me to pursue my research interests with sufficient freedom, while always being
there to guide me. Working with him has been one of the most rewarding experiences of

my professional life.

I would like to express my gratitude to Dr. Riky Subrata who took the time to
review my work and with whom I was able to co-author some papers. His valuable
comments are very helpful. I would like to sincerely thank Dr. Bing Bing Zhou for
helpful discussions and advices. Many thanks go also to the rest of the Advanced
Networks Research Lab members for my help. My fruitful discussions and interactions

with them helped me grow professionally.

I am grateful to Dr. Tony Souter not only for reviewing my dissertation, but more
importantly for teaching me how to improve the presentation of the dissertation in many
ways. I am very thankful to my dissertation committee members for agreeing to serve on

my committee.

Last but not least, I am forever indebted to my wife, my parents, and the rest of

my family. My wife, Rong Zhang, has been a great source of inspiration to me. None of

this would have been possible without her love, support, and continuous encouragement.
My parents’ prayers have always accompanied me. Their love keeps me going. My
daughter Sophia has been the greatest source of motivation and inspiration during the last
year of my Ph.D. I am very lucky to have been blessed with her. I am grateful to all of
them. This work is dedicated to my family.

| ntroduction

This chapter introduces the context of the resedtcétarts with an introduction to the

general area of grid computing, including a layeasthitecture of the computational grid,
and a short overview of core grid middleware. #cdisses the motivation and challenges
for scheduling and load balancing in these envimmisy and summarises the primary

contributions of the project and the evaluativehmdblogy.

1.1 Cluster and grid environments

The emergence of computer and information technpoldgs changed society
dramatically. At the same time, the advances irh4sigeed networking have enabled
computers to collaborate. This has created a trdmensource of processing power by
the use of distributed systems, opening up manyipitises for running advanced

computation-intensive jobs in a reasonable timm&a

There are several options for establishing distedsystems; cluster systems [5]
and grid systems [1] are the most common for disted jobs. Cluster systems combine

several personal computers or workstations to condigtributed applications through a

high-speed local network. The disadvantage is tiratuse of cluster systems must be
limited to a fixed area (e.g., [73, 110, 131]), mmakthe job inflexible in terms of its

performance.

We refer to a cluster system as a “site”. A companal grid uses the network
and combines computing resources from geographichiperse sites for distributed
jobs. Because grid computing uses Internet corovessticompared with conventional
distributed systems, it provides better large-scaource sharing, improved resource
utilisation and the broad-field Internet accessimmment [3]. Space limitations of
conventional distributed systems can thus be oweecto fully exploit these under-
utilised computing resources [119]. A computatiogaid can form more powerful
computing capabilities to assist in the computihdaoge amounts of more complicated
scientific jobs than can a cluster system; thugscgssing power is more efficiently used
and the quality of service is improved, for ins&@nan shorter response times.
Computational grids are emerging as next-generabomputing platforms for large-scale

computation problems in industry, academic and gowent organisations.

1.2 Resour ce management models

There are two kinds of resource management moddls@responding metrics.

e System-centric. Most jobs in an open grid system are independEney are
submitted to the grid at different times, and regudifferent resources and
durations for their executiohWVhen a single job arrives at a grid within a unit-
scheduling time-slot, the scheduling system wilblgee the load situation of
every node and select one node to run the jobhiAtstage, the scheduling policy
is to optimise the total performance of the whojstem. If the grid system is
heavily loaded, the scheduling system must redlse load balancing and
increase the system throughput and resource titiisender restricted conditions.
In this dissertation, this kind of scheduling isasdified as “system-centric

scheduling”, for which the objective is to optimisgstem performance, such as

[6], [8-9], [16], and [32]. The system-level resceirscheduling was our main
focus.
» Application-centric. If a parallel application with a number of taskswes within

a unit-scheduling time-slot, the scheduling systgith attempt to allocate and

finish it in terms of a defined objective. The atijee is usually the minimal

completion time for the entire application. Thisieduling policy is application-

oriented, so here, we refer to it as “applicatiemdc scheduling” [2, 4, 13-14].

Application-centric models deal with three kindsapiplication. The first kind is

task farming, also known as “Bag of Tasks”, in whimimerous independent jobs
arrive simultaneously. The second kind is a coeallion application, in which

each task is modelled as performing all-to-all camioation patterns throughout
its execution. The last kind can be represented dsect acyclic graph (DAG)

application, in which there is data-dependency betwa task and other tasks.

1.3 Coregrid middleware: Globus

In practical terms, all major grid projects arelban protocols and services provided by
the Globus Toolkit [10], a software “work in progeg developed by the Globus Alliance,
which involves primarily Professor lan Foster'snteat Argonne National Laboratory
and Professor Carl Kesselman’s team at the UCLA.[A brief description for the core
grid middleware is given below.

Globus [11] provides software infrastructure thaaldes applications to handle
distributed heterogeneous computing resourcessasgée virtual machine. The Globus
project is a US multi-institutional research efféinat is enabling the construction of
computational grids. A computational grid, in tlgentext, is hardware and software
infrastructure that provides dependable, consistantl pervasive access to high-end
computational capabilities, despite the geographiespersion of both resources and
users. Globus provides basic services and capesilitequired to construct a
computational grid. Their toolkit consists of a sétcomponents that implement basic
services, such as security, resource locationuresananagement, and communications.

Computational grids need to support a wide variefy applications and
programming paradigms. Consequently, rather thawiging a uniform programming
model, such as the object-oriented model, Globuws/iges a bag of services that
developers of specific tools or applications caa tes meet their own particular needs.
This methodology is possible only when the servimesdistinct and have well-defined
application programming interfaces (APIs) that t@nincorporated into applications or

tools incrementally.

Globus is constructed as a layered architectuvenioh high-level global services
are built on essential low-level core local sersicEhe Globus toolkit is modular, and an
application can exploit Globus features, such @®uee management or information
infrastructure, without using the Globus communaratlibraries. The Globus toolkit

supports the following:

* grid security infrastructure;

o gridFTP;

* Globus resource allocation manager;

e metacomputing directory service;

» global access to secondary storage;

» data catalogue and replica management; and

» advanced resource reservation and allocation.

Globus can be viewed as a grid computing framewaaed on a set of APIs to the
underlying services. Globus provides applicationefigpers with a practical means of
implementing a range of services to provide a vacea application execution

environment.

The major grid tools and application projects us@ipbus as their low-level
middleware include AppLeS [13], Ninf [15], Nimrod{&4], NASA IPG [21], Condor-G
[16], Gridbus Broker [17], UK eScience Project [18riPhyN [20], and the EU Data
Grid [19].

1.4 Motivation of theresearch

Workload and resource management are key gridcgsryirovided at the service level of

grid software infrastructure, where issues of lbathncing are a common concern for

most developers. Although these are establishezhrels areas in parallel and distributed

computing, grid computing environments presenéast seven new challenges.

Scalability. The grid may potentially encompass all high-perfance
computing resources. A given component of the gsill have its own
functions, resources and environment. These arenpogssarily geared to
work together in the overall grid; they may be pghglly located in different
organisations and may not be aware of each oBwalability is of particular
concern to grid environments that can attain pkyescale in terms of both the
number of resources and the number of jobs forethesources. This raises the

problem of potential performance degradation asite of grids increases.

Autonomy. Grid resources typically span multiple organisagi@ach having one
or more administrative domains. Each administratdemain typically has

autonomous policies that govern the sharing ofasources with the rest of the
grid. Resource management must preserve the auyoabarganisations hosting
the resources. Each computing resource is independEne computing

resource itself determines whether or not to rurew job, how to schedule it
and how to optimise resource utilisation. The gitbrof this autonomy varies
at different levels of the grid architecture. Geaallgr speaking, the higher a

level, the more autonomous.

Adaptability. A grid is a dynamic environment where the locatitype and
performance of the components are constantly chgngFor example, a
component resource may be added to or removed thengrid at any time. In
addition, a component resource may fail within gaia time. How to handle
these unexpected system activities in as closevdal Iresource as possible,

such as within a local organisation.

Heterogeneity. A grid involves a multiplicity of resources thaeaheterogeneous
and encompass a vast range of technologies. A exiubits heterogeneity of
many types—including hardware, operating systerifs,sfystems and network
heterogeneity. Heterogeneity poses a challengeubeci must be managed to
enable the parts of the grids to work together; dn@x, it also presents an
opportunity, since the variety of different resamgcsuggests that it may be
possible to select the best resources for a phatiqroblem. The variety and
amount of computing resources in the grids offégaiicant potential for high-

performance computing. Zhou et al. [22] define ¢hi@ms of heterogeneity that
may exist in distributed systems: (1) architecturaterogeneity (the hardware
design differs from node to node, so nodes redlifferent executable code); (2)
operating system heterogeneity (facilities proviggédeach node may differ and
may be incompatible); and (3) configuration heterggty, also known as
performance heterogeneity (nodes are differenttpueced, e.g., using different
processing speeds and communication capacitiedprance heterogeneity is
the most common form of heterogeneity, found incatrevery loosely coupled
system. Due to its prevalence, this work is cornegriwith performance

heterogeneity. Other forms of heterogeneity ar@bdyhe scope of this study.

Information freshness. A widely used solution for resource managemeirat gnid

is the Globus MDS [23-26]. It is based on a hidraa scheme that devises a set
of nodes, each one hosting an Index Service. Eadbx| Service maintains a

database on current resource availability for aigrof grid nodes. Index Services
can be also aggregated in higher-level Index Sesyiaising a hierarchical

approach typical of information repositories fordelly distributed systems (such
as the Internet domain name system). Even thoudmast been proved that

hierarchical approaches are well suited to effitjemanage huge quantities of
information in large distributed systems [27], tM®S approach suffers from a

key problem: since resource information is advedifrom grid nodes to index

services, and then forwarded up in the hierarcmgonsistences due to

propagation latencies are possible, between tHanfeamation present in a grid

node and the relevant copy stored in the reposgoAs a result, matchmaking is

performed using data that cannot be real. The camuation overhead involved
in capturing the load information of sites beforaking a dispatching decision

can be a major issue negating the advantages ohigiation.

Considerable transfer cost. Since computers within a site are typically conedc
by a high speed network, the network cost of rerjalie=xecution can be ignored
when a job is scheduled to run on a different caepim the same site. However,
in the grid environment, the related files of a juded to be transferred through
much slower Internet links if the job is scheduled run in a remote site.
Therefore, the cost of file transfers must be tak®o consideration in the

scheduling algorithm.

Uneven job arrival pattern. In a grid, some computers may be overloaded while
others may be under-utilised. An analysis [28] It tesource usage pattern at
several supercomputer centers (San Diego Superdentpanter, National Center
for Supercomputer Applications, Cornell Theory @enKTH Royal Institute of
Technology), shows an interesting “sine wave” pattdDuring evenings, the
resource requested reaches and sometimes exceengtimum capacity of the
system, while usage dips to a minimum in the ehdurs of the morning. A
computational grid, in addition to providing morengputation power than any
single site can provide, the time-dependent andturature of resource requests
can be better averaged by distributing the requestiifferent computing sites.
Thus, effective load balancing is important in opsing resource usage, but the

task of load balancing is more complex in a gridiemment.

The main motivation of the study is to propose déedised dynamic load balancing

solutions that can cater for these unique chaiattey of grid computing environments.

1.5 Major contributions

We present our research on decentralised dynanaid hmlancing in heterogeneous

computational grids with the aim of improving thescall utilisation and performance, by

developing effective load-balancing strategies.oBefwe start to explore the solution

space, we designed a survey for load-balancingtisnki This survey was useful for
discussing and comparing pre-existing approachesguthe survey, we delimited and
explored apportion of solution space. We also amed a system model to study load-
balancing problems in computational grid environtaeiThis research has made three

main contributions.

1.5.1 Desirability-awar e load-balancing algorithm

In Chapter 4, we present an efficient desirab#ityare load-balancing algorithm for
heterogeneous computational grids. We give twondefns of desirability of sites based
on how site characteristics will affect the perfamoe of future load balancing:

processing power and transfer delay. Using theralabty of sites, a set of partners and
neighbours are formed for each site. Partners @es svith comparable or greater
processing powers; neighbours are nearby sites loith transfer delays. We have
designed an approach for constructing the parites fr each site when a site joins the
grid. We determined an approach to enable the fsparmners for a site to be updated
dynamically at runtime based on feedback infornmgte;nd a relatively simple approach
to form neighbouring sites for each grid site. Tdigorithm consists of two specific

policies for load distribution: Instantaneous Dimition Policy (IDP) and Load

Adjustment Policy (LAP). When a new job arrivesaagite, it either remains at that site
or is immediately allocated by IDP to one of itstpar sites. Due to the likely fluctuating
behaviour of grid resources, continuous load adjast is employed among neighbour
sites under the guidance of LAPB better exploit the grid environment. To reduce o
minimise the communication overhead involved inoinfation collection, state

information exchange between sites is performednugual information feedback (MIF).

1.5.2 Performance-driven desirability-awar e load-balancing algorithm

We developed this algorithm for heterogeneous cdatimmal grids in Chapter 5, an
extended study of the algorithm introduced in Chagt by considering the performance
benefit that jobs can gain in the load distributiviggered by IDP and LAP. We
developed another load adjustment policy, the Augete Load Adjustment Policy

(ALAP). This policy determines whether there is attér placement beyond the
neighbourhood of a site, where IDP has failed masthata relatively not powerful site

in that neighbourhood is a performance bottleneck.

1.5.3 Performance-driven region-based load balancing algorithm

We developed this algorithm for heterogeneous cdatimmal grids. The grid sites are
clustered into regions around a set of well-knowokbr sites in terms of network
transfer delay, and the regional brokers are osgahin a fully decentralised fashion. For
each regional grid, the algorithm integrates stdP and dynamic LAP to make load
distribution and redistribution driven by the perfance benefit that jobs can gain. The
LAP also considers load redistribution across negjiogrids. The intra-region
communication is minimised by MIF. To control integion communication, the
random polling of a remote regional broker sitpesformed by each regional broker site
at a set time interval. The algorithm achieveslariz® between the inherent efficiency of
a centralised approach, and the autonomy, loadhtialg and fault tolerant features

offered by this distributed approach.

1.6 Evaluation methodology

We have used discrete-event simulation to evaltreeperformance of load-balancing
algorithms in heterogeneous computational gridse ®imulation programs were

developed using Java object-oriented programminguage.

1.7 Structure of the dissertation

In Chapter 2, related work in the literature iseHyi reviewed. In Chapter 3, we describe
a heterogeneous computational grid system modelvileasubsequently consider. In
Chapter 4, we develop a decentralised and desiyahiare load-balancing algorithm
for heterogeneous computational grids, which @#ishe desirability of sites for load
distribution. In Chapter 5, we develop a perfornedadven load-balancing algorithm for

heterogeneous computational grids. In Chapter 6dewelop a performance-driven and

region-based load balancing algorithm for hetereges computational grids. Chapter 7
summarises the main contributions of this dissertednd comments on future directions

for this research.

10

Survey of load balancing

Recent years have been witness to the increasm@fudistributed computing systems.
This may be attributed to two main factors: thengtoof the Internet, and the emergence
of low-cost solutions for end-user computing desidRistributed systems are collections
of autonomous processing nodes connected by a coioation network. Through the

communication network, the resources of the systambe shared by users at different
locations. However, a fundamental problem arisemaking effective use of the total

computing power of a distributed computing systéims often the case that a certain
node has very few tasks to handle at a given tuiele another node has many. It is
desirable to spread the total workload of the itisted system over all of its nodes. This
avoids under-utilisation of power, and decreassepaese times for work introduced at
more heavily loaded sites. This form of computingyvpr sharing for improving the

performance of a distributed system by redistrimyitihe workload among the available
nodes is commonly called “load balancingrhe purpose of load balancing is to
improve the performance of a system by redistritmuthe workload among nodes, thus

increasing the processing capacity of the system.

11

The chapter is structured as follows: in Sectioh, 2imple classifications are
introduced to organise the different techniques emathods that have appeared in the
load balancing in distributed computers and Gristeayis. Section 2.2 is an overview of
the policies of load-balancing algorithms. Sectigr8 gives a brief overview of
decentralised approaches, which focus on the ladémhbing algorithms that utilise

partial information to make decisions.

2.1 Load-balancing algorithms. a simple classification

Many different load balancing algorithms are ddsenliin the literature. However, most
of these descriptions are presented in a mixtutexaf drawings and pseudo-code, using
inconsistent terminology details. Readers’ abitityevaluate and compare the various
algorithms is severely impaired by the absence abramon reference framework. The
concepts used to classify the algorithms are assguli for the methodical design and
analysis of new load-balancing algorithms. Thistisecpresents a simple classification

of load balancing algorithms most relevant to tesearch.

2.1.1 Static versusdynamic

Load balancing could be done statically at compitee or, dynamically, at run-time.
Static load-balancing algorithms assume thapriori information about all of the
characteristics of the jobs, the computing noded @@ communication network are
known. Load-balancing decisions are made detertigally or probabilistically at
compile time, and remain constant during run-tinfhbe static approach is attractive
because of its simplicity and the minimised rundimverhead. However, the static
approach cannot respond to a dynamic run-time enwient, and may lead to load
imbalance on some nodes and significantly incréfasgob response time. The majority
of loosely coupled distributed systems exhibit gigant dynamic behaviour, having load
varied with time. For these systems, dynamic sclvagiuin which policy decisions are
based on the load-state of nodes, is required. rksut, there are fewer studies on static

approaches compared with those on dynamic appredgéBe51].

In contrast, dynamic load-balancing algorithmsmafieto use the run-time state

12

information to make more informative decisions imalsng the system load. Recent
studies have focused on schemes that base dectirently on the current system state.
Dynamic load-balancing policies [52-135] attemptdmamically balance the workload
reflecting the current system state, and are thex¢hought to be able to further improve
system performance. Thus, compared with static,agsamic load-balancing policies
are thought to be better able to respond to systeanges and to avoid states that result
in poor performance. The clear disadvantages ohuiyn load-balancing policies are that
these policies are more complex than their statienterparts, in the sense that they
require information on the run-time load and atie@ of state collection. Due to the
communication costs of load information collectimd distribution, the communication
cost of job transfer and processing cost of makiclgeduling decisions, dynamic load-
balancing algorithms definitely incur non-zero time overhead. A good dynamic load-
balancing algorithm always makes these costs m&eichi Thus, it is how commonly
agreed that, despite the higher run-time complexitynamic algorithms potentially

provide better performance than do static algorsthm

Hybrid algorithms [64, 127] combine the advantagéboth static and dynamic
strategies. In hybrid algorithms, the static altijon is considered a “coarse” adjustment,
and the dynamic algorithm a “fine” adjustment. WHka static algorithm is used, load
imbalance may result. Once this happens, the dynahgorithm starts to work and
guarantees that the jobs in the queues are balandbd entire system. Our algorithms

belong to this category.

2.1.2 Non-preemptive ver sus preemptive

Dynamic load-balancing policies may be either nogemptive or preemptive. A non-
preemptive load-balancing policy [53, 90, 110, 11%9] assigns a newly arriving job to
what appears at that moment to be the best nod= e job execution begins, it is not
moved, even if its run-time characteristics, or the-time characteristics of any other
jobs, are changed after assigning the job in suslayaas to cause the nodes to become
much unbalancedAn improvement in the spread of load is desirabig, it is accepted

that this does not have to be optimal and thatldhd at each node need not be fully

13

equalised. This relaxation allows schemes to beasddvthat deal with a large-grain
division of the workload, such as at the task leaeld that use load transfers sparingly
and thus do not require such high-speed commuaitégtween nodes. Non-preemptive
load-balancing policies can be applied to any ithsted system; however, they are
particularly suited to loosely coupled systems, ahhave relatively low-speed inter-
node communication and tend to consist of perfoomeaheterogeneous nodes. An

example of such loosely coupled system is compartatigrids.

By contrast, a preemptive load-balancing policy, [80] allows load-balancing
whenever the imbalance appears in the workloadshgmodes. If a job that should be
transferred to a new node is in the course of di@tuit will continue at the new node.
Since, in most systems, an initial distributionjas across nodes makes those systems
appear balanced, they will become unbalanced ateshobs complete and leave behind
an uneven distribution of longer jobs. Migratiotoals these imbalances to be corrected.
However, to migrate a job in execution is much naysplex and requires considerable
overheads (caused by gathering and transferringstate of the job, resulting in
performance degradation). If the preemptive pddiciere attempted in a loosely coupled
large-scale system, the system performance wouwdbtapty suffer significantly more,
since there would be a large number of messagesraged, which would congest the
communication systemlhe preemptive policies are suitable only for tightoupled
distributed systems, in which the processing na@teshomogeneous and are connected
by a high-speed low-latency interconnect. Many isttide.g., [56, 81, 82]) have also
shown that: (1) job migration is often difficult practice, (2) the operation is generally
expensive in most systems, and (3) there are mafisent benefits of such a mechanism
over those offered by non-migratory counterpart&né¢, we consider only non-

preemptive load-balancing strategies.

2.1.3 Site-level versusgrid-level

When a job arrives at a site, the load-balancirgiesy of the site will analyse the load
situation of every node in the site and will selectode to run the job. Even though the

site is heavily loaded, each job must queue insitee and wait to be processed. We

14

classify this kind of load-balancing as site-lelegld-balancing, for which the objective is
to optimise the system performance in a single. $iteny traditional load-balancing
algorithms fall in the category of site-level (e]g1, 110, 131]).

On the contrary, if a site lacks sufficient res@srto complete the newly arriving
tasks, or the site is heavily loaded, the load+malg system of the site will transfer
some tasks to other sites, and will increase teeesythroughput and resource utilisation
in multiple sites. We call this load-balancing agddevel load-balancing [53, 79, 97,
117, 119, 127, 132]. The focus of this dissertaisoon grid-level load-balancing.

2.1.4 Centralised versusdistributed

Load-balancing policies can be classified as cbséth or distributed. Centralised
policies (e.g., [53, 60, 87]) may be considerec aystem with only one load-balancing
decision maker. Arriving jobs to the system aret denthis load-balancing decision
maker, which distributes jobs to different procegsnodes. The centralised policies have
the advantages of easy information collection aljobt arrivals and departures, and
natural implementation that employs the servemtliaodel of distributed processing. It
appears that this policy is closely related to dlerall optimal policy, in that there is
only one load-balancing decision maker, which maltesf the load-balancing decisions.
The major disadvantages of centralised policies thee possible performance and
reliability bottleneck due to the possible heavgdmn the centralised job load-balancing
decision maker [111]. For this reason, centralegpiroaches are inappropriate for large-
scale systems; furthermore, failure of the loaddbaihg decision maker will make the

load-balancing inoperable.

On the other hand, distributed policies delegate gistribution decisions to
individual nodes. Usually, each node accepts tbal jlob arrivals and makes decisions to
send them to other nodes on the basis of its owtiapar global information on the
system load distribution. It appears that this @ois closely related to the individually
optimal policy,in that each job (or its user) optimises its owstde.g., its own expected
average response time) independently of the othérs. distributed load-balancing is
widely used to handle imperfect system load infdrome[64, 111].

15

There are two kinds of hybrid models. One is a doatibn of fully centralised
and distributed algorithms [131]. The other is ar&ichical model, which combines
partially centralised and distributed algorithmsotieercome some of the limits of fully
centralised algorithms [75, 130, 132]. The firstdabis applicable only for small-scale
distributed systems; the latter still has fauletahce problems, due to single point of
failure in a set of manager nodes of clusters. Sys¢em is logically divided into clusters,
and each cluster of nodes will have a single nbdermaintains the state information on
the nodes within the cluster. The state informatarthe whole system is maintained in
the form of a tree, where each tree-node maintdiasstate information on the set of
processing nodes in the sub-tree, rooted by tleertoele. The hierarchical model can be
simplified as two-level if the set of manager nodes organised in a fully distributed
style [83, 129].

2.1.5 Partial versusglobal information

How much load information on the system should décted for load-balancing in the

distributed policies is a major issue. Any dynanaiad-balancing algorithms include a
decision part, which may use load information frarsubset of the whole system (e.g.,
[69, 119-120]) or information from the whole systésg., [90, 118, 127]). The former is

called “partial decision base” and the latter “glbtecision base”. For an initiating node,
a subset of the whole system may be its neareghlo@urs or nodes that are polled at
random or formed by specific criteria. In all casé® degree of the knowledge of the
system load status and the accuracy of the rdulision decisions conflict. On the one
hand, more load information implies that there ibedter chance of reaching a higher
guality of load redistribution decisions. On théeat hand, more load information also
means more overhead to collect, and thus more elanthe load information to be out

of date, unpredictably leading to an even worsd lo@alance. Therefore, using detailed
load information does not always significantly aigstem performance, and a tradeoff
must be made. Xu et al. [105] has shown that neaestghbour algorithms using only

local load information work very efficiently.

16

2.1.6 Sender-initiated versusreceiver-initiated

Distributed load-balancing policies can be broachgracterised as sender-initiateaid
receiver-initiated. Sender-initiated algorithms,[55, 57, 75, 79, 86, 120] let the heavily
loaded sites take the initiative to request théthgloaded sites to receive the jobs;
receiver-initiated algorithms [54, 55, 75, 79, 8R0] let the lightly loaded sites invite
heavily loaded sites to send their jobs. Senddéiated load-balancing algorithms
perform better than receiver-initiated load-balagcialgorithms at low or moderate
system loads. At these loads, it is reasoned, tbkapility of finding a lightly loaded
node is higher than that of finding a heavily lodaede; similarly, at high system loads,
the receiver-initiategolicy performs better since it is much easier ital fa heavily
loaded node [54].

As a result, adaptiveolicies have been proposed, which combine theretesi
features of both sender and receiver-initiated riegles, and are called symmetrically-
initiated [63, 75, 79, 88]. They seek to find suitable reeeswhen senders wish to send
jobs, and to find suitable senders when receiveish wo acquire jobs. Efficient
symmetrical policies (e.g., [68]) behave as senmiéated under low and medium load
conditions, and as receiver-initiated under heaag|conditions, following the result of

Eager, Lazowska, and Zahorjan [55].

2.2 Policiesfor dynamic load-balancing algorithms

Many issues involved in dynamic load-balancing halready been addressed in load-
balancing algorithms, such as how to measure the &b a processing node, how much
load information we should collect and where thépud reside. However, the real
activities happening for different algorithms orifeliently designed systems may differ
significantly. These issues are usually grouped s&veral policies (or components) at a
higher level. For example, Xu et al. [112] cons&éhat a dynamic load-balancing
algorithm consists of four components: a load meamant rule, an information
exchange rule, an initiation rule, and a load-bategn operation (defined by location rule,

distribution rule and selection rule); Niranjanagt [59] groups the issues into a transfer

17

policy, a selection policy, a location policy, aad information policy. Although the
grouping of the issues and the naming of the pedicnay differ significantly among
studies, they tend to discuss in common a setyfdgeies. In this section, we regroup the
issues, name the policies, and discuss their gdessiibices. The policy names may or

may not mean the same as in other studies.

* Information policy: this decides what, when and where information alstates
of other nodes is collected.

» Transfer policy: this determines whether a node is in a suitalalie $b participate
in a task transfer.

» Sdection policy: this decides which task should be transferredhef node is a
sender.

* Location policy: this locates a suitable transfer partner.

2.2.1 Information policy

Information policy covers most issues related te tbad information necessary for
making load-balancing decisions. Information polidgcides what information is
collected, and when information about the statestbér nodes is to be collected, and
from which nodes. It is also responsible for thesdmination of each node load

information.

2.2.1.1 Load measurement rule

Measuring the load of the various nodes in theesysiccurately is very important for the
success of a load-balancing algorithm. Measurimglélad of the nodes in a distributed
system is an extremely difficult task. Usually, dos measured by a metric, the “load
index” [83]. A number of possible metrics have betudied in the past. These can be

broadly divided into two main categories: simple @omplex.

* Simpleindices. They consider the load on only a single resouftés approach
usually focuses on the load on the CPU. A simpéel Imdex includes processor

queue length, average processor queue length ogimen duration, the amount

18

of memory available, the context switch rate, tlysteam call rate, and CPU
utilisation.

» Complex load indices. They consist of a number of metrics, each relatm@
single resource, such as CPU, disk, memory andankitwhe metrics that make
up the load index may be combined to give a sirgd value or may be
represented as a tuple consisting of a numberevhestts, one per metric. The
load index used in [126] and MOSIX [89] comprisé® tCPU load and the
amount of free memory. San Luis [115] uses a loadex based on the
performance-weighted CPU run-queue length, the amofifree memory, disk
traffic level, and network traffic level. The memaequirements and the desired
response-time of tasks are taken into accounthediding decisions. Utopia [22]
uses a load index that incorporates: CPU run-quength, available memory,
disk transfer rate, the amount of swap disk-spaeeladble, and the number of
concurrent users. LSF [30] uses the same metriti@sa, with three additions:

CPU utilisation, paging rate, and the amount ¢ iithe at processing nodes.

A candidate load index should be easy to computiecarrelate well with the parameter
(e.g., the job response time) that is to be opgdhidt has been found that simple load
indices are particularly effective and impose lessrhead. One of the most effective
load indices is simply the processor queue leragild, this choice seems to be unanimous
[54, 83].

In a heterogeneous environment, the load indica® fdifferent nodes must be
adjusted to make them comparable. For exampleyafdifferent nodes have different
processing power, their CPU utilisation may havbdalivided by their processing power
to compare their CPU utilisation load index valu@sbetter measurement may be the
total job execution time [87]. Although in most eaghe execution time of a job cannot
be predicted accurately, it can be estimated bgmaters such as the size of the program,
the type of the job, or based on past statistidseamperience.

2.2.1.2 L oad information exchange policies

The information exchange policies can be broadhgsified into three types, although

19

hybrid versions of these types may exist.

» Demand driven policies. Each node collects information when it needs ke

a load sharing decision. A poll-limit is usuallyeals The main advantage is that

load information is exchanged only when it is regdi This has the following

disadvantages in practice.

» Repeated polling wastes the processing time ofptileng sites and polled
sites. This problem becomes significant when theegd system load is
heavy. When most of the sites are heavily loadsely tontinue to poll each
other for the sparse lightly loaded site. In thest@ase, polling may cause
system instability when all the sites are heavoded.

* Repeated polling generates a large amount of nktivaffic. This problem
becomes more significant if the network bandwidthmited.

* As the job needs to wait for the polling resultllipg will increase the
response time of the waiting job. This is a problénthe communication
delay is significant.

* It is difficult to obtain a good value for the pmlimit. The probability of a
successful poll (the hit ratio) depends on the |kl in the system; no
predetermined number of polls can guarantee & hére is little or no benefit
achieved by increasing the poll limit beyond 3 d©4]. Small probe limits,
such as 3, are appropriate as they return mosteobenefits of larger values,
at lower cost [62]In a medium-to-heavily loaded system, if the prébet is
small, lightly loaded nodes may not be discovelkethe probe limit is large,
then (i) most of the heavily loaded nodes may fine same lightly loaded
nodes and dump their loads to them; and (ii) tloblems caused by repeated
polling will multiply.

* Peiodic policies. Information is disseminated or collected at regutdervals.
This is simple to implement. However, it is impottao determine the most
appropriate dissemination period as overheads dugetiodic communication
increase system load and reduce scalability. Hardixed amount of state-

collection overhead will be induced in the systesnduse each node collects and

20

maintains state-information of other nodes, regasliwhether this information
will be used. However, there is no polling delayewra task must be transferred.
Mosix [89] used a simple probabilistic model to cke a random subset of hosts
to send information about its available resourd¢egegular intervals and cut down
communication. In one study, the design extendedtiling period but maintain
the entire set of hosts to contact [90]. To enghee system state can still be
reasonably accurate when there are fewer updapeedactive algorithm based on
L2E predictive filtering model was employed. The imaggch node has of the
system state (or domain state) may not correspoiiget actual system state, due
to delays in the communication network and to teeqalic nature of information
collection. In addition, the image a node has alioeistate may be different from

node to node.

State-change driven policies. Nodes issue information about their load statg onl
when it changes by a certain amount [61]. Detemmgrthe threshold value is
problematic, because the policy must be sensitivegnificant changes but not to
minor fluctuations. State-change policies generaliyye lower communication
rates than periodic policies. However, if the stattea particular node does not
change for a long period of time, the informatioelchabout that node will
become stale. Aged load-state information is uabddi, since there is no way of
telling if the node has crashed or has just not aenessage due to a steady state.
A newly joining node will not receive informatiomiecerning steady-state nodes,
even if those nodes are suitable transfer part@@ms. way to improve the basic
state-change policy is to introduce additional elismation messages, which are
sent if the load-state does not change for a l@gpg of time. These rules differ
from demand-driven rules in that each node takesrtitiative for disseminating

its own state instead of collecting other nodesrimition.

Various combinations of these types of informatexthange policies are possible. An

information exchange policy might be periodic, butode willing to participate in a task

transfer might poll its best candidate to confitmttits actual state still corresponds to its

local

image. A combination of state-change drivend aslow periodic update

21

dissemination was suggested in [58].

2.2.1.3 Where should theload infor mation be maintained?

A central repository can be used to hold load-gtdtgmation. This is collected from all
of the nodes in the system and made available vehtyad-sharing decision must be
made. Some centralised implementations are simgdgansible for the collection and
dissemination of information, while others additidip act as matchmakers between
sender and receiver nodes. Centralised componant&ark well in small or moderately
sized systems, but can become communication bettksnwhen the system is scaled up.
Where centralised components are used in the esystem, that system is vulnerable to
the failure of the single component unless some foir backup or replication is provided;

this increases complexity.

Distributed approaches are more difficult to buildan their centralised
counterparts. The semantics involved can be comjdaxh node collects information
concerning the load state at other nodes in theesysNodes autonomously base load
sharing decisions on the information they hold. Oa@vantage of distributed
implementations is that the system is not vulnerabl the failure of any single node.
There are also disadvantages: there is no consstetem-wide view of state, and each
node holds different information depending on whather nodes it has communicated
with, how recently that communication took placad ahe delay experienced in that
communication. This can lead to instability if tbeare significant differences in the

views held.

2.2.1.4 How much load infor mation of the system should be collected for |oad-

balancing?

One extreme option is to collect load informatioreiothe global scope, i.e., all of the
processing nodes in the system; another extrert® use no load information at all of
nodes, other than the node in question. The chaceégtween these two extremes use
local load information collected from a certain domof processing nodes in which size
may be either fixed or variable. The global knowgedaf the system’s attributes (like the

total work load) is prohibitive, due to the comnuation overhead produced. This is

22

especially true for large-scale distributed systefifsus, the technique of demanding
global information is rejected, and partial infotioa is used instead, such as information

of the neighbourhood of a node.

2.2.2 Transfer policy

A transfer policy determines whether a node is Bu#able state to participate in a task
transfer, either as a sender or a receiver. Maopqsed transfer policies are threshold
policies, which may be either based on fixed op#ga thresholds. One way is to set one
threshold value for the load imbalance (the diffies between the largest and smallest
loads on the nodes). If the detected load imbal&beger that a preset threshold value,
the transfer is initiated. An equivalent methodhis is to set two threshold valuds,and

T, by which the nodes are classified into three sype., heavily loaded or sender (if
loads higher thaiy,), lightly loaded or receiver (if loads lower than), and normally
loaded otherwise [59]. Depending on the algorithip@and T, may or may not have the
same value. The choice of these thresholds is fuedtal for the performance of the
algorithm. Clearly, the best threshold values ddpen the system load and the task
transfer cost. At low loads and/or low transfer tsothresholds should favour task
transfers, while at high loads and/or high transfests remote execution should be
avoided. Although [62] states that the optimal shi@d is not very sensitive to system
load, [87] and [93] present techniques that effifieand in run-time adapt the threshold

to the system load.

Fixed threshold policies mean that the thresholdiesaare not changed when
system loads are changed [119]. There are disaalyastwith the fixed threshold policy.
If the fixed threshold value is too small, thislistauses “useless” job transfers. If the
fixed threshold value is too large, the effect silng a load-balancing mechanism may be
reduced. Other than using fixed threshold valuesesholds can be set in an adaptive
(relative) fashion, by adjusting them when the glatystem load is changed. In [61], if
the load of an individual node is above or below #liverage load over a certain domain
(either the global or some local range) by a prpsetentage, then load-balancing actions

are initiated and load is balanced either locatlglobally. In another adaptive approach

23

to determining proper thresholds [87, 93], the agerload_.,y is determined first. Two
constant multipliersH andL, are used in computing the heavy threshdlg,and light
thresholdT,. H is greater than one amhds less than one. These two values deterthiae
flexibility and the effectiveness of a load-balargsmechanism. The heavy threshdig,
is computed as the productidfandLag. Similarly, the light threshold; is computed as

the product of. andLayg.

The transfer policy may be either periodic or evteiggered. The algorithm may
periodically check whether the node’s state quedifitself as a candidate for a task
transfer. However, the great majority of the p@&cproposed in the literature are event-
triggered. If the state of a node changes, a tasisfer may be possible. The state of the
node may change because either a task has endedesr task has arrived. The transfer
policy can also be triggered because another rogeliing the node, either to receive or

to send a task.

For a given policy, a load-balancing policy may bender-, receiver- or
symmetrically-initiated. Sender-initiated algoritarmay be ineffective at high system
loads, because most of the nodes are senders asd ik unlikely that the majority of
system will ever find a suitable receiver. Even segrthey might overflow some of the
potential receivers with too many tasks. Even & fotential receivers are allowed to
reject additional work sent to them, more contrelssages will be introduced and useless
work is performed in a system already highly loadédder a sender-initiated policy, the

burden of initiating the activity is taken by amealdy-overloaded node.

Under receiver-initiated policies, this overheadpiaced on the underloaded
nodes, which may be adequate. However, if the syselightly loaded, these policies
will fail to find a suitable sender. How many times for so long, should a receiver try to
find this sender? It can suspend its activity aftehreshold (or timeout), but then it will
not detect future overloaded nodes unless its ictig periodically reinitiated: a
disadvantage of receiver-initiated algorithms &t tihe receiver is unaware that the other

nodes became potential senders, because neitlsergbieders notified them.

24

Symmetrically-initiated transfer policies suppastdl transfers initiated by both
busy and low-loaded nodes [88]. Symmetrically-aigd algorithms are more complex,
but allow the advantages of both sender-initiated @ceiver-initiated algorithms to be
exploited. Symmetrically-initiated schemes are pttdly unstable: there must be a zone
between the activation thresholds for the senddrraneiver parts of the algorithm so
that a node cannot rapidly move between senderraceiver states. Symmetrically-
initiated policies have been found to outperformdez-initiated and receiver-initiated
policies in the presence of small task-transferayel[92]. However, when the task

transfer delays were increased, the policies warad to perform almost identically.

2.2.3 Selection policy

The role of selection policy is to select tasks tf@nsfer. In sender-initiated schemes,
busy nodes choose tasks to transfer to another, nodereas in receiver-initiated
schemes, lightly loaded nodes inform potential sendf the types of task they are

willing to accept. The policy determines how muchd, or how many tasks, to transfer.

A task transfer may be preemptive (e.g., [80, &]non-preemptive (e.g., [52,
119]). Preemptive transfers involve transferringpartially executed task. This is
generally expensive, as it involves collectingadlthe task’s state. Non-preemptive-task
transfers involve only tasks that have not beguecetion and hence do not require a
transfer of the task state. A node may be overidahel have no tasks available for non-
preemptive transfer if it is polled by a receiv&rselection policy should consider at least
three factors.

 The overhead incurred in transferring the task khdae minimised. Non-
preemptive transfers and small tasks (small amoohiaformation) carry less
overhead.

* The execution time of the transferred task shoeldufficient to justify the cost
of the transfer. Even if task execution is unknoiwvshould be possible to classify
the tasks as short or long tasks, and to considgrtbe long tasks for migration.
Some classification errors might be tolerated albalancing algorithms are
quite robust with regard to this parameter [56].

25

* The number of location-dependent resources neegédlebselected task should

be minimal.

2.2.4 Location policy

The responsibility of location policy is to find suitable transfer partner. Location
policies can be distributed, each node selectitrgrasfer partner on the basis of locally
held information. Location policy, corresponding itdormation policy, specifies the

balancing domain for load-balancing actions; ttusld be global, nearest-neighbours, a
group of random polled nodes, or a set or clustetooles based on specified criteria.
Alternatively, policies can be devised using a @ninhformation source. Busy nodes
attempt to locate transfer partners that have lmad llevels in sender-initiated schemes.
In receiver-initiated schemes, low-loaded node=ngtt to locate a busy node from which

to transfer work. Five typical policies are listeelow.

* Random policies. A transfer partner is selected at random, andoas-state is
ignored. This can result in useless task transfdien an already-busy node
receives extra work, but has been shown to prop&téormance improvements
over no-load-distribution [58]. The performance noyements stem from the fact
that only busy nodes transmit load, while all nodes potential receivers.
Random location policies work best when there avetieavily loaded nodes and
many relatively idle nodes. Azar et al. studied “amball n-bin” placement
problem, wheren balls are randomly and sequentially placed mtoins. It was
proved that, in the sense of balanced placemenvosihig d > 2 bins
independently and uniformly at random and theniptatheith ball in the least-
loaded one of thd bins would improve the result exponentially congahawith
that of choosing one bin randomly each time [1R8{zenmacher’s works [122]
generalised Azar et al.’s finding, and provided aralytical model to those
randomised schemes used in Zhou’'s work [56]. Anrawed algorithm was
proposed by adding a simple sliding-window techeicand a simple, fuzzy
classification technique to the original concepMfMitzenmacher’s two choices
(d=2) in randomised load-balancing [121].

26

Threshold palicies. The node randomly selects a potential destinataate for the
job and probes it to determine its load index.hi toad index at the proposed
destination is less than or equal to a presethbtdssalue, that node becomes the
job’s receiver. Otherwise, another node is randoselgcted and probed. Probing
continues until a receiver is found or until thenier of nodes probed is equal to
a limit Lp. Threshold location policies are based on theltresfuthe probing
activity; if a receiver has been found, the jolsént there—otherwise the job is
executed locally. The threshold policy was origathtoy Eager et al.who
referred to it as “Sender’ [55] and “Threshold” [6and was also simulated by
Zhou [56] and Kremien and Kramer [58]. It corresg®ino “Algorithm 1” in the
SAHAYOG tests [77] and to “Forward” in the studi®s Mirchandaney et al. [91,
92].

Lowest policies. Like threshold policies, lowest policies employhaesholdL.
However, lowest policies differ from threshold padis in that it probes a group of
nodes until a node with a zero load index is fowrdyntil exactlyL, nodes have
been probed. The lowest location policy is to detbe probed node with the
lowest load index as the execution site for theoming job, provided that the
load index at that node is less than a presethblgéwvalue. Lowest policies have
been simulated by Zhou [56] and are related tolgorithm studied by Theimer
and Lantz [78]. The algorithm originated as “Shst'tén [62], where Eager et al.
concluded that its performance was not sufficiebyter than that of threshold
policies to warrant the extra effort expended darimation collection.

Preferred list. Based on the topology of the system, each noderowrle other
nodes into a preferred lift24, 125]. A node is thieth preferred node of one and
only one othenode, wheré is an integer. If nodeis thek-th preferred node of
nodej, then nodg is also thek-th preferred node of node When a node is
overloaded, it will contact the first node foundits preferred list, and attempts to
transfer a task to that node. Although the pretehst of each node is generated
statically, the actual preference of the node andferring a task may change

dynamically with the states of nodes in its prefdriist. If a node’s most

27

preferred node becomes overloaded, its secondrpdfaode will become the
most preferred.

» Leadt policies. To differentiate from the location policy lowestewall this class
of location policies “least”. Least policies diffflom lowest policies in that they
do not need to probe nodes, and no threshold . 0$e least location policy is
to select the node with the smallest load indextres destination node for
dispatching the jobs on the basis of the infornmattm a specified balancing
domain (e.qg., [74, 118, 134]).

In a heterogeneous environment, a node with minlo®d, i.e., queue length, does not
mean the best transfer partner for a certain tdekle processing power and task transfer
delay incurred among the node and remote nodeddshtso be considered in location

policy.

2.3 Existing load-balancing algorithms

Two classes of well-known dynamic and distributedd-balancing algorithms are
presented in this sectioithe focus is on the load-balancing algorithmsigitity partial

information to make decision. Although some aldons are initially presented for
parallel computers, they are applicable in a disted computing system with more or

less deficiencies. Thus, these are also introdheesl

Most load-balancing policies execute two activitileat require communications:
distribute its own load information and collect @timodes information and transfer tasks.
If each node is required to interact with other emdt will have to use mechanisms —
such as broadcast, global gathering, long-distasm@munication — which are not
scalable and create intolerable overhead or coogest systems with a large number of

nodes.

To reduce this overhead, in many policies, a nodg exchange information and
transfer tasks to its physical and/or logical nbmirs. These are usually called
“neighbour-based” load-balancing algorithms. Cldsetg is another technique to tackle

the problem. The nodes can be partitioned intotetadased on network transfer delay,

28

where load-balancing operates on two-level: intuster and inter-cluster via cluster
managers or brokers. These are usually calledté&rhimmsed” load-balancing algorithms.

We will give corresponding discussion to these tlasses of algorithms below.

2.3.1 Neighbour s-based load-balancing algorithms

The neighbours-based approach is a dynamic loahbialg technique that allows the
nodes to communicate and transfer tasks with theighbours only [65]. Each node
balances the workload with its neighbours so thatwhole system will be balanced after
a number of iterations. Since this technique da#isrequire a global coordinator, it is
inherently local, fault tolerant and scalable. Henihis approach is a natural choice for
load-balancing in a highly dynamic environment [[L1&mong of the neighbour-based

algorithms, we are interested in a couple of typiepresentatives, described as follows.

2.3.1.1 The gradient mode

The gradient model (GM) is a demand driven apprd&éf The basic concept is that
underloaded nodes inform other nodes in the sysfeimeir state, and overloaded nodes
respond by sending a portion of their load to tharast lightly loaded node in the system.
The resulting effect is a form of relaxation whéasks transferring through the system
are guided by the proximity gradient and gravitedeards underloaded points. The
scheme is based on two threshold parameters:athidNater-Mark (LWM) and theHigh-
Water-Mark (HWM). A node’s state is considered light if its load Edw the LWM,
heavy if above th&iWM, and moderate otherwise. A nodeteximity is defined as the
shortest distance from itself to the nearest higlthded node in the system. All nodes are
initialised with a proximity oWy, a constant equal to the diameter of the system. The
proximity of a node is set to zero if its state draes light. A node’s proximity may not
exceedWmx. A system is saturated, and does not require badalacing if all nodes
report a proximity oM. If the proximity of a node changes it must notifg hear-
neighbours. A gradient map of the proximities ofleroaded nodes in the system serves
to route tasks through the system in the direaticime nearest underloaded nodes. A task
continues to transfer until it reaches an undeddadode or it reaches a node for which

no neighbouring nodes report a lower proximity.

29

2.3.1.2 Adaptive contracting within neighbour hood

In the Adaptive Contracting Within NeighbourhoddCWN) method [74], two
parameters need to be specified to make the caongacdecision, min_hops and
max_hops. Here,min_hops specifies the minimum number of hops needed fornféing
task to travel before it settles into the standitege. This parameter is used to ensure a
newly created task will travel certain distancesdduce the horizon effect. The other,
max_hops, is the upper limit of travelling distance of dfting task. It ensures that each
newly created task will be sent only to a node inith fixed radius neighbourhood from
its source node. It prevents unbounded messag#atisas, and also induces locality
which makes the communication between the creatimycreated tasks efficient. They
keep track of the number of hops travelled so darefach task, calledc.hops. Thus, at
each node, for a drifting tagk which is either created by themselves or receiveh
other nodes, we have the following cases:hibps < min_hops, a node will contract task

c to its least loaded neighbour no matter its ovadjaf c.hops > max_hops, taskc will

be retained locally, added to the local pool of sages, terminating its drifting state.
Otherwise, the task will be contracted conditioyialf the load on the least-loaded
neighbour is smaller than its own load, the tastoistracted out to that neighbour. In this
way, the newly generated tasktravels along the steepest load gradient to al loca

minimum.

In ACWN, min_hops andmax_hops are varied to adapt to the dynamic variations.
Also, each node maintains a separate, independergion of these parameters. Two
additional parametersow_mark andhigh_mark, are used to ascertain the current load
status of a node and its neighbours. A node’s statensidered light if its load is below

thelow_mark, heavy if above thhigh_mark, and moderate otherwise.

In the light-load state, ACWN tends to contractkta®ut, since at least one
neighbour is lightly loaded. In the moderate-lotates min_hops set to zero, so that any
new work is kept locally unless a neighbour’s lem@maller than a node's own load by
the value of load-delta. In the heavy-load stategesall neighbours have sufficient work
to do, it is not necessary to balance load betweeles. Therefore, we changex_hops

to zero to retain newly created tasks locally.

30

This amounts to applying the saturation controhteégue. They observe from
their experiments the almost same performanceméx hops = 3. Also, thelow_mark
between 2 to 5 ankigh_mark around 8 were found to be satisfactory settinggyTalso

show that ACWN performed consistently better thendradient model.

2.3.1.3 Basic (Basdline) diffusion model

Diffusion was first presented as a method for lbathncing in [94]. Diffusion was also
explored in [61] and was found to be superior teeoioad-balancing strategies in terms
of its performance, robustness, and scalability.tHa diffusion method, each node
simultaneously sends workload to its neighboursh idwer workload and receives
workload from its neighbours with higher worklodghder the synchronous assumption,
the diffusion method has been proven to convergpoilynomial time for any initial
workload distribution given the quiescent assumptimat no new workload is generated
and no existing workload is completed during execubf the algorithm [94]. Without
the quiescent assumption, it is possible only twiverthat the variance of the unbalanced
workload is bounded [85]. Optimal parameters thakimise the convergence rate have
been derived on mesh, torus, and n-D hypercube. [BAF convergence of the
asynchronous diffusion method has also been pr{@&jn A disadvantage of diffusion
approach is that it requires many iterations tdeaehload-balancing. Watts and Taylor
[67] overcame this by using a fully implicit diffusioclemes with adaptive time steps.
Another improved diffusion algorithm was derivedséd on Chebyshev polynomials and
shows significantly faster convergence than baseliliffusion method, but at the

additional cost of calculating two eigenvalues [96]

Diffusion algorithm in heterogeneous environmerd baen considered. H[88,
99 proposed an intuitive approach based on a hydrodynaanalogy, for a
heterogeneous environment characterised by diffezemputing powers and uniform
communication. Diekmann et al. proposed diffusiahesnes for a computational
environment characterised by uniform computing pswand different communication
parameters [100]. Elsasser et al. extended théssres for computational environments
that are heterogeneous both with respect to theepsing performances and the

communication speeds [101]

31

2.3.1.4 Sender initiated diffusion

The Sender Initiated Diffusion (SID) strategy [64]a, local, nearest-neighbour diffusion
approach which employs overlapping balancing domam achieve global balancing.
The scheme is purely distributed and asynchron&ash node acts independently,
apportioning excess load to deficient neighbouiaaBcing is performed by each node
whenever it receives a load update message froneighlvour indicating that the
neighbour load is smaller than a preset threshalgy. Each node is limited to load
information from within its own domain, which cos& of itself and its immediate
neighbours. All nodes inform their nearest-neighlbaf their load levels and update this
information throughout program execution. The padfility of load-balancing is
determined by first computing the average loadhie domain. Next, if a node’s load
exceeds the average load by a prespecified amioigiig, it proceeds to implement the
third phase of the load-balancing proceéBask migration is performed by apportioning
excess load to deficient neighbours. Balancinginaaes throughout program execution

whenever a node’s load exceeds the local averagsoby than a certain amounyesolg-

2.3.1.5 Recaiver initiated diffusion

The Receiver Initiated Diffusion (RID) strategy [&kan be thought of as the converse of
the SID strategy in that it is a receiver initiagggproach as opposed to a sender initiated
approach. However, besides the fact that in the iBtegy underloaded nodes request
load from overloaded neighbours, certain subtleetehces exist between the strategies.
First, the balancing process is initiated by anyenovhose load drops below a
prespecified threshold_{,,). Second, upon receipt of a load request, a nodefuiill

the request only up to an amount equal to halfso€urrent load (this reduces the effect
of the aging of the data upon which the request based). Finally, in the receiver-
initiated approach, the underloaded nodes in tetersytake on the majority of the load-

balancing overhead, which can be significant winentask granularity is fine.

As with the SID strategy, each node is limiteddad information from within its
own domain, which consists of itself and its imnagdineighbours. All nodes inform

their nearest-neighbours of their load levels apdate this information throughout

32

program execution. When a node’s load drops bel@iptespecified threshold ow, the
profitability of load-balancing is determined bysti computing the average load in the
domain. If a node’s load is belotve average load by more than a prespecified amount
Lireshold, it proceeds tamplement the third phase of the load-balancingcgss. Task
migration is performed by requesting proportionateounts of load from overloaded
neighbours. However, upon receipt of a load requesbde will fulfill the request only
up to an amount equal to half of its current Iddalancing is activated whenever a node's

load drops below a prespecified threshold and tasreno outstanding load requests.

2.3.1.6 Estimated load infor mation scheduling algorithm

In a decentralised dynamic load scheduling algorjtthe Estimated Load Information
Scheduling Algorithm (ELISA), the problem of frequeexchange of information is
alleviated by estimating the load, based on syste information received at
sufficiently large intervals of time [69]. The algbm was designed to reduce

communication delays by reducing the need for stakechange.

The basic idea behind ELISA is that at periodiceinéls of time, thestatus
exchange interval, the nodes in the system exchange their statusmmafioon, which
consists of the queue length at the instant ofrm&tion exchange and an estimate of the
arrival rate. The instant at which this informatierchange takes place is satus
exchange epoch. Each status exchange interval is further dividedo irequal
subintervals—estimation intervals. The points of division arestimation epochs. At the
estimation epochs, every node estimates the lo#ttkimodes belonging to its buddy set,
which consists of the immediate neighbours onlat(ih, those nodes which are one hop
away). The status exchange epochs and the estimggtiachs together constitute the set
of transfer epochs. At the transfer epochs, resdhmgof jobs is carried out. Thus, the
decision to transfer jobs is taken and the actwadsfer of jobs is done at the transfer
epochs. By making the interval between status exgdnegpochs large, and by restricting
the exchange of information to the buddy set, traunication overheads are kept at a
low value. Finally, by transferring jobs only atettransfer epochs, overheads on the

scheduler are also kept low.

33

The load scheduling decision is taken as followsmf the estimated queue
lengths of the nodes in its buddy set, and therateknowledge of its own queue length,
each node computes the average load on itselftartiddy set. Nodes in the buddy set,
whose estimated queue length is less than the astihaverage queue length by more
than a threshold, form the active.sBhe node under consideration transfers jobs to the
nodes in the active set until its queue lengthas greater than the estimated average
gueue length. The value of threshold, which isdigepriori, is of importance to the

performance of ELISA.

A Modified ELISA algorithm is presented in the pagdél7]. Their proposed
algorithm considers job migration cost, which ism@rily influenced by the available
bandwidth between the sender and receiver nodesn waking decision for load-
balancing. The job will be transferred only if @gpected finish time on destination node
is less than expected finish time on source nad¢hd sense, the algorithm is similar to
our earlier proposed algorithRerformance-driven Neighbours-based algori{RaNB),

which will be introduced in the section 5.3.

2.3.1.7 Recursive search

Arora et al. [119] proposed a highly decentralisshder-initiated and scalable algorithm
for scheduling tasks and load-balancing resouncdseterogeneous grid environments.
Whenever a job is submitted to a node, a decisgmus to be made as to whether the job
needs to be transferred according to a presethbickseflecting by the job queue length.
If the job needs to be transferred to another nadesquest is sent to all neighbouring
nodes. Each node, having received a request toteerstatus of its resources, packs the
information about their current utilisation and derit back to the requesting node along
the route the request came. This route is piggydxok the node, which needs to transfer
load. Besides replying to requests, a node realysipings its neighbours for their
resource status if the total round-trip delay betwvéhe sender and its neighbour would
be less than the time for which the internal jolewgiis emptied at the requesting node.
This allows the time required to look for additibmr@sources to be hidden under
processing. This is a remarkable property of tldgorithm. Their goal was to assign

each node a job that utilises its resource in gt possible manner.

34

2.3.1.8 Discussion

Although a variety of different decentralised algons have been studied, most
approaches are not applicable where a system ipreged of heterogeneous nodes
separated by a wide-area broadband network. Previegearch [101, 117] that
considered a collection of heterogeneous nodesddfetent communication capability

among nodes, did not achieve better utilisationpofverful processing nodes in a
heterogeneous system. However, in a computationd] there are numerous nodes
capable of providing computing resources; somdraguently underutilised and able to
provide powerful computing resources, but others rmot. Therefore, when selecting
nodes for distributing tasks, if only a neighbogrimode is chosen, the redistribution of
tasks may frequently occur, lowering the execugpenformance of the system. These
solutions, except the work in [117], do not addréss issue of the communication
overhead incurred by frequent message transfanéking better load distribution, even

though the information is restricted to a small @amsuch as neighbours.

2.3.2 Cluster-based load-balancing algorithms

Cluster-based load-balancing algorithms have bhensubject of several studies (e.g.,
[22, 83, 104, 135]). The nodes can be partitiom#d clusters on the basis of network
transfer delay. One node is designated as theeclusanager, which gathers the load
information for other clusters, determines the teuglestination, and determines the
destination within a cluster for a job that hasrbgansferred from another cluster. Each
node communicates only with its cluster manageeséhstudies involve the following

problems that make them inapplicable for largeescamputing grid environments.

» Each cluster manager needs to have the load infanmef all other clusters and
all nodes of its cluster for making load-balancidgcisions. This introduces
considerable communication overhead.

» Consulting the cluster managers for job dispatchiesults in non-negligible
overhead and network delay.

» Job migration cost is not considered for load-batag decision.

35

» The centralised intra-cluster scheme creates taldtance problems due to single

point of failure.

2.4 Summary

This chapter has provided an extensive overvievexting load-balancing methods,
with a focus on decentralised load-balancing apgres utilising partial information to
make decisions. As discussed in Section 2.3, egidfiecentralised techniques, which
rely on neighbours or clustering, are not appliealil a large-scale heterogeneous
computational grid. The survey pointed out oppadties for improving the performance
of decentralised load-balancing algorithms, in s@ases incorporating good features of
neighbour-based and cluster-based models. In Qisagte6, we will describe new
methods to tackle the issues that the existingcsmhies do not address—issues that are

especially relevant to large-scale heterogeneongpuatational grids.

36

System model

This chapter presents a scalable, extensible systeael for load balancing in a
computational grid. The system model lays the gdwork for the load-balancing
algorithms discussed in the next few chapters. foelel is composed of a (1) grid
architecture model, (2) job queue model, (3) comication model, (4) job model, (5)
job migration model, and (6) performance objectiVdne grid architecture model
provides a representation and organisation of systsources. The job queue model
provides a two-level architecture for the job-wagtiqueue at each grid site. The com-
munication model provides an estimate of expectaunsunication costs for message
exchange and job transfer among grid sites. Therjobtlel provides a representation for
jobs, and defines the job information needed byldlae-balancing algorithms. The job
migration model considers techniques for reducimg apportunities for site thrashing
and job starvation. The performance metric for eatihg our load-balancing algorithms

is given in the performance objective.

37

3.1 Architecture mode€

It is assumed that the grid system consists of leeatmn of sitesS connected by a
communication network (Figure 3.1). The &tontainsn sites, labelled as;,...,s..

Logically, the architecture is hierarchical anddigided into four levels: the grid, site,
cluster and node levels. The capacity of resouraeaagement is different at different

levels. The node can be a workstation or a proce3$e other three levels are now

discussed.
Communication Network
Site 1 Site N
C C
Submitted Submitted Submitted
jobs jobs jobs
Finished jobs Finished jobs Finished jobs

Figure 3.1: Logical view of the grid architecture;
G, S, C are grid, site and cluster levels, respelgti

3.1.1 Cluster leve

The cluster level contains a cluster of processbing processors in a processor cluster
share communication bandwidth and are protectefiréwalls from the outside world.
Processor clusters include tightly coupled muliygssors such as a Sequent (in which
processors communicate via shared-memory), disédbmemory multicomputers such
as a Paragon, and loosely coupled workstations sscla Sun 4 cluster (in which

processors communicate via message passing).

The management of jobs at cluster level has beéressked by many research and
commercial systems, including: Condor [35], Loaci®ig Facility (LSF) [30], Portable
Batch System (PBS) [31], LoadLeveler [33], Sun dgithine/CODEINE [32], Maui [29],
MOSIX [36], COSY [34]. A comprehensive review ofvea commercial packages and

12 research packages is given in [42].

38

3.1.2 Siteleved

The Site is an organisational entity. Each site@os a processor cluster. Each site has
a broker denoted by the circle (Figure 3.2). Onahe hand, each sigecan be regarded
as a whole system, and all of its nodes have a @mwbjective. On the other hand, a
sites can fully centrally control the resources of itglas, but cannot directly operate the
resources of nodes in other sites. In this vieWnadles are cooperative within the same
site.

The site model can be extended to support sopistic architecture. For
example, a site may contain multiple administratiomains. Each site has the freedom
to choose the number of hierarchical levels andlo$ters or resources belonging to

each level, such that these numbers will bestfgatssmanagement goals.

To clarify the statement and emphasise our maiasidie the dissertation, we will
simplify the model of grid site to one computingdeowith a single processor. Our

scheduling can be easily extended to accommodese ttomplicated cases.

System heterogeneity can be of different kinds—ewample, processor speed,
memory and disk I/O. A simpler and more practicdlion is to use CPU speed alone.
It is reasonable to assume that a machine withveegol CPU will have matching
memory and 1/O resources. The sites in the gridesysnay have different processing
power. Processing power of a sié&s denoted a&\PW. Forizj, APW, may be different
from APW. APW; is presented as the number of computational whétthe site can
execute per unit of time. The processing power @frid sites is measured by the
average processing power across all processorswiih grid sites if that site has more
than one processor. The most common measure agbbeteeity used in literature is the
ratio of processing power of the system nodes [ABYV means the ratio of the average
processing power of sit® to the average processing power of the slowesssin the
system—in other words, a job that takes one uniimé on the sites requiresAPW,

units of time on the sits.

39

3.1.3Grid levd

All sites at the grid level are organised in ayullistributed way. There is no central
broker in the computational grid. The sites thewsglare in a completely connected
graph (Figure 3.1). The grid sites are mutuallyepehdent. Each grid site communicates

only with a subset of grid sites while maintainiogd information.

3.1.4 Role of sitebrokers

The site broker handles all communications witheotkite brokers via core grid
middleware on behalf of the local site, and actsaagrid scheduler. It handles all
communication with local scheduler on behalf of oéensites. Site brokers are software
processes that can run on a computer node in &clason a separate server node.
When the node fails, a predetermined backup nod®rbes the site broker. The

focus of this dissertation is on the design of &tponic mechanisms for grid

schedulers.
Remote
sites info.
. Message exchange/
Jobs arrival .
Transferring jobs
site N\ 9] .| Remote
broker sites
\]
—
Global job queue
Local site job
» management ———»
Jobs transferred
from other sites system Jobs departure
Figure 3.2: Logical structure of a processing site
3.2 Job queue model

We assume that there is a global job-waiting queueach site that holds those jobs
waiting to be assigned to local job managemenesystr a remote grid site (Figure 3.2).

Jobs that are submitted to the site are first planethis queue. The site broker will

40

determine that the jobs in the global job-waitingege are processed at local site or at
remote sites. If a job is determined to be proakssehe local site, it will be transferred
to the underlying job management system at clusted within the site. We usBJQ(s)

to denote the global job-waiting queue in sjit&he jobs in the global job-waiting queue

are processed in a “first-come-first-serve” order.

The job-waiting queue at site level is differendrir the job-waiting queue at

cluster level. For the following reasons, we usgubawaiting queue at site level.

* The implementation complexity of pulling a job frothe job-waiting queue
managed by cluster-level job management systenbeaaduced.

» Different load-balancing algorithms can be impletednat site level and have
not any interference with job management systeatuater level. This incurs no
extra work for the underlying job management system

This approach leads to a flexible and portable temiuto the existing grid job
management system. It is a compromise between émefibs obtained from load-
balancing algorithms applied at site level andithplementation complexity introduced
in modifying the job management system runninglaster level. Although a trend is
starting to occur as vendors adopt a grid persgetd scheduling, by combining pairs of
local and grid schedulers into a single scheder3p, 31, 37], these systems do not

interoperate and are not yet widely used.

3.3 Communication model

The sitesS are fully interconnected, such that there is asiene communication path
between any two sites i The only way that inter-site communication carmcucis
through message passing. There is a non-trivigstea delay on the communication
network between the sites. The transfer delayfferént between different pairs of sites.
The underlying network protocol guarantees thatsagss sent across the network are
received in the order sent. The sites are interectien by point-to-point links. There is

no efficient broadcasting service available.

41

In general, the network performance between amypsitr§, S) is represented as
two parameters: a transfer delahD; and a data transmission ra@W;. The

communication time fosending a message afbytes between these sites is then given

by TDi,-+BL\Mj, whereBL\Mj is the transmission time. The two parameters atthyr

represent the total time for traversing all of in&s on the path betweehands. BW is
presented as effective data transferring rate iesger time of unit, or is characterised in
terms of Kb/s.TDj includes a startup cost and delays incurred by ection at
intermediate links on the path betwesrand s. TD;; and BW; can be dynamically
forecast by what is known as the Network Weathevi€e [38]. Other research has been

proposed on estimating host distance between amyRvaddresses [39—41].

3.4 Job mode

For any sites[]S jobsare arriving as. We assume that the arrival of jobs is a random
process with an average deldy,, between two successive arrivals (e.g., the dsiva
could be a Poisson process with rdie¢hat is, the delay between two successive agival
follows an Exponential law with the same rate o&mrtje).The jobs are assumed to be
computationally intensive, mutually independentd @an be executed at any site. Job
execution is not time-shared, but dedicated. Asisamoa job arrives, it must be assigned
to exactly one site for processing. When a joloimgleted, the executing site will return
the results to the originating site of the job. W& J to denote the set of all jobs
generated ag J = {ji,..., Jr}. The following parameters related to the job areatee

automatically by the system:

» bornSitef;) denotes the originating site of the jpb

» exeSitef;) denotes the executing site of the job

+ arTime(;) denotes the arrival time of jgh which is the time when the job is
generated at bornSijg(

* endTimef;) denotes the finish time @f this includes the job communication time
from bornSitef;) to exeSitg(), waiting time queued at the exeSije(processing

times at the exeSitg, and the communication time it takes to retune t

42

processing results from exeSjfe{o bornSitey)

* respTimey;) denotes the finish time gf respTimei() = endTimefj) — arrTimey;).

Each jobjy that arrives at a grid sit® is represented in two parameters: the amount of
computation and the amount of communication. Theegfor these two parameters may
be unknown or can be estimated from predictionrtegles. The amount of computation

normally has one of the following formats.

* An expected execution tin€TC(jy, S«q), that is, the time that would be taken at a
standard platform (with &PW equal to 1) for processing that job. On a sijte
with APW, the expected execution time of a jJBBC(jx, s) will therefore be
ETC(jx S«d)/APW. We assume that the expected execution HHNE(jx, Sxq)
follows a type of probabilistic distribution (fornstance, an Exponential,
Hyperexponential or Bounded Pareto distribution).

e The number of computation unit in a jopis denoted asNCU,. Thus, the

NCUx

expected execution time for the jplon sites is AP -

In a grid environment, the related file of a jobeds to be transferred through much
slower internet links if the job is scheduled to in a remote site. Therefore, the cost of
file transfers or the amount of communication mist considered in the scheduling

algorithm. The amount of communication is calcudateone of two ways.

A. The file size of a jobjy includes input file sizé&yx and output file sizé\,. Assume

that, on averageibytes are required to profile a job and tAat bytes are required to
return a response for the jol andAy, are represented as the number of packets needed
to be transferred. Thus, the communication timgdbrjx needed for transfer purpose is

denoted as follows:
commTimef,) = T (S,) + Thm(s. S)

i Au
T&%1@33):TDW'B .

i

i Ao
T&%1@HSF:TQﬁ'B ;

43

Wherech(;}n (s, s) denotes the communication time of the jofrom s to s, and

chc;(m(ﬁ, s) denotes the communication it takes to returrptieeessing results frospto
S.

However, due to the changes in the load situatithed might occur during the
transmission of the job, this job may have to ma&eeral moves before it reaches its
final destination where it will be processed. Thwg assume that the jgp has been

transferred from the site ® the site ghrough the patls=sx;, Sxs, ..., Sxk =S, where

S =sxjands = sxi . The communication cost is given by the followfognula:

choxm (s.s) = :Z_:ll-rcjé(m (SXq: Sxq+1)
B. The communication time for running a job in a remote site is set to theputation
time divided byCCR, whereCCR is the computation to the communication ratio. By
using a range o€CR values, different communication time incurred iansit can be
accommodated. The computation time is the expestedution timeETC(jx, S¢q). The
communication time means the total of the commditinatime of transferring a job
from its bornsitgf) to its final exesitg() and the communication time of sending the
execution results from its exesjte(o its bornsitg().

3.5 Job migration model

Because each site scheduler acts independenttg, igha small probability that a job can
shuttle between sites. This can be prevented imwsrways. One approach used
throughout our simulation makes the job join notthe end of the queue, but at the
position where it is computed by an ageing schentieei job had arrived at that queue
[52]. This can significantly reduce the probabilibyat the job will be transferred again
and can guarantee the minimising of its response.tiThe ageing scheme is given

below.

OscOS OjxOJ, ajobjyis transferred to the sitg, its position in the global job

gueue of the sits, is defined as

44

pos =| O |
4

(: 1+ﬁe

where

» POSis the position of the jof in the global job queue at sie

* QLyis the queue length of global job queue atsite

» (is an ageing factor and is computed for each Jdle ageing factor is used to
enhance the probability that an “older” job wilast before the jobs that would
otherwise start.

 The age of a job is set to 1 when it is moved lfierfirst time, and is incremented
by 1 each time the job is moved again.

e) is a constant that can be adjusted empiricallghange the extent to which

ageing affects the operation of the scheduler.

The approach promotes the position of transfeedn the global job queue of that site
S« instead of adding it at the end of the queue.sTdan considerably reduce the
probability that the job will be transferred agaamd guarantees the minimisation of its
response time. We used the approach throughoutsouulation to improve the
performance of the proposed algorithm.

A more conservative approach was used to reduceateeat which jobs are
moved from one site to another. This can be acHidwe restricting the maximum
number of jobs transmitted between sites to oneajodny given time. This approach is
more robust and requires minimal processing tineaah site.

3.6 Performance objective

Our major objective is to minimise the average (alleresponse time for a collection of
jobs, here denoted @RT. Minimising theART of the jobs submitted for processing in a

parallel/distributed system is a critical perforro@nmetric for improving the overall

45

performance of the system. Many load-balancing rélgos have striven to meet this
objective of minimising théRT [45, 54, 56, 97, 118, 128].

The average response time for a collection of jsliefined by:

u
> responseTime(j;)
ART = 11

u

whereu represents the total number of jobs completedef@luation purpose.
Note thatu<r.

To evaluate the performance of our algorithms tieateloped in Chapter 4—6, we define
the improvement factor of algorithf over another algorithn® as follows in terms of

average response time of jobs:

ART(G)- ART(F)
ART(G)

where ART(F) denotes the average response time of jobs usingyithlg F.
ART(G) denotes the average response time of jobs usiogtalg G. A positive value of
the improvement factoindicates an improvement, while a negative valugligs

degradation.The value of the improvement factor is presentet@ims of percent (%).

3.7 Summary

This chapter has described both a model for pregggtid resource architecture, and a
model for presenting job queue. Then a communicatimdel and job model are also
presented. These two models define the informateeded to construct cost functions
for computation and communication. The migrationnsiderations and major

performance objectives were then discussed. Thersysiodel forms the cornerstone of

our loadbalancing algorithms that are described in the tiexie chapters.

46

A

Decentralised and desirability-

awar e load-balancing algorithm

This chapter presents a novel ldzalancing algorithm for heterogeneous grid
systems, with consideration of site desirability.pfovides two definitions of site
desirability: processing power and communicatietay. Using site desirability, a set
of partners and neighbours are formed for each Bde each sit& in the grid, our
algorithm uses the desirability of other sitestto formk number of partners arul
number of neighbours fag. The corresponding approaches for constructinthpes
and neighbours are also given. A new job arriving B immediately distributed tg

or its partner sites. Continuous load adjustmemniployed among neighbour sites.
To reduce or minimise the state-collection overh@adur loadbalancing algorithm,
state information exchange is performed via Mutibrmation Feedback (MIF).

Our algorithms are dynamic, sender-initiated anced@ralised.

Section 4.1 describes in detail a desirability-amMaadbalancing algorithm.
In Section 4.2, the performance of our algorithm eialuated in a series of

simulations.

47

4.1 Desirability-awar e load-balancing algorithm

4.1.1 Load index

Most algorithms in the literature have used theamsneous run-queue length (the
number of jobs being served or waiting for senat¢éhe sampling instant) as the load
index [56, 136]. The load index is easily obtairemtd calculated with minimum
overhead. Thomas Kunz [136] reported that the ng#U queue length load index
is the most effective. If a site has more than GRYJ, a simple modification is to

divide the total queue length by the number of CPUs

4.1.2 Site desirability

Our objective is achieved by using site desirapild guide load assignments. Site
desirability is based on how site characteristids affect the performance of future
load balancing. We give two definitions of the dasility of 5 to s: desirability based
on the average processing power pf and desirability based on transfer delay
betweers ands.

4.1.3 Site-clustering algorithm

Here, the site desirability of average processioggy accounts for the site cluster.
Our site-clustering algorithm uses a set of refegesites of sizen. The reference

sites are chosen at random, with the only conditiost the reference sites be
separated from each other by a big enough differénprocessing power to avoid the
situation where two identical or very close refeensites are chosen. Similar
approaches have been widely used to generate gtgxinformation [e.g., 41, 137].

This information is based on the intuition thaesitlose to each other in processing

power are likely to be similar distances from sal/eelected sites.

These reference sites are sortedABYV in descending order before applying
sites clustering approach. For each grid sjtéhe clustering algorithm first measures
the difference iPAPW of sites to the reference sites and calculate a refereac®wr
<d, dy,..., drw>. Two grid sites with similar reference vector arlese’ to each other
in terms of average processing power. The grid site then clustered in@, C,, ...,

Cn clusters. Finally, empty clusters@, C,, ..., C,, are removed so that we hale

48

Co, ..., Cq(g < m), which are also in decreasing ordetA5W. We denote the cluster
ID containings as (2, with values of positive integers between 1 gndufficient
reference sites will be required to reduce the abdly of false clustering where sites

that have very different processing power havelangiose reference vectors.

The approach outlined above is a coarse-grainedogijppation and is not
effective in differentiating closely located sité¢evertheless, our simulation results
show that the method works well for our lda@lancing scheme. This is largely
because our loabalancing scheme does not require very preciseursagnts. The

clusters generated are then used to generate psites as described in 4.1.4.

Algorithm 4.1 (Procedure FindPartness(k))

Find all sitess O S (izj) with 2 < Q. Denote this set of sites as
Qi
If y> k /* yis the size o); */
Seleck sites fromQ; randomly and add them R&et;
Else {
| «— k_ y
Add Qi to Pt;.
Ve 0
Whilel > 0 {
Q ~Q UG
If ¥ > 1 { /* y’is the size oC, */
Select sites fromC, randomly and add them R&et;
Break
}
Else {
Add C, to PSet;.
| «— I - V

V <« v+1

}

4.1.4 Partners

Each sites automatically maintain& number of partner siteBSet;, which the site
scheduler will use to select a partner site focpssing new arriving jobs. When a site

joins the grid system, it will determine its pamnie/Ne employed a simple heuristic to

49

find partner sites in terms of their processing powt is natural to consider more
powerful sites as partners. Here we consider therdgeneity of sites. The optimal
partners are sites with lightly loaded and great@rage processing powers. Pseudo-
code for our partners’ selection procedure is giveAlgorithm 4.1.Q; is a preferred
collection of sites of and are also used in our Partners Adjustment yolice sites

in Q have greater or comparable processing powerédga sin the algorithm, the set
of preferred site€); may be updated as necessary. Although the appesdribed
here does not guarantee the finding of optimalngast the methodology provides a

scalable and performance-efficient approach tortiial formation of partner sites.

4.1.5 Neighbours

Each sites maintainsp number of neighbouring siteNSet;, which the site scheduler
will use to select a neighbouring site for offlaaglijobs. This can reduce the cost of
load movement, and enable quick response to loddlances. Neighbours for each
site are formed in terms of the site desirabilityransfer delay. Fos, s is considered
as its neighbouring site as long as the transfitydeetweers ands is within etimes
of the transfer delay with high probability betwegrand the nearest site. For each
site, the other sites are sorted by transfer delagcending order. After this process,
the first-ranked site is chosen as the nearestTiis is described as follows:
_ TDji
TDnearest
where TD;; denotes the transfer delay from si{d0 S. TDneares denotes the

transfer delay from the nearest site of sit® itself.

Any number of set relationships betweB&et; and NSet; is possible, including

intersect, disjoint and include.

4.1.6 Partners Adjustment Policy

The dynamic Partners Adjustment Policy is triggesdebnever a sitg receives load
information message from a neighbour or partnea sftes in the preferred site®,

of 5 is found in the message, it will be involved i thartner adjustment af. It is
possible thag becomes a partner site of sitéf its load is lower than the highest load

in the partner sites of. Algorithm 4.2 describes the procedure of Partners

50

Adjustment Policy whers, receives an information message from its neighlwour

partner sites.

Algorithm 4.2 (Procedure PartnersAdjustmest K)):

S -9
Os,0Y: If (5,0 NSet; 0 PSet)) AND (5,0 Q) St « S1O's,
If S# @f

S~ S 0OPSe

Sort§ byLD in ascending order

Remove all sites frorRSet,;

Select the firsk sites fromS; and add them tBSet;

4.1.7 Information policy

We use MIF for load-state information exchange. Th®rmation exchange is
restricted to partners and neighbours. Algorith@ describes the procedure when a
sites transfers a jolp, to its neighbour or partner sisefor processings appends the
load information of itself andw (a small positive integer) random neighbours or
partners to the job transfer requ&® sent tos by piggybackings then updates the
corresponding load information in its state obj@cicomparing the timestamps, if the
sites contained in the transfer request belontstoaighbours or partners. Similardy,
inserts its current load information, aag random sites from it8lSet; and PSet; in

the job acknowledg@R or completions repl\CR to s, sos can update its state

objects.

For any sites[S if the state object eleme@[j] (Cs U NSet; 0 PSet;, i # j)
has not been updated for a predefined pefTigdthen the load-balancing scheduler
will send an information exchange message;.tdhe procedure is the same as the

algorithm 4.3.

The MIF method is an alternative to the periodioimation exchange
method and its correspondingly high messaging @agthUnder the MIF method, the
processing site will return its current load ane libad ofar random sites, along with
the ACK message or completion repBR, back to the forwarding site. As such, the

overhead isninimal.

51

The MIF method has another advantage: the ratead Hissemination is
directly tied to the job arrival rate. An increaeethe job arrival rate means that each
node receives initial job requests more frequentihich means that each node
forwards job requests more frequently and in twgceives load information more
frequently. Therefore, the load dissemination rat@utomatically adjusted to the

request rate.

Algorithm 4.3 (procedure of job transfer and information exchange):

Stepsprocessed in s

1. Y « s+ {a» random sites fromSet IPSet; — s}
Il's select neighbours or partners for information exge

2. Us,/00Y, s appends@[y].LD, Gi[y].LT) to the job transfer reqeeTR

3. s appends bornsitgf to TR

4. s sends messagd&jtos

Steps processed in s;:

Upon receiving TR:

1. Os0Y: If (Ofy].LT > Oj[y].LT) AND (s,ONSetjIPSet;) Ofy] « Oiyl
Il's updates the state object usgig info

2. Z — 5+ {ap random sites fromSet;l]PSetj-s}

3. UslZ, 5 appends@[Z.LD, G;[Z].LT) to the acknowledge repAR

4. s sends messag\R 1o s

Upon completion of job jy:

1. Z — 5+ {aw» random sites fromiSet;IPSet; — s}

2. Usl1Z, 5 appends@[Z.LD, Oj[7.LT) to the completion replgR
3. s sends messageR to bornsitejf) = s

Steps processed in s:

Upon receiving thereply AR or CR:

Os0Z: If (O[[Z.LT > O[[7).LT) AND (s,0NSet; 0 PSety) Oi[Z — O|[7]

4.1.8 Transfer policy and location policy

Our transfer and location policies are a combimatd two policies—Instantaneous
Distribution Policy (IDP) and Load Adjustment Pgli(LAP). These are described
below.

4.1.8.1 Instantaneous Distribution Policy

When a new job arrives at si¢g the policy decides whether it is to be sent ® th

52

global job queue of or one of its partner sites. If the existing partsites are already
overloaded, it is placed in the global job queues @nd involved in load balancing
performed by another policy at a later time (Sect#bl1.8.2). The policy has two
advantagesFirst, the policy try to control the job processing rateeach site in the
system; Second, the policy makes more powerfuk ssgary more loads, and jobs
executed at fast sites are more likely to exectita high speed. If there are two
partner sites with the same minimum load, the rstapartner site is chosen.
Algorithm 4.4 describes the IDP far

Algorithm 4.4 (Instantaneous Distribution Policy):

Ojx O J with bornSitefy) =s 0 S

Let LDpin « Min{OJK].LD | O s + PSeti} /* the minimum

load among sitg and itsPSet; */

If (Gi[i].LD —LDnin < 6 [* @is a positive real constant close [to

zero */
GJQ(s) — enqueug() /* put the jobjy in the global job
queueGJQ(s) */

Else {
Transfer the jolp, to the partner sitg havingLDpin
UpdateQi[j].LD

}

Algorithm 4.5 (Load Adjustment Policy):

If Oi[i].LD >LDay {
jx « dequeue(GJG)
Transfer the jolp, to a neighbour sitg whereGi[j].LD =
Min{ O[K].LD | s[J NSeti}

}

4.1.8.2 Load Adjustment Policy

The Load Adjustment Policy for a sigetries to continuously reduce load difference
amongs and its neighbourBlSet; by transferring jobs from heavily loaded sites to
lightly loaded neighbouring sites. The policy iggggered wheneves receives load
information from a neighbour. Thpolicy will use the most recent load status
information to decide whether a transfer is ingcat An adaptive threshold policy is
used so that the thresholds are adjusted as thensysad changes. Sites with loads

53

that are higher than the average load are considesesenders. Once makes a
transfer decision, the last job waiting @GJQ(s) is considered first for transfer. If
there are two neighbouring sites with the samemum load, the faster neighbouring
site is chosen. The algorithm 4.5 describes the fokR sites.

4.2 Performance evaluation

We consider only sender-initiated algorithms. Ire thimulation, our algorithm
(labelled as DA) is compared with the Neighboursdahload-balancing algorithm
(e.g., [105, 106]) (labelled as NB). For the NBgleaite is limited to load information
from within its own domain, which consists of ifsahd its neighbours. the load of

a siteload exceeds the computed average load in its donha@@d balancing is
initiated. We select the algorithm because it reg@nés a typical class of decentralised
approaches and bears similarity to our work. Thénidien of neighbours and

approach for information update in the NB is theeas ours.

4.2.1 Simulation model

In this section, we use simulations to study thdgomance of the algorithms under
different system parameters. Nine assumptions devesed for the simulation model.
These are:

» All of the work is carried out on a grid systemtticansists of sites. The
average processing power of sites is assignedspeaified range. According
to the different degrees of heterogeneity in therage processing power of
sites, several different heterogeneous systemgradeiced.

e The reference sites are chosen randomly and aegated from each other at
leastDs percent difference in processing power.

* Jobs arrive at each s#gi=1, 2,...,n according to a Poisson process with rate
A = A x P;, whereP;=1/n. The actual inter arrival time of jobs is adjusted
give the required overall average system loadieg (ast bullet point).

« The expected execution times of jobs are assumddlltav an exponential
distribution with a mean of time unit.

e The transfer delay that may be incurred between sai@y pairs in the grid

system is chosen from a lognormal distribution veitmean ofr time unit and

54

a standard deviatiog.

« TheCCRis chosen randomly in a specified range.

* The partner set of each site need to be providéatdeur algorithm starts to
run. It is based on the method described in Seetibr8.

* The neighbours of each site are fed to the simulaédore the algorithms
starts to run. They are based on the transfer dgknerated from the
distribution of mean transfer delay. The sites @mesen as its neighbours,
according to the method described in Section 4.1.4.

+ Let p be the required average system load for our simualawhich is the
average job arrival rate divided by the averagepguairessing rate. Using this
definition, we adjust the job mean inter-arrivah& 1/ required to get the
desiredo.

Table4.1: Simulation parameters (tu = time unit, pt = percent)

Simulation parameter Value
Size of systenm 32

The number of reference sites, 12

The difference oAPW among reference sites, 10 pt
D¢

Mean processing time of system joKs, 1.0tu
The computation to communication rat@CR | {0.1, 02, 0.5, 1, 2, 5, 10}
Mean transfer delay, 0.05tu
Standard deviation of transfer delay, 50 pt
Distance coefficient to from a site to its nearnests
site,€

Period for periodic information exchangg, 10 tu
Number of partnerk 4
Number of random partners/neighbours for | 2
information updateqp

Table 4.1 shows the values of the parameters ust isimulations. Table 4.2 shows
heterogeneous system configurations, in whichtiivd tolumn contains thaPW of
each of the four site types. The second columnatasifour site types and the number
of sites in the system corresponding to each wite. tAn exception for heterogeneous
system HS3 is that a value is first randomly choisem a range of [10, 100], and
then the value is divided by 10 to generateAR®V of a site. We used the first 2000
jobs to bring the system to a steady state. Wedrdoe arrival time, processing time

55

and finish time fromjzooo t0 jogee. Hereu equals to 8000 (for evaluation purpose). The
simulation does not end until all jobs betwggg andjsge have completed. For each
site, we recorded the number of completed jobserA#tach simulation run, we
computed the average response time of jB). We carried out each measurement

five times with different random seeds.

Table 4.2: Heterogeneous system configurations

Heterogeneous systemsSites split (fraction)| APW

HS1 3/8, 1/4, 1/4, 1/8 [1,2,5,10]
HS2 12,8, 6, 6 [1,15, 2, 3]
HS3 Random [10, 100]/ 10

4.2.2 Effect of system heter ogeneity

We carry out a series of simulations with the athans described above for three
different heterogeneous systems shown in Tableuh@er different system utilisation

parametep.

We first considered only situations where the fsissgtes have up to 10 times
higher relative processing power than the slowst lsecause this is true of most of
the current heterogeneous grid systems. In Tab® ¥we present a highly
heterogeneous system configuration HS1 with foffeidint processing powers. We
varied the system loading by varying the mean iatéwral time (initiation time) of

the jobs, 14. Results are shown in Figure 4.1 and Table 4.3.

10
= 9
S 8
o [/
g 6 ——NB
E 2 DA
3
< 2
1 I T T T T T T T
0.1 02 03 04 05 06 0.7 0.8 0.9
Average system loading,

Figure 4.1: Effect of system with high heter ogeneity

56

Table 4.3: Improvement factor (in percent) of DA over NB in Figure4.1

Average system loading
0.1 0.2 0.3 0.4 0.5
NB 33.34 35.32 34.41 33.69 36.92
Average system loading Average
0.6 0.7 0.8 0.9 | (0.1-0.9)
NB 32.62 22.96 20.72 17.14 29.6§

We can conclude that NB behaves poorly in a higleyerogeneous system. DA gives
the minimumART across all values gb. At light or medium system loading (10—
60%), DA performs significantly better than NB. Fetample, at system loading of
50%, theART using DA is 36.92% less than NB and the differeneaches the
highest point. When the system loading becomes, high difference between the
ART of NB and DA decreases. At high system loadin@@¥o, DA yields theART,
which is 17.14% less than NB. DA has an averageromgment factor of 29.68%
over NB. Analysis of the results revealed the follty reasons for the relative

performance of each algorithm in terms of AkeT.

* When the system loading is light or moderate for, I} plays a crucial role
and LAP makes little influence on tWdRT of the jobs. NB transfers a job to
an idle neighbouring site, which can be much slower a highly
heterogeneous system than a faster non-neighbaositenthat has only a small
amount of jobs in the queue (or that is currentiycpssing a job and has an
empty queue).

e At high system loading, NB tends to dispatch jobsat neighbouring site
independently of its relative processing powercantrast DA first dispatches
new jobs to faster partner sites with minimum loathich means that it is
more likely for faster sites to shorten the queargth and reduce thART. As
a result, theART is smaller compared with NB, which contributesatbetter
ART.

57

—— NB
—=— DA

ART (time uni)

01 02 03 04 05 06 07 08 09

Average system loading,

Figure 4.2: Effect of system with low heter ogeneity

Table 4.4: Improvement factor (in percent) of DA over NB in Figure 4.2

Average system loading
0.1 0.2 0.3 0.4 0.5
NB 17.50 20.97 14.58 17.25 19.17
Average system loading Average
0.6 0.7 0.8 0.9 |(0.1-0.9)
NB 18.30 15.54 8.86 5.73 15.32

Secondly, we focused our analysis on the case wteresystem is much less
heterogeneous. We consider a low heterogeneousnsydS2 that the processing
power of the fastest site is only three times @ tas the processing power of the
slowest site. By observing the results shown irufggl.2 and Table 4.4, we conclude
that DA has a loweART than NB under all loads, but that the differensenot
significant. DA has an average improvement factbr16.32% over NB. The
conclusion is due to the fact that IDP makes maintridbution at low or medium

system loading.

Lastly, we studied a system with randomly generdtetérogeneity. We randomly
generated one heterogeneous grid system HS3 anputemtheART by using NB
and DA. On average, DA performs better than NB ({Feg4.3 and Table 4.5), by
22.41%.

58

e
FRNWAUIO~IOORN

—— NB
—=— DA

ART (time uni)

01 02 03 04 05 06 0.7 0.8 0.9

Average system loading,

Figure 4.3: Effect of system with randomly generated heter ogeneity

Table 4.5: Improvement factor (in percent) of DA over NB in Figure 4.3

Average system loading
0.1 0.2 0.3 0.4 0.5
NB 38.29 32.07 28.07 23.09 26.41
Average system loading Average
0.6 0.7 0.8 0.9 | (0.1-0.9)
NB 18.45 15.44 11.50 8.33 22.41

4.2.3 Job completion statistics

One of the aims of this study was to obtain insigitdo how best to allocate the
workload among the component sites of a heterogengod system. This could then
be used to develop heuristics for designing anduatiag load-balancing algorithms.
This section looks at the utilisations of the diffiet class of sites in the HS1 and HS2
heterogeneous systems, at overall system loadihg8.50 and 0.9, for the two
algorithms DA and NB, as shown in Figures 4.4—4fe fractions of total jobs are

computed as the total number of jobs that complatexhch type of sites divided by

At the average system loading of @5 HS1 and HS2 heterogeneous systems,
DA tends to underload the less powerful sites, g allocates a disproportionate
share of the work to the more powerful sites. Tifierence between the algorithms is
more marked for the highly heterogeneous system, H@fere there are more
powerful sites. HowevelB tends to overload the weaker sites (50% systeihg);
this is because NB algorithm does not considerrbgémeity in average processing

power among sites while assigning load. At theesystoading of 0.9 for HS1 and

59

HS2 heterogeneous systems, NB reduces load at wsie and increases load at
more powerful sites. On the contrary, DA increasese loads at weaker sites and
reduces some loads at more powerful sites, bec@lse may transfer to a less
powerful neighbouring site.

_ 05
S, 0.45 0.42
g o5 o0
= 0.29
@ 0257 027 B DA
o 0.2 0.16
T 0.15
§ 0.1 0.07 I

0.05

< []
1 2 5 10
APW of four site types in the system HS1

Figure 4.4: Job completion statistics at the system loading of 0.5 in the system

HS1

S 004?}
2 0.35 0.29
v 0.3 ONB
@ 0028: 0.18 0.17 0.18 H DA
2 0.15 0.12
g 0.11 .
T 0.005*

1 2 5 10

APW of four site types in the system HS1

Figure 4.5: Job completion statistics at the system loading of 0.9 in the system
HS1

60

0.4
0.35{ 0.32 0.33

0.3 004 026 0.26 0.28
0.25 :

02 0.18 ONB
015 0.13 E DA

0.1 A
0.05
0

1 1.5 2 3
APW of four site types in the system HS2

Fractions of total jol

Figure 4.6: Job completion statistics at the system loading of 0.5 in the system
HS2

0.357 0.29
1 0.27 0.28 - 0.27
0.3 023 0.25

0.257 0.19 0.22 ONB
0.15 B DA

Fractions of total jolt
o
N

1 15 2 3
APW of four site types in the system HS2

Figure 4.7: Job completion statistics at the system loading of 0.9 in the system
HS2

4.2.4 Scalability

To explore how the size of the system (in termscafputing sites) affects the
performance of the algorithms accordingM®T, we tried to simulate them at system
loadings of 0.5 and 0.9 while increasing the nundfehe sites. Results are presented
for system sizes from 16 to 450. We created 1&udfit systems, with sizes of 16, 25,
32, 50, 64, 80, 100, 120, 140, 160, 200, 220, 280, 300, 350, 400, and 450. For
each system size, we used the heterogeneous si88mThe performance of both
algorithms at the system loading of 0.5 and 0.§iven in Figure 4.8-4.9 and Table
4.6-4.7. The improvement that DA offers to NB varfeom 13.47-27.33% at the

61

system loading of 0.5, and from 3.78-12.53% afsgystem loading of 0.9, depending
mainly on the heterogeneity of system. DA had agraye improvement of 19.23%

and 7.88% over NB at system loading of 0.5 andr@€pectively.

ART (time uni)

4 ‘

System sizen

16 46 76 106 136 166 196 226 256 286 316 346 376 406 436 466

—o— NB
—=— DA

Figure 4.8: Evaluation of scalability with different size at the system loading of

0.5

Table 4.6: Improvement factor (in percent) of DA over NB in Figure 4.8

System sizen
16 25 32 50 64 80 10(
NB 24.97| 22.21| 25.31| 27.33| 16.56 | 13.47 16.62
System sizen
120 | 140| 160| 200 220 250 280
NB 18.53| 14.75| 20.24| 19.68| 15.47 23.44 15.53
System sizen Average
300 | 350 | 400| 450
NB 16.80| 15.73| 22.21| 17.33| 19.23

62

17
16 1
15 1
14 —+—NB
13 —= DA
12
11 \ \ \ \ \ \ \ \ \ \ \ \ \ \

16 46 76 106 136 166 196 226 256 286 316 346 376 406 436 466

System sizen

ART (time uni)

Figure 4.9: Evaluation of scalability with different size at the system loading of
0.9

Table4.7: Improvement factor (in percent) of DA over NB in Figure 4.9

System sizen
16 25 32 50 64 80 10¢
NB 3.78 | 4.59| 9.43 4.49 7.21 587 8.40
System sizen
120 | 140| 160| 200 220 250 280
NB 798| 7.31| 10.60 8.58 7.30 12.53 9.02

System sizen
300 | 350 | 400| 450
NB 6.55| 894 8.60] 10.73 7.88

Average

4.2.5 Effect with different job arrival patterns

All the results discussed in the previous simuleticare generated under the
assumption that all sites have the same job arrat&l. In reality, job arrival rates
usually differ from one site to another. To evatutite effect of different job arrival
rate on theART, we have conducted another simulation, in whichrave&lomly chose
ten of the sites as lightly loaded site £ 0.3), eleven of the sites as moderately
loaded sitesg= 0.6) and eleven of the sites as highly loaded ¢ites0.9). The HS1,
HS2 and HS3 system setting were used as the bafiguwations in the section. The
results shown in the Figure 4.10 and Table 4.&tiate that DA has an average
improvement of 27.13%, 11.19% and 19.23% over NEhamnHS1 system, the HS2

63

system and the HS3 system, respectively.

= 12] 7.80
S " | 564 6.30
g 6 411 420375 ENB
l: 4 H B DA
<
0
HS1 HS2 HS3
Heterogeneous grid systems

Figure 4.10: Effect with different job arrival patternsin three different kinds of
heter ogeneous grid systems

Table 4.8: Improvement factor (in percent) of DA over NB in Figure 4.10

HS1 HS2 HS3
NB 27.13 11.19 19.23

4.2.6 Senditivity to thevariancein job inter-arrival times

The burstiness of the job arrivals may cause perdoce deterioration [48, 56]. The
burstiness can be measured by the coefficient dti@n (CV) of the job inter-arrival
times (theCV of a random variable is calculated as its standardation divided by
its mean) [48, 56]. For a Poisson arrival, @@¥ of the inter-arrival times is 1.
However, the job arrivals in real environments temtbe burstier than this. Job traces
in a real computing system are analysed in [56]icwishowed that th€V of the
inter-arrival times is 2.64. Job arrivals can bedeied using a Hyperexponential
distribution [48].

In this simulation, the system HS3 is used. Thegoivals are modelled by a
two-stage hyperexponential distribution, in whible €V can be adjusted by changing
the distribution parameters. Figure 4.11 and 4Hd@nsthe effect of theCV of the
inter-arrival times on th&RT, where theCV increases from 1.0-3.0 with increments

of 0.5, while the average arrival rate remains anged. We show only the results for

64

the case where the average system loading is @50#&nhas the results for other

workload levels demonstrate similar patterns.

= 85
S 8
% T
E 62 —=— DA
< 551 ‘ ‘ ‘ |
1 15 2 2.5 3
CV of the job inter-arrival times

Figure4.11: Sensitivity to thevariancein job inter-arrival times (at the system
loading of 0.5)

Table 4.9: Improvement factor (in percent) of DA over NB in Figure4.11

CV of the job inter-arrival times
1 1.5 2 2.5 3
NB 26.41| 27.04 27.8% 27.81 27.20 27.26

Average

16
15

14 —+NB

13
12 —=— DA

11
10 f T T T 1

1 15 2 2.5 3

CV of the job inter-arrival times

ART (time uni)

Figure4.12: Sensitivity to thevariancein job inter-arrival times (at the system
loading of 0.9)

65

Table 4.10: Improvement factor (in percent) of DA over NB in Figure 4.12

CV of the job inter-arrival times
1 1.5 2 2.5 3
NB 8.33| 10.12| 9.04 10.21 10.85 9.71

Average

It can be seen in Figure 4.11 and 4.12 that, utitese two algorithms, thART
increases as th8V increases, as is to be expected. When the syst@amng is 0.5
(Table 4.9), DA outperforms NB by 27.26%, while rihestill is an average
improvement factor of 9.71% over NB at the syst@ading of 0.9 (Table 4.10).
These results suggest that the burstiness of jobak does not notably impair the

advantages of the DA workload allocation strategy.

Figure 4.13 shows th&RT as a function of the workload level when 0¥ is
set to 3.0. The performance curves of DA and NB alestrate similar patterns to
those previously seen in Figure 4.3. When the systading is 0.1 (Table 4.11), DA
outperforms NB by 38.87%while the advantage is 10.85% when the systenirigad
is 0.9. These results indicate once again that @#sistently performs better than NB,

even if there is higher burstiness in job arrivals.

16
= 14
c
5 12
e 10 ——NB
Z 8 —=— DA
E 6
nd
< 4

2

0.1 0.2 03 04 05 0.6 0.7 08 0.9

Average system loading,

Figure 4.13: Sensitivity of performance to different system loading (CV equalsto
3)

66

Table4.11: Improvement factor (in percent) of DA over NB in Figure 4.13

Average system loading
0.1 0.2 0.3 0.4 0.5
NB 38.87 36.43 28.72 24.32 27.2(
Average system loading Average
0.6 0.7 0.8 0.9 | (0.1-0.9)
NB 19.32 15.71 10.56 10.85 23.55

4.2.7 Sensitivity to highly variablejob sizes

We assume Exponentially distributed job sizes evjgus simulations. The studies
[80, 109] have found that job size distributionfiibx a heavy-tailed property in most
computing systems. In this section, we examine jolith a Bounded Pareto
distribution that has considerably more variabiiityjob size. We use a Bounded
Pareto distribution to bound the mean job size evietaining a large variance of job

sizes.

The probability density function of the Bounded darDistributionB(min,
max,a) is defined as follows [109]:
amin? I

f(x)= . —X min < a < max
1-(min/ max)

wheremin andmax are the lower and upper bounds of job size, resbgt

andais a parameter that reflects the variability of gobe.

Figure 4.14 shows performance under a Bounded dParetkload @ = 1.2,
min = 0.203901, max = 1000) with three different valfer the arrival ratd and the
max value. This means that the maximum job size iQ1fles the average job size;

min was chosen to set the mean job size at 1.0 feethalues otr andmax.

Once again, DA performsubstantially better than NB over a range of
situations of system HS3 loading. When the systedihg is 0.1 (Table 4.12), DA
outperformad\B by 39.44%, while the advantage is 8.73% whersifstem loading is
0.9. This is mainly because, the large jobs arpatthed to faster site for processing

with high probability. For NB, the larger jobs még placed at slower sites for

67

processing. This suggests that site selection nfeay @ more important role under
workloads with highly variable job sizes. Thus, MBmore sensitive to the highly

variable job sizes and it is more likely to redtive ART for DA.

w
a1

N N W
o 01 O
! ! !

—— NB

15 1

ART (time uni)

=
g1 o
!

O\ T T T T T T T
01 0.2 03 04 05 0.6 0.7 0.8 0.9

Average system loading,

Figure 4.14: Sensitivity of performanceto highly variablejob size

Table4.12: Improvement factor (in percent) of DA over NB in Figure4.14

Average system loading
0.1 0.2 0.3 0.4 0.5
NB 39.44 36.91 29.31 31.33 27.84
Average system loading Average
0.6 0.7 0.8 0.9 | (0.1-0.9)
NB 26.02 16.35 14.68 8.73 25.62

4.2.8 Sensitivity to the transfer delay t

The delay in load information update is an impdrtasue in grid load balancing. The
lag time in disseminating load information is tygdlg much larger than that in a LAN

and can vary greatly due to network congestion. piabability that the messages
carry up-to-date information depends on the distabetween the sending and
receiving site and on the load dynamics at the isgnsite. Therefore, it is necessary

to study the effect of transfer delay on the loathbcing.

In this simulation, we compared information exchamplicy via MIF with
Periodic information exchange policy. The Periomliformation policy here means
each site disseminates its load information atlexgaterval to all its neighbouring
sites and all sites that has chosen them as psuthibe value of time interval for

68

Periodic information policy was set to 1 time unit.

= 30
c
z 25
-

£ 20 —¢— Periodic(1
1: —=— MIF
E(: 15

10 f T T T T 1

005 01 015 0.2 025 0.3

Mean transfer delay,

Figure 4.15: Sensitivity of information exchange policy MIF to thetransfer delay

Table 4.13: Improvement factor (in percent) of MIF over Periodicin Figure4.15

Average system loading
0.05| 0.1| 0.15 0.2 0.25 0.3
Periodic (1) | 4.47 7.48 1496 21.63 2549 2750 26/9

Average

The system HS3 loading is kept same while the nrearsfer delayr is changed from
0.05 to 0.30 at a step of 0.05. We show only tiseltdor the case where the system
loading is 0.9 as the difference between theserfeomation policies is insignificant
under the light or moderate system loading. Figui® shows that th&RT for using
both information policies increases when the meansfer delay increases. This is
because the transfer delay between sites and capiages in state of site sometimes
make the status information messages obsolete bytithe they reach their
destination. It is possible that the scheduler has received the updated load
information from a remote site when a new job a@sivFigure 4.15 illustrate the

following points:

The increasing rate of MIF policy is very smallkban that of Periodic policy.
It is especially apparent when the mean transfydexceeds 0.20. The MIF policy
has an average improvement of 16.92% over Peripdicy (Table 4.13). For
Periodic policy, a lightly loaded site can quiclkdgcome overloaded because a few
schedulers send jobs to it before the new loadmmétion is available. This is known
as the Herd effect [72] and often leads to incdrpeb distribution and poor

69

performance. Theffect becomes more serious if the transfer dedagignificant. In

contrast, the MIF policy appears to include a “@ntl component that makes the per-
site updates desynchronise the sites enough teedtie herd effect; this may benefit
jobs arriving in the future, thereby reducing HRBT. The stochastic approach can
avoid system instability when all sites transfez fbbs to the site estimated to have

minimum load.

4.2.9 Senditivity to the number of random sites ap

We investigated the sensitivity of MIF policy toetmumber of random sites for
information update¢p with different values. We varied the number ofdam sites
while keeping the HS3 system loading at a constent0.9. It is intuitive that the
larger the number of sites included in the infolioratexchange message from each
site, the better the performance. However, the Isitian results illustrate that
including more than two sites did not further impgosystem performance (Figure
4.16). Therefore, we selected two sites in thermédion exchange message from
each site. We did not give the result for the egisere the system loadingis light or

moderate, as there is little difference by applhdiféerent number of random sites.

T 14,
2 13]
£ 12
£ 11 . .
% 10 ‘ ‘
1 2 3 4

The number of random
partners/neighboursy,

Figure 4.16: Sensitivity of MIF to the number of random sites

4.2.10 Sensitivity tointerval T,

The relationship was explored fART and T, (Figure 4.17), which shows results for
the MIF policy for updated intervals of severalues ofT, in the system HS3. The
system loading was kept at 0.9. The best performasigyielded when thapdate

interval is shortestT,, equal to 1). This is due to the quality of theomfation on

70

which the load-balancing algorithm acts, which ioy@s in proportion to the
frequency with which information is distributed. Wever, it is clear that the
improvement is slight foll, of 1, 5, and more than 10. If a site has not kswkthe
updated information from another site at time Wi, it sends a request message
to that site, which replies with the required imh@tion. This generates a high volume

of messages when a shorter interval is used.

- 11
S 10.9 . .
(D)
c 10.8 o
K 10.6-
< 105 ‘
0 5 10 15 20
Period of periodic information exchande,

Figure 4.17: Sensitivity of information exchange policy MIF to the period for
periodic information exchange

We suggest that an update interval of 10 is appatgfor the MIF policy, because it
is a compromise between the performance obtainethéypolicy and the network

overhead introduced in the system by the policy.

4.2.11 Sengitivity to the number of partner sites

We varied the number of partners of a site whilepkeg the system HS3 loadipat
a constant 0.5 and 0.9. Figure 4.18 illustratesftioim 1-8 partner sites.

€ 13i\-\'\./-/./‘

c

8 11

E 9- 0
= —=—0.6
E T }

< 5 T T T T T T

1 2 3 4 5 6 7 8

Number of partner sites;,

Figure 4.18: Sensitivity of algorithm DA to the number of partner sites

71

The ART goes down as the number of partner increases. Howthe improvements

come at a decreasing rate. In moving from 4 to @npa sites, the benefits of load
balancing are very few or do not exist, and therss to be a saturation point. This
suggests that a small number of partner sites are effective with respect to load

balancing.

4.2.12 Senditivity to distance coefficient &

The HS3 system was employed as the base configaraii runs were performed at
system loadings d.5 and0.9. The system loading was kept the same whiledhes

of £ was changed from 1.2 to 1.75. Figure 4.20 illusgahe following points. The
ART goes down as the value efincreases. However, the improvements come at a
decreasing rate. In moving from a value of 1.5.&b1the benefits of load balancing
do not exist, but there seems to be a saturation.pichis suggests that a value of 1.5
can be more effective with respect to load balanckt a system loading of 0.5, the

same conclusion was drawn. Thus, we do not giveehdt here.

14 ——NB

ART (time uni)

1.25 15 1.75

Distance coefficientg

Figure 4.19: Sensitivity of algorithm DA to distance coefficient &£

4.2.13 Sengitivity to the number of reference sites

We varied the number reference sites at differgsttesn size while keeping the HS3

system loading at constants 0.5 and 0.9 (Figures 4.20 and 4.21).

72

T 9 8
3 8 | —=—10
E 7 B

S 7] AN 12
= 6 w == 14
< 5 —*— 16

4 T T T T T T T T 1
0O 50 100 150 200 250 300 350 400 450

System sizeN

Figure 4.20: Sensitivity of algorithm DA to the number of reference sites (at
system loading of 0.5)

19
= 18 ——38

S 17
: if s

e 1
=13 "
1 14

@ 12
< 11 —*—16

10

0 50 100 150 200 250 300 350 400 450

System sizen

Figure 4.21: Sensitivity of algorithm DA to the number of reference sites (at
system loading of 0.5)

At a low system loading of 0.5 (Figures 4.20), &T goes down with increasing

numbers of reference sites. However, this improveratps from 12 to 16 reference
sites. There was a very small difference inARF between 10 and 12 reference sites.
As a small number of reference sites are usedites slustering, the less powerful

sites may be partitioned into a reference site Witfher processing power, because
there is no reference site closer to the less dowsites. Thus, when a site cannot
find a site from a cluster for which the ID is gierathere is a high probability that the

site will find less powerful sites as its partnges, because it randomly select partner

73

sites from the cluster it belongs to.

At a high system loading of 0.9 (Figures 4.21)r¢his a similar trend to the
low system loading of 0.5. Except for the reasorentioned above, the Partner
Adjustment Policy also increase the possibilitycbbosing less powerful sites as
partner sites, because the policy plays a impontalet with the increasing of the

system loading.

4.2.14 Effectiveness of load balancing

This section presents the effectiveness of loadnoatg, showing when it is

beneficial to perform load balancing. The effeatiess of load balancing is given by:

E= _ARToa
ARTLocaI
whereARTpa is theART run by DA.ART o IS theART completely processed

at their originating sites (without running loadding algorithm).

WhereE is less than 1, this means that &igT after load balancing is more
than that before load balancing, and thus thalkdthe balancing is not effective. Where
the value oE is 1, it means that there is no change inAR€&. Where the value d is
more than one, it means that #N&T after load balancing is less than that before load

balancing; thus, the load balancing is effective.

To calculate the effectiveness of load balancinge DA algorithm was
executed on a heterogeneous grid system HS3. Ttiegsef system loading is the
same as one in the Section 4.2.5. BRI with and without load balancing was
calculated for different computation and commun@atosts, within a range of {1, 2,
3,4,5, 6, 7}. Figure 4.22 presents the effectagmnof DA as the ratio of computation
costs to communication costs changes. The graprlglehows that as this ratio
changes from 1 to 7, the effectiveness of loadruatg increases. Figure 4.23 plots
the crossover point, clearly showing when it isdf@ml to perform DA. When the
computation to communication ratioCR is less than 1.75, the load balancing is

ineffective; but when this ratio is higher than3,.DA becomes very effective.

74

H 1.60-1.80
01.40-1.6d
W 1.20-1.4d
@ 1.00-1.2d
M 0.80-1.0d
0 0.60-0.8d
J 0.40-0.60
W 0.20-0.4d
@ 0.00-0.2¢

Figure 4.22: Sensitivity of algorithm DA to the number of reference sites (at
system loading of 0.9)

2.00
1.80 ~
1.60 ~
1.40 ~
1.20 ~
B 1.00
0.80
0.60
0.40
0.20
0.00
L e S A N ol il SIS I P @
& NE 0\-‘\ N oﬁ-“ D \T‘ \?‘ N e e ’*
JOR

Figure 4.23: Effectiveness of algorithm DA astheratio of computation to
communication cost of jobsincreases

4.3 Summary

We have proposed a desirability-aware decentralidggdamic load-balancing

algorithm, which considers scalability of grid sst heterogeneous processing

75

power of grid sites and considerable communicatmrerheads involved in

information collection.

We conducted extensive simulation studies to aratlys performance of the
load-balancing algorithm. The algorithm was comgawath the neighbours-based
load-balancing algorithm. Our experiment resultevstihat the algorithm performs
better than the neighbours-based algorithm, andcesdthe average response time of

jobs over a wide range of system parameters.

76

5

Decentralised and per formance-

driven load-balancing algorithm

This chapter presents a dynamic and decentralised-balancing algorithm for
computationally intensive jobs in the heterogenegud computing systems. The time
spent by a job in the system is the main issue rieatls to be minimised. This is an
extended work of a desirability-aware load-balagcialgorithm by considering
performance benefit that jobs can gain in the Ildiatribution triggered by Instantaneous
Distribution Policy (IDP) and Load Adjustment Poli(LAP). Here, we propose another
load adjustment policy, Augmented Load Adjustmemtiidy (ALAP); this policy
determines whether there is a better placementrokeye neighbourhood of a site, where
IDP has failed to show that less powerful site ithat neighbourhood is a performance
bottleneck.

Section 5.1 describes in detail a performance-driead-balancing algorithm. In

Section 5.2, the performance of our algorithm ialeated in a series of simulations.

5.1 Performance driven load-balancing algorithm

The proposed algorithm uses the desirability afsstb guide load assignments (Chapter
4).

77

5.1.1 Load index

Os O S the load index o at a particular instant of tinta@s defined as
LDi: = TET;:+ RET;;

whereTET;; is the total estimated job execution time of aligaurrently waiting
in the job queue o at time instant, andRET;; is the estimated remaining time of the

job currently being processed fyat time instant.

The assumption that the expected job executionstim@n be estimated is
commonly made when studying scheduling and loaddsathg techniques for
heterogeneous computer systems [13, 52, 53, 97, $8&e approaches for doing this

estimation are discussed in [38, 138-141].

5.1.2 Region and region load

The regionr; of a sites includes the sites and its neighbours. The region load is
measured by the average load across all sitesnviltlei region. The load of regiopat a

particular instant of timeis defined as:

q
S LDj.t
RD; = 171
q

wherelLD;; is the load of site at time instant , q is the number of grid sites in
the regiorr;.

The average load between a regipand another remote regionat a particular

instant of time is defined as:

> RDk,t
o= kA

It

whereRDy;is the load of regiony at time instant , d equals to 2.

78

5.1.3 Threshold policy

Two kinds of threshold policies can be considemdafload-balancing algorithm: a fixed
threshold policy and an adaptive threshold polky.the former name suggests, a fixed
threshold policy has predetermined thresholdswhidhot change when the system load
changes. As the latter name suggests, an adapteshbld policy has thresholds that are
adjusted as the system load changes [87, 93]. Hemcadaptive threshold policy is

applied to load balancing between regions.

Based on the average load value calculated ealiegiorr; can be defined as:

A heavy region if/7, ;> H x A

A light region if /7 ;<L x Aj;

A normal region if/% ;= L x Airand/7 ;< H x A
whereH andL are two threshold parameters, which are used termdene whether a
region is a heavy or light load. The magnitude lef threshold parameters reflects the
sensitivity of the system to load fluctuatidt.andL are set to 1.2 and 0.8, respectively
[87, 93].

5.1.4 Execution cost

We include dynamic communication cost in the castidation. This is because dynamic
and considerable communication cost may have aifisgm influence on the
performance of a load-balancing algorithm in the gmvironment. It may be more

efficient to send a job to a site with heavier |dad smaller communication cost.

Os, sU0S the execution cost of sending a joh! J from s to 5 at time instant
is estimated by as
If TRAN_IN(jx, S, S, t) = LD;;
EC(ix S, S, t) = TRAN_IN(jx, S, S, t) + ETC(jx, §) + TRAN_OUT (jx, S, S, t)
Else
EC(jx S, S, t) =LDj + ETC(jx §) + TRAN_OUT(jx, S, S, t)

whereTRAN_IN(jx, S, S, t) measures how long it takes to transfer a job fsotm

79

5. TRAN_OUT(jy, S, S, t) measures how long it takes to transfer a joblrésam s to s.
LD;; is the recent load index gfat the time instaritthat are recorded .

5.1.5 Perfor mance benefit

The performance benefit associated with ajjab based on the idea that better migration
can be done by assigning a job to a grid site waild “benefit” most in terms of
expected response time if that grid site is assigoat. If a jobjy is transferred from its
current sites to a remote sitg for execution, the value of performance benefiagob,

labelled ad,, is computed as follows:
Os,s0Ss#s
BX = EC(jX1 S! S! t) - EC(jX1 S! qi t)

whereEC(jy, S, S, t) is the estimated execution cossathile EC(jy, s, S, t) is the

estimated execution costsat

5.1.6 Information policy

We use the same Mutual Information Feedback pdticytate information exchange, as
shown in Algorithm 4.3 in Chapter 4. The state obf@; of a sites includes a new
property, called Region LoadRD. The Oij[j].RD is maintained through message
exchanges with neighbours by appending it to thesange.

5.1.7 Transfer and location policy

Our transfer and location policy is a hybrid ofeé@rpolicies: IDP, LAP and ALAP. The
policies use the most recent load status informatm decide whether a migration is

initiated. These are described below.

5.1.7.1 Instantaneous Distribution Policy

This is a static loathalancing policy. When a new job arrives at a siteghe policy
decides whether it is to be sentgoor other partner sites. The decision depends on

whether it can gain performance benefit if it istdbuted to a partner site. The policy

80

aims to control the job processing rate on eahisithe system. Algorithm 5.1 describes
thelDP for s.

Algorithm 5.1 (Instantaneous Distribution Policy):

Ojx 0 J with bornSitefy) =s O S

For eachs; in PSeti{
CalculateeC(jy, S, S, 1)
Calculate related benefit valBg

}

Find the partner sitg that gives the maximuiBy

If By>8{ /* @is a positive real constant close to zero */
Transfer the jolj, to the partner sitg
Update load index of siserecorded at the sitg

}

Else
GJQ(s) « enqueugf) /* put the jobjx in the job queue
GJQ(s) */

5.1.7.2 Load Adjustment Policy

The LDP for a sites tries to continuously reduce load difference amgngnd its
neighboursNSet; by transferring jobs from heavily loaded sites lightly loaded
neighbouring sites. The LDP is triggered wheneyeeceives load information from a
neighbour. The load-balancing algorithm will use thost recent load status information
to decide whether a migration is initiated. The jbat benefits most in the global job
queueGJQ(s) is considered first for migration. If two neighlring sites give the same
performance benefit, the faster neighbouring sitehiosen. The LDP f& is described in
Algorithm 5.2.

81

Algorithm 5.2 (Load Adjustment Policy):

aFlag = true /* flag for initiating ALAP algorithri/
For eacls,in NSet;
For each JoR in GJQ(S)
Calculat&C(jx, S, Sw 1)
End for
End for
For each Jolx in GJQ(s) {
Find the sitg, that gives the minimum execution cost
Calculate related benefit valBg
}
Sort the jobs iGJQ(S) in ascending order by their benefit value
Select the Joly with the biggest benefit valu®,
Find the neighbouring sigthat gives the maximui, to j,
If By>8& { /* Gis a positive real constant close to zero */
Remove the jolp, from GJQ(s)
Transfer the jolj, to the neighbouring sitg
Update load index of sigerecorded at the sitg

aFlag = false
}
Else {
If aFlag = true
Call ALAP algorithm
}

5.1.7.3 Augmented L oad Adjustment Policy

If a sites receives the load information from a neighbguiafter the application of the
LAP, no load adjustment occurs; this implies thas the best suited site for the jobs in
its global job waiting queue, with respect to tleéghbourhood. If a better placement can
be found, it should be beyond the neighbourhoos, ™Seti. This also implies that may
5 operate like a bottleneck to LAP, and this coutdtlbe triggering point of the ALAP.
The sample of a less powerful site causing theldmetk of LAP to its overlapping
neighbourhoods structure, is given below.

82

Figureb5.1: A heterogeneous grid system of five sites (special case)

A heterogeneous grid system of five sites §, S, S, S5} is assumed (Figure 5.1). Here,
we do not consider partner sites. They are of @ygeepocessing powerdW) 3, 1, 1,

1 and 6. The sites are assumed idle. For clafigy,communication cost between sites
is the same here, taking one time unit for eachsfiexred job at each link. Assume
that there are three jobg{j2, j3} at 5. They consisbvf 6, 9 and 12 computational units,
respectively. According to the LAP algorithm, nd joould migrate t®,, because, is
less powerful site and no performance could beeghfrom execution at the sigg This
means that the more powerfslis still idle. As a result, the response time afgj, j»
andjsis 2, 5, and 11 time units, respectively. This etmlan average response time of 6
time units for these three jobs. The jglzan benefit most compared with other two jobs
if it migrates tas; for processing. If this happens, the response tohes j,, andjzcan be
changed into 2, 5, and 6 time units, respectiv€hus, the three jobs have an average
response time of 4.3 time units, an improvemer&883%.

How to trigger the ALAP is a critical problem. Ref® Algorithm 5.5 for the
triggering policy we have incorporated into ouraighm. It is based on the simple
heuristic that the heavier the load in a regiorg kbss inclined it will be to accept
future loads. Triggering is initiated if the regitwad ofs is heavy and the region load
of 5 is light. A request message frans then sent tg. Having received a request to
send the status of its neighbours back to the tes, 5 packs the information
about their current load and sends it back. Ifittiermation of the neighbours af is
included in the requested information, the neighboof s are excluded and the

remaining sites are considered as potential sdesofid adjustment; these are called

83

augmented neighbours af Then, we apply ALAP among the site and its augeen
neighbours, as shown in Algorithm 5.4.

Algorithm 5.4 (Augmented Load Adjustment Policy):

NeedForTriggeringy, s)
If (NeedForTriggering return true) {
ANSet; ~ Find the augmented neighbours of sjte
For eacls in ANSeat;{
For each JoR in GJQ(S)
Calculat&C(jy, S, Sk t)
}
For each Joby in GJQ(s) {
Find the sitg, that gives the minimum execution cost
Calculate related benefit valBg
}
Sort the jobs iGJQ(s) in ascending order by their benefit value
Select the Joly with the biggest benefit valu®,
Find the neighbouring si& that gives the maximuiByto j
If By>@& { /* Gis a positive real constant close to zero */
Remove the jolp, from GJQ(s)
Transfer the jolj, to the augmented neighbouring ste

}
}

Algorithm 5.5 (NeedForTriggeringyg; s)):

CalculaterD;;

CalculateA;;

If ri is heavy ANDr; is light
Return true

Else
Return false

5.2 Performance evaluation

In the simulations, our algorithm (labelled as P)DA compared with the following

84

algorithms.

Central. This is a dynamic load-balancing algorithm. A cahtoad balancer
(Central) coordinates load distribution among sitefries to balance the load
by assigning each job to the computing site theldgi the earliest completion
time. On receipt of a message notifying a job alrithe Central finds the site
that gives the shortest completion time, and if $ite is different from the
job’s current site, the job is sent to that sitéh&wise, the job is executed at
its current location. If several sites give the sashortest completion time for
the job, one of them is selected randomly. The @énpdates its load vector
to reflect the load distribution decision, and draginating site is informed of
the execution site. The originating site subsedyemioves the job to its
destination if necessary. Central has been stuidig®6, 87] and in [113]
(where it was referred to as CENTEX) and impleménteUtopia [22]. It is
related to the LBC algorithm [60] and to an aldumtstudied by Theimer and
Lantz in [78]. Central has also been studied indbmputational grids [43].
Central assumes that the load balancer retrievesulrent load value of all
other grid sites without cost, but considers tlamdfer cost of the job from a
site to another site. We selected the algorithnabse it represents a typical
class of centralised approaches, and used it astanate for a load-balancing
algorithm with “perfect” information.

Performance-driven neighbour-based. It is labelled as P-BA. In this algorithm,
the performance heterogeneity in processing powssng grid sites is not
considered. A new job is sent to local site or aifeneighbouring sites
immediately (IDP). Then continuous load adjustmentemployed among
neighbouring sites (LAP). A job is assigned or setbuted to the site that it
would benefit most. State information exchangeasalvia MIF among a site
and its neighbour sites. The algorithm is a pavigsion of algorithm P-DA. It
is regarded as an improved version of traditior@gimbour-based algorithms
because the remote execution cost has been caewsidéfe selected the

algorithm because it represents a typical claskeoéntralised approaches.

85

Table5.1: Simulation parameters (time unit = tu, pt = percent)

Simulation parameter Value
Size of systemrm 32
Number of computational unit in a jg NCU, [100, 30000]
Number of packets in a jgh A [1, 100]
Ratio of the computation unit to the number of [1, 300]
packet for the jobR

Mean transfer delay; 0.05 tu
Standard deviation of transfer delay, 50 pt
Bandwidth between any two sitd3)\j; [1, 100]
Distance ratio from a site to its nearest 3Rge, 1.5
Updated interval], 10 tu
Number of partnersg 4
Number of random partners/neighbours for 2
information updateqp

5.2.1 Simulation model

In this section, we studied the performance of algorithms under different system

parameters via simulations. Eleven assumptions devesed for the simulation model.

« All of the work is carried out on a grid systemtthansists oh sites. The average
processing power of siteBPW is randomly assigned in the range [P1, PZ2].
According to the different degrees of heterogeneitythe average processing
power of sites, several different heterogeneoutesysare yielded.

» Jobs arrive at each siggi=1, 2,...,n according to a Poisson process, with rate
= A x P;, whereP;=1/n. The actual inter arrival time of jobs is adjustedjive the
required overall average system loading (see lakttipoint).

e The number of computational units in a job is ranfjochosen in the interval
[W1, W2]. The number of packets in a job is choserithe range [F1, F2] at
random. We choos&, = Ax.

» The transfer delay that may be incurred betweens#sypairs in the grid system

is chosen from a lognormal distribution with a medrr time unit and standard

86

deviationc.

The bandwidth between any two sites is chosen rahdm the range [B1, B2].

The ratio between the computational unit for a cotimg intensive job and the
NCUXx

X

O

packets of the same job needed to migrate is ch@swlomly asR; =

[Y1, Y2].

Once a job is created, several attributes are rassitp it. These attributes include
Job ID, the file size (number of packets), the wosatime and the required
computation time. These attributes remain uncharigexighout the lifetime of
the job.

The parameters of network between different pdisstes need to be provided for
the simulator, including transfer delay and bandwid

For the algorithm P-DA, the partner set of each s#teds to be provided before
our algorithm runs. The partner set is based omptbeessing power generated
from the distribution of average processing powdre sites are selected as its
partners according to the method described in &edtil.4.

For algorithms P-NB and P-DA, the neighbours ofheade are fed to the
simulator before the algorithms run. The neighboanes based on the transfer
delay generated from the distribution of mean fiemslelay. The sites are
selected as its neighbours according to the medkedribed in Section 4.1.5.

Let p be the required average system load for our stimualawhich is the average
job arrival rate divided by the average job prooegsate. Using this definition,

we adjust the job mean inter-arrival timel heeded to obtain the desired

Table 1 displays the values of the parameters wst#te simulations. Considering a 100

MB/s fast ethernet network, and jobs such as tHeutation of prime numbers or

Fibonacci numbers, the rati& chosen in Table 1 is very close to the realitye Th

same model can be used for internet connectiongusither low-speed dial-up lines

(average 44&B/s), to high-speed fibre-optic connections (2-MBs). Thus, the

simulation results are as close to the reality@ssible.

87

Heterogeneous systems introduce additional paras#tat make performance
evaluation much more difficult than for homogenecsystems. To simplify, we
considered three types of heterogeneous systents; HS2, and HS3. Table 2 shows
heterogeneous system configurations. The thirdnaolaontains the APW of each of the
four site types. The second column contains folgr tsfpes and the fractions of sites in
the system corresponding to each site type. Anmiaefor heterogeneous system HS3,
the APW of each site is generated randomly in geaf U[10, 100].

Table 5.2: Heterogeneous system configurations

Heterogeneous Systemsites split (fraction)] APW

HS1 3/8, 1/4,1/4, 1/8 10, 20, 50, 100
HS2 3/8, 1/4, 1/4, 1/8 10, 15, 20, 30
HS3 Random / no split [10, 100]

Unless explicitly mentioned otherwise, the defaystem parameters are applied to all
simulations in the simulation model. For each satiah run, to eliminate the start-up
transients, we ignored the first 1000 jobs. Aftee tvarm-up time, we traced the jobs’
arrival, processing and finish times frojwoo tO jagsee. Here u equals to 5000 (for
evaluation purpose). After each simulation run,ceenputed the average response time

of jobs ART). We conducted each measurement five times witardint random seeds.

5.2.2 Effect of system heter ogeneity

Intuitively, heterogeneous system reinforces theaathges of using load balancing,
since is expected that the presence of differdnpjocessing power at different sites will
lead to an increased probability of load-balan@ngcess. In this simulation, we created
three heterogeneous systems by using differentepsitg power at the various sites
(Table 2). The performance of the three load-bafenalgorithms is compared for these
three heterogeneous systems under different sykiading ranging from 0.1 to 0.9.

Figures 5.2-5.4 and Table 5.3-5.5 summarise theétsesf this simulation.

At all of the loads tested, the general trend idearease in performance with
increasing system load. Up to an approximate |leaellof p = 0.6, the performance

decrease is slight, but after this point it deteties rapidly.

88

."E‘

3 —e— Central
E —=— P-NB
= P-DA
(0

<

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

Average system loading,

Figure5.2: Effect of system with high heterogeneity

Table 5.3: Improvement factor (in percent) of P-DA over other algorithmsin Figure
5.2

Average system loading Average
0.1 0.2 0.3 0.4 0.5 0.6 | (0.1-0.6)
P-NB 22.16 20.58 21.34 22.18 21.46 18.24 20.99
Central| -13.78 | -17.55| -20.35 -20.00 -23.83 -27.72 -20.54

Average system loading, | Average | Average
0.7 0.8 0.9 | (0.7-0.9) | (0.1-0.9
P-NB 17.26 13.32 10.08 13.55 18.51
Central| -19.00 | -15.31 -9.81 -14.71 -18.59

For the highly heterogeneous system HS1, P-DA Imaav@rage improvement
factor of 18.51% over P-NB. At light or medium Isad0-60%), it is seen that P-DA is
better than P-NB by a substantial margin of 20.9%en the system loading is light or
moderate, for P-DA, IDP plays a crucial role and ttAP has little influence on the
average response time of the jobs. PaXB, the less powerful neighbouring sites with
either idle or very light load may become the laottick, because a better placement can
be found beyond the neighbourhood of a site. Ttinesmore powerful non-neighbouring
sites are not exploited at low or moderate systedihg. However, this advantage of P-

DA decreases as the loading increases. At highrigadremarkably, even at a system

89

loading as high as 0.9, P-DA still yields an impment of 10.08% iiRT than P-NB.
One reason for this is that new jobs are first aligped to faster partners, giving the
performance benefit, which means that it is mdtelyi for jobs to shorteART at faster
sites. Another reason is that ALAP of P-DA conttésito a reduction iART; hence, P-
DA gives a better performance. As may be expedeDA performs worse than the
nonrealistic Central. However, P-DA generates clpedormance to the Central. For

instance, ap = 0.9, P-DA is 9.81% worse than Central.

For the low heterogeneous system HS2, P-DA is ho&thl 11.03% better than
P-NB; at light and medium loads (10-60%), P-DA B3B% better; at high system
loading (70-90%), P-DA is 8.43% better. The perfange improvement is due to the
fact that the IDP and ALAP of P-DA make the maimttibutions. Another interesting
observation is that, as expected, the comparisamsigthe nonrealistic Central at high
system load is not significant. For instance, P-&1A = 0.9 is about 11.14% worse than

the Central.

—e— Central
—=— P-NB
P-DA

ART (time uni)
FENONON WA R RAUIUIOD
OOPRONOYOROONOOD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average system loading,

Figure5.3: Effect of system with low heter ogeneity

90

Table 5.4: Improvement factor (in percent) of P-DA over other algorithmsin Figure

53
Average system loading Average
0.1 0.2 0.3 0.4 0.5 0.6 | (0.1-0.6)
P-NB 11.29 10.16 12.60 12.32 14.92 12.66 12.33
Central| -17.66| -16.32 -20.00 -23.45 -20.55 -18/3819.39
Average system loading, Average | Average
0.7 0.8 0.9 (0.7-0.9) | (0.1-0.9)
P-NB 9.74 8.71 6.83 8.43 11.03
Central| -18.20| -16.68 -11.14 -15.34 -18.04

For systems with randomly generated heterogertbigysame conclusion is drawn. P-DA

performs 17.31% better than P-NB, with a perforneaciose to the optimal value of the

Central at high system loading.

ART (time uni)

—o— Central

—=—P-NB
P-DA

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

Average system loading,

Figure5.4: Effect of system with randomly generated heter ogeneity

91

Table 5.5: Improvement factor (in percent) of P-DA over other algorithmsin Figure

5.4
Average system loading Average
0.1 0.2 0.3 0.4 0.5 0.6| (0.1-0.6)
P-NB 19.23 20.89 21.61 22.27 18.13 14.96 20.99
Central| -21.63| -19.88 -19.17 -19.97 -20.58 -16/49 19.62
Average system loading, Average | Average
0.7 0.8 0.9 (0.7-0.9) | (0.1-0.9)
P-NB 13.82 13.52 11.37 13.55 17.31
Central| -17.78| -16.26 -12.01 -15.35 -18.20
_ 45001
c 3500 - 3257
o 30001 2639 2494 | |@ Central
e | 2098 202'7
g %8887189 184 H P-NB
— 1500 0p-
@ 1000 P-DA
< 500
0
Heterogeneous grid systems

Figure5.5: Effect of different job arrival patternsin three different kinds of
heter ogeneous grid systems. HS1, HS2 and HS3

Table 5.6: Improvement factor (in percent) of P-DA over other algorithmsin Figure
55

HS1 HS2 HS3
P-NB 20.50, 13.19| 18.73
Central| -10.83 -14.48| -10.10

5.2.3 Effect with different job arrival patterns

Our observations in the preceding section werééncbntext of uniform job arrival rates,

92

but the average job arrival rate in grid systemsfisn heterogeneous. In the simulation,
to reduce complexity we considered three classgelohirrivals, each with a different
average job arrival rate. We randomly chose 1befsites as lightly loade@ € 0.3), 11

of the sites as moderately loaded sifes (0.6), and 11 as highly loadeg € 0.9). The
HS1, HS2 and HS3 system settings were used asae donfigurations in the section.
The ART with P-DAis an average improvement of 20.50%, 13.19% and3%8.over P-
NB in the HS1, HS2 and HS3 systems, respectivabu(E 5.5and Table 5.6). However,
P-DA was on average 10.83%, 14.48% and 10.10%hessCentral in the HS1 system,
HS2 system and HS3 system, respectively.

5.2.4 Senditivity to the coefficient of variation in the inter-arrival times

of jobs

The simulation examines the effect of the coeffitief variation CV) in inter-arrival
times of jobs to thé&RT in a heterogeneous system HS3. Figures 5.6 anprévide the
ART for differentCVs of job inter-arrival rate. The system utilisatisra constant of 0.5
and 0.9. TheCVs of job inter-arrival rate has little effect oretART when the system

loading is uniformly low, and there is a signifitaffect when the system loading is high.

2400
£ 2200
g 2000 —e— Central
= —=— P-NB
g 1800 P-DA
X 1600
1400 - ‘ ! ‘ !
1 1.5 2 25 3
CV in the inter-arrival times of jobs

Figure5.6: Sensitivity to thevariancein theinter-arrival times of jobs (system
loading equalsto 0.5)

93

Table 5.7: Improvement factor (in percent) of P-DA over other algorithmsin Figure
5.6

1 1.5 2 2.5 3 | Average

P-NB | 18.13| 19.30| 14.51 15.26 16.69 16.78

Central| -20.58| -22.00 -23.68 -25.23 -26.82 -23.55

_ 4000
3800
3288 —e— Central
= e
= 2800 - P-DA
% 2600

2400 | ‘ ‘

1 1.5 2 2.5 3
CV in the inter-arrival times of jobs

(time unit

Figure5.7: Sensitivity to thevariancein theinter-arrival times of jobs (system
loading 0.9)

Table 5.8: Improvement factor (in percent) of P-DA over other algorithmsin Figure
5.7

1 1.5 2 2.5 3 | Average

P-NB | 11.37| 11.18| 11.68§ 13.15 12.68 12.01

Central| -11.96/ -9.16 -9.44 -9.06 -11.%5 -10.23

When the system loading is 0.5 (Table 5.7), DA etftms NB by 16.78%, while there
still is an average improvement factor of 12.01%roMB at the system loading of 0.9
(Table 5.8). P-DA is that at the instant clustejell arrival at a site, it initiates load
distribution immediately to powerful partner sitdfie ALAP of P-DAalgorithm plays a
major role because jobs can be dispatched to twenfa sites beyond neighbours. P-NB,
on the other hand, attempts load distribution @mhong its neighbouring sites and does
not consider the heterogeneous processing powsitesf. This delays the job execution

and is especially apparent under low and modeoaigirg.

94

Figure 5.8 presents th&RT for three algorithms under different system logdin
when the inter-arrival times of jobs is set to 3.Be simulation results for P-DA with
gradually increasingV lead to similar conclusions, i.e., the burstingsgob arrivals
does not significantly weaken the advantage of Pebér P-NB in terms of tha&RT, and
the performancelifference between P-DA and Central remains smahigh system
loading (Table 5.9).

3200 —e— Central

2400 —=—P-NB
2000 P-DA

ART (time unit)
N
%)
o
o

0.1 0.20.30.4050.60.70.8 0.9

Average system loading, P

Figure5.8: Sensitivity of performanceto different system utilisation (CV of 3)

Table 5.9: Improvement factor (in percent) of P-DA over other algorithmsin Figure
5.8

Average system loading
0.1 0.2 0.3 0.4 0.5
P-NB 20.25 20.67 20.22 17.72 16.69
Central| -25.00 -26.79 -25.78 -22.272 -26.3]
Average system loading Average
0.6 0.7 0.8 0.9 |(0.1-0.9)
P-NB 15.77 17.61 14.29 12.68 17.32
Central| -22.35 -19.23 -16.13 -11.55 -21.71

™o

5.2.5 Job completion statistics

This section looks at the utilisations of the diffiet class of sites in the HS1 and HS2

heterogeneous systems, at overall system loadin@Hand 0.9 for Central, P-NB and

95

P-DA algorithms, as shown in Figures 5.9-5.12. ffaetions of total jobs are computed

as the total number of jobs that completed at éguh of site divided by.

-é 0.7
T o5 B 046
i 82 0 38 b3 ' @ Central
5 = : B P-NB
@ 0.3 0.23 0
S 02| 0l8 o 13 P-DA
Q
£ 017 4 [§0.03 0.0
L 0 ‘

1 10

APW of four site types in the system HS1

Figure5.9: Job completion statistics at the system loading of 0.5 in the system HS1

= 0.6
T 051 0.45
2 041 038 036 | 0.3F | |@central
o 0.3 B P-NB
g 021 o013 ., 52015 0 P-DA
8 0.1 $O .09 DJ-I
LL
0
10
APW of four site types in the system HS1

Figure5.10: Job completion statistics at the system loading of 0.9 in the system HS1

At the system loading of 0.59r both HS1 and HS2, P-DA tends to underload #s |
powerful sites, and consequently allocates a dmptmnate share of the work to more
powerful sites. The difference between the algorghs more marked for the highly
heterogeneous HS1, where there are more powetdsl siowever, P-NB tends to assign
loads to less powerful neighbouring sites. Thisbé&cause P-NB does not consider
heterogeneity ilAPW among sites while assigning load. At the systeadlitog of 0.9for
both HS1 and HS2, although P-NB reduces load akevesites and loads more at more

96

powerful sites, there remains the issue of negiggbrocessing power. On the contrary,
P-DA increases loads at less powerful sites andase powerful sites, because its LAP
can migrate jobs to a less powerful neighbouritg when a more powerful site cannot
provide performance benefit for the queued jobthatsite. However, due to the major
contribution from the IDP of P-DA, the algorithmillshas a higher throughput for each
class of sites than P-NB. The results corresponithécanalysis in Section 5.2.2. P-DA

has close load assignments to Central for bothesydbadings in two heterogeneous

systems.
2. 06
g 05 041 0.39
= 0.4 0. 3?6 9 .32 .37 @ Central
© | 3 =
0 93 15 017,216 P-NB
g 0.27 16 O P-DA
5 01—00
g © ﬂ
LL 0 - T
3
APW of four site types in the system HS2

Figure5.11: Job completion statistics at the system loading of 0.5 in the system HS2

0.6
0.5 0.48 (44

0.4 O Central
0.3 1 M P-NB

0.2 02%15

2 0 p-
01lg 0900 P-DA
O,

APW of four site types in the system HS2

Fractions of total jot

Figure5.12: Job completion statistics at the system loading of 0.9 in the system HS2

97

5.2.6 Scalability

Figures 5.13 and 5.14 present the simulation re$oitScenarios 1a and 1b, respectively.

The system size employed in the scenarios var@s 82 to 512. In Scenario la, an

under-utilisation system is simulated, with ovesgfétem loading = 0.5. In Scenario 1b,

the overall system loading is selectegas0.9.

The results for Scenario 1la show that P-DA perfotm$2% better than P-NB
and worse than the nonrealistic Central by about8%% (Table 5.10). The results for
Scenario 1b show that P-DA has 9.60% better thAiBRTable 5.11). Although P-DA is
worse than the nonrealistic Central, the differeiscemaller — 9.43%. In both scenarios,
P-DA is efficient in load balancing. The advantagé>-DA over P-NB does not depend

on the size of grid.

4500

4000 |
3500 —e— Central

ART (time unit)

—=—P-NB
3000 b-DA
2500
2000

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
System size

Figure5.13: Evaluation of scalability with different size at the system load of 0.5

3400
2900 —e— Central
2400 —=— P-NB

ART (time unit)

1900 M_m P-DA
1400 T T T T hd T T T T T T T T T T 1

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
System size

Figure5.14: Evaluation of scalability with different size at the system load of 0.9

98

Table 5.10: Improvement factor (in percent) of P-DA over other algorithmsin
Figure5.13

System sizen
32 64 96 128 160 192
P-NB 18.13| 17.49] 19.09 18.78 16.96 12.63
Central | -20.58 -11.21 -13.60 -15.12 -14.79 -13/82
System sizen
224 256 288 320 352 384
P-NB 16.32| 20.20] 15.09 13.24 14.93 12.64
Central| -12.49 -1459 -11.72 -20.47 -14.1p -14,94

System sizen

416 448 480 512
P-NB 11.75| 10.83] 12.74 17.46 15.52
Central| -17.36] -20.34 -12.88 -14.84 -15.1B

Average

Table 5.11: Improvement factor (in percent) of P-DA over other algorithmsin

Figure5.14
System sizen
32 64 96 128 160 192
P-NB 11.37| 10.23 8.78 8.16 8.41 10.17
Central| -12.01] -9.35 -8.58 -7.2 -8.36 -6.94
System sizen
224 256 288 320 352 384
P-NB 10.12 | 7.11 9.05 8.7(8.24 12.20
Central| -5.71| -6.74 -10.83 -9.88 -12.3% -13.58

System sizen
416 448 480 512
P-NB 11.85| 9.54 7.43| 12.20 9.60
Central| -882| -991 -13.61 -7.06 -9.43

Average

5.2.7 Sengitivity to accuracy of estimation of job execution cost

Estimated job execution cost is needed in P-DA.a8&essed the impact of incorrect job
execution cost estimation on P-DA. Suppose thattteal execution cost of jgbis x

and that the predictive error, denotedyhyis a random variable in the rangea; bxi]

99

following some probability density functio;(y;), where the possible value fields &f
andb are [0, 100%] and [Gp], respectively. The parametaasandb represent the range
of estimated errors. It is assumed that the estidharrors of different jobs are
independent random variables. The estimated ex#cgbst of jobj;, denoted byz, is

computed as follows:
Z=X1Yi

The estimated erroty;] follows uniform probability distributionTherefore, the
relation between the estimated execution cagt ghd the actual execution cost is

expressed linearly.

To calculate the effect @fccuracy of estimation of job execution cost, PADds
executed in a heterogeneous grid system HS3. Tihiegsef the system loading is the
same as the one in Section 5.2.3. Figure 5.15 shtimavgerformance for P-DA when job
execution cost is accurately estimated and estimaiéh a range size of errors. The
Figure also shows the performance of the algorithithout load balancinga and b
increase from 10% to 90%, in increments of 10 oifithis results in the range of
estimation errors for the actual execution timexahcreasing from [-04, 0.1] to

[-0.9%, 0.%], while the average estimation errors remains angkd (at 0).

. 5000 [- - - - - - - »
=2 4500 -
o 4000 - —e— P-DA (Accurate)
£ 3500 —=— No load balancing
: 3000 - P-DA (Estimated)
% 2500 -

2000 I\—-*—0—0—0—0—0—4>

[1.1] [2.2] [3,3] [4.4] [5.5] [6,6] [7.7] [8,8] [9,9]
Range size of estimation errors

Figure 5.15: Theimpact of range size of estimation errorson the performance of
algorithm P-DA

Figure 5.15 shows thatandb increase, there is an overall increase in averagjgonse

time. However, this does not affect the performasigaificantly as a and b change from

100

[1, 1] to [3, 3]. This is because the jobs aret filispatched to more powerful partner sites
and may be processed fast even if there is a |timason error rate. With the increasing
of a and b, the advantage of P-DA is offset by lyighaccurate information, especially
when the error is large. However, the performarfcalgorithm P-DA is still better than

the situation without load balancing when a anddxrhes to [9, 9].

5.3 Summary

A performance-driven, decentralised load-balanailggrithm has been proposed
for computational grids. The proposed algorithnil sises the desirability of sites to
guide load assignments while taking into accoustghrformance benefit that jobs can

gain as a migration decisions are made.

The algorithm has been extensively evaluated usimmylations. The algorithm
consistently outperforms another performance-driveighbour-based algorithm (P-NB)
by requiring shorter average response times of jdbe results of simulations show that

the performance of the algorithm is similar to tbtinrealistic algorithm Central.

101

Perfor mance-driven and region-

based |oad-balancing algorithm

This chapter presents another performance-drivag-b@lancing algorithm based on the
regional grids, where grid sites are clustered mggions around a set of well-known
broker sites in terms of network transfer delay] #re regional brokers are organised in a
fully decentralised fashionFor each regional grid, our algorithm integrateatist
Instantaneous Distribution Policy (IDP) and dynaméad Adjustment Policy (LAP) to
make load distribution and redistribution driventbg performance benefit that jobs can
gain. The LAP also considers load redistributionogas regional gridsTo keep intra-
region and inter-region communication at low ley@ar information policy combines
Mutual Information Feedback (MIF) inside regiongiwihe random polling of a remote
regional broker site, performed by each regionaker site at a set time interval. Our
algorithm achieves a balance between the inhefféoieacy of a centralised approach,
and the autonomy, load balancing and fault tolefaatures offered by distributed

approach.

Section 6.1 describes in detail a performance-drivegion-based load-balancing
algorithm. In Section 6.2, the performance of olgoathm is evaluated in a series of

simulations.

102

6.1 Performance-driven and region-based load-balancing

algorithm

The algorithm is partially based on research thas wresented in Chapter 5. The
definitions used in this chapter for site load desgion load, average region load,
threshold policy, execution cost and performanceebt are the same those used in

Chapter 5, although here the definition of regmdifferent.

6.1.1 Region construction

We assume that there is a known seh agites in the computational grid. A grid si&e
measures the relative distances to the sdt sites and sorts the obtained vectok,<
d,,..., dv> in order of increasing transfer delay. Basedhmse transfer delays,has an

associated ordering of sites. This ordering reprtssthe region tha belongs to.

The set oh sites is called the “regional brokers”. The regiane denoted as, ...,
rn. The region is actually a subset®fif a sites is located in a certain regiog, we call
the regiormr,, as a local or current region f Each regional broker site does not function
as a central load balancer in the region; it ipeasible for exchanging information with
other broker sites and forwarding the received rinfition to potential sender in its

region.

6.1.2 Information policy

The information policy comprises two parts: integgion information and inter-region

information policy.

103

Algorithm 6.1 (Modified procedure of job transfer and information
exchange):

sUras0r1y
Steps processed in s:
If ra=rp {/* sitess ands; are in the same region

1. Y « s+ {ap random sites from,-s}
Il s select neighbours or partners for information exce
2. Os, Y, s appends@i[y].LD, O[y].LT) to the job transfer requeBR
3. s appends bornsitg] to TR
}
4. s sends job transfer request message¢o s
Steps processed in s;:

Upon receiving TR:
If rp =ra{ /* sites s ands; are in the same region

1. Os,OY: If (Gily].LT > Q[y].LT) Gjly] « Oi[y]
Il s updates the state object ussig info
2. Z — 5+ {ap random sites fromy-s }
3. UsZ, s appends@[z].LD, Oj[7].LT) to the acknowledge repAR
}
4.

s sends acknowledge reply messageto s
Upon completion of job jx:
If rp =ra{ /* sitess ands are in the same region

1. Z — 5+ {ap random sites fromy-s }
2. Os1Z, s appends@[Z].LD, O[Z].LT) to the completion replgR

}
3. s sends completion reply messdgfe to bornsitejg)= s

Steps processed in s:

Upon receiving thereply AR or CR:

If ra=rp{ /* sitess ands are in the same region
Os0Z: If (G[4.LT > Gi[4.LT) Oi[7 ~ §j[7

}

6.1.2.1 Intra-region infor mation policy

We use the same MIF policy for state informatiocl@nge, as shown in Algorithm 4.3

(Chapter 4). However, the following changes areenad

104

* For a site,ap number of random sites for information exchangehissen from
its local region instead of partners or neighbours.

* Whenever a site receives a message from or senusssage to another site
beyond its local region, it does not need to updateload information of the
ap number of random sites that have been storedsifodal site, or appends

them to the outgoing message.

The modified procedure of job transfer and infoioratexchange is described in
Algorithm 6.1.

6.1.2.2 Inter-region infor mation policy

Each regional broker site collects the load infaramafrom remote regions. The regional
broker site is not a central storage source of lndmmation of its local region. Its roles
are described in this section. Let us assume thihtdy ands, are regional broker sites.
Algorithm 6.2outlines the procedure of processing messagesegfi@nal broker sits,.

In the description of Algorithm 6.2nessage,, denotes a message sent frgo s,. There
are three types of message used in the algorithnthwareRequest, Heavy, andLight.
Except the type dfleavy messages, appends the load information of its region andtlea
loaded site of its region to the messages.

Sy sends aRequest,, message to petitiog, for the load status of its region at a
periodic interval of timels. At most, one polling is performed at a time in&drTs to

reduce the communication overhead across regions.

Whens,receives d&request,, message frors,, it will append the load information
of the least loaded sitof its local region in th&.ight,, message sent &, if the local
region is a light region and the remote region ikeavy region. Otherwise, unless a
Heawy,, message is sent &), it needs to forward the messagelLaght message to the
heaviest loaded sitg, in its current region according to informationrsi ats,, if the

local region is a heavy region and the remote rega light region.

As soon as, has received theight,, message frorg, it forwards the message to

the heaviest loaded sitg in its current region, according to informatiomrsd in the

105

broker sites,. If the received messageHgavy., the regional broker sitg does not need
to act.

Algorithm 6.2 (Procedure of processing messages at the regiocokeisites,):
Switch (msgType) {

case msgType “Heavy,,"
Do nothing
case msgType =Light,™
Forward the least loaded site of the temegion to the heaviest loaded
site of local region
case msgType “Request,,”:
Comput&D,; /* the load of local region
Computel,; /* the average load between local and remote region
Determine the load status of local region
If the local region is light region {
Add the load information of lebstded site to theight message
Send tHaght message to the regional broker sjte
}
Else {
Send Heavy message to the regional broker sijte
If (local region is heavy regioh\D (the remote region is light
region) then
Forward the least loaded sitthefremote region to the heaviest
loaded site of local region
End if

6.1.2.3 Fault-tolerance for regional broker sites

To guard against the possibility that the regidmalker sites may fail, a second site is
given the responsibility for each region. If a diteds that its regional broker site fails,
this is reported to the backup broker site. The s&n act as regional broker site
immediately and notifies other regional broker sité the failure. Any intra-region sites
may be assigned this duty. The load informationsdoet need to be replicated from
nonfunctional regional broker site to the new regidoroker site, because each site has

had load information of all sites of its local regiin terms of our intra-region

106

information policy. But there may be a differencghwespect to the load information of

the remaining sites of its local region, due tdrihsited information storage.

6.1.3 Transfer policy and location policy

As in Chapters 4 and 5, our transfer and locatalities adopt a hybrid policy, which is
a combination of IDP and LAP. The policies will uise most recent load status

information to decide whether a migration is i@ These are described below.

6.1.3.1 Instantaneous Distribution Policy

This is a static load-balancing policy. When a nelwarrives at sitg;, the policy decides
whether it is to be sent to the s#t@r other sites of its local region. The decisiepehds

on whether it can obtain performance benefit i§itlistributed to one of the sites in the
local region. The policy aims to control the jologessing rate on each site in the system.

Algorithm 6.3 describes the Instantaneous DistrdvuPolicy for a sites.

Algorithm 6.3 (Instantaneous distribution policy)

0jx0J with bornSitey,) =sOS s, s Org
For eachs; in rgf
CalculateeC(jy, S, S, 1)
Calculate related benefit valBg
}
Find the sites that gives the maximuiBy
If By>8{ /* @is a positive real constant close to zero */
Transfer the jol, to the sites
Update load index of siserecorded at the sitg
}
Else
GJQ(s) « enqueugf) /* put the jobjx in the job queue
GJQ(s) */

107

Algorithm 6.4 (Load adjustment policy at sig:
sOr" /* s belongs to region’
Switch (msgType) {

Case msgType£fght”: /* upon receiving the information of least
loaded site of a remote region forwarded by loeglonal broker */

s’ < the least loaded site in the remote region

Case msgTypeFR’ or “AR’ or “CR”: [* upon receiving the messages
sent from other sites of local region */

s’ < all sites of the local region

}
j" < all waiting jobs that enqueue at 16dQ(s)
Found = true

While Found = true {

For eactsin s’ {
For each JoRinj”

Calculat&C(jx, S, Sq 1)

}

For each Jokxinj" {
Find the sits, that gives the minimum execution cost
Calculate related benefit valBg

}

Sort the jobs if* in ascending order by their benefit value

Select the Joly with the biggest benefit valus,

Find the sites that gives the maximuiB, to j,

If By> @ {/* Gis a positive real constant close to zero */
i” < i"-jy // Remove the jop, fromj*
if 0 r" Update load index of sitgrecorded at the sit
Transfer the joy to the sites

}

Else
Found=False

}

6.1.3.2 Load Adjustment Policy

This is a dynamic load-balancing policy, which rigdered at each site. Algorithm 6.3

describes the Load Adjustment Policy for a siteThe job that's benefits most in the

108

global job queudsJQ(s) is considered first for migration. The policy hésee major

advantages.

Whenevers receives updated load information of other site#s current region,
the policy is triggered. This means that the polieyn continuously reduce load
differences among and other sites in its current region by migratioigs from
heavily loaded to lightly loaded sites. Thus, integion-wide dynamic job
scheduling and load balancing may be implemented.

Whenevers receives the information of the least loaded sfta remote region
forwarded by the local regional broker site, théiqyois triggered. This means
that the policy can reduce load difference betwgend another site of remote
region by transferring jobs from the heavily loadechl site to the lightly loaded
remote site. Thus, inter-region-wide dynamic jobextuling and load balancing is
implemented.

Whenevers has migrated some of its jobs to a remote regiorports its current
load status to its regional broker site asagl heavily loaded sites in its current
region, which means that a multi-round intra-regidgde load balancing can be
triggered.

6.2 Simulations

In the simulation, our algorithm (P-RB) is compamnedh the Minimum Completion

Time Algorithm (MCT), a distributed algorithm. Eagiite tries to balance the load by

assigning each job to the computing site that giglte earliest completion time. It is

assumed that each grid site retrieves the curoaat Value of all other grid sites without

cost, although the transfer cost of the job is wmred. During the job transfer, the load

of the destination site may be changed. On readipt message notifying a job arrival,

MCT finds the site that gives the shortest comptetime, and if the site is different from

the job’s current site, the job is sent to thage;sdtherwise, the job is executed at its

current location. If several sites give the sanm@tsist completion time for the job, one of

them is selected randomly. The originating site segoently moves the job to its

destination if necessary. MCT has been studied2h §nd [118] (where it is referred to

109

as Shortest Expected Delay) and implemented in ApdlL3] and Nimrod/G [14]. We
selected the algorithm because it represents adlygliass of distributed approaches with

“perfect” information of all sites in the systemthé scheduling instant.

6.2.1 Simulation model

We studied the performance of the algorithms urdifferent system parameters via

simulations. Twelve assumptions were devised fersimulation model.

« All of the work is carried out on a grid system sisting ofn sites. The average
processing powe®PW) for each site is assigned in the range [P1, P2]

* Itis assumed that the simulated grid system iresual fixech number of regions.
The size of each region, is randomly assigned in the range [R1, R2]. The
maximum system size is the producthadnd R2; theninimum system size is the
product ofh and R1

» Jobs arrive at each sigg i = 1, 2,...,n according to a Poisson process, with rate
Ai = A x P;, whereP; = 1/n. The actual inter-arrival time of jobs is adjustedjive
the required overall average system loading (ssebldlet point).

* The number of computational unit in a jpbis randomly chosen within the
interval [W1, W2]. The number of packets in a jelis randomly chosen within
the range [F1, F2w = Ax).

* The transfer delaylD; that may be incurred between any site pairs across
different regions is chosen from a lognormal dmttion, with a mean of, time
unit and a standard deviatiog,.

* The transfer delayD;; that may be incurred between any site pairs iegion is
chosen from a lognormal distribution with a mearrigtime unit and a standard
deviationgp,.

* The bandwidth between any two sites is chosen rahdm the range [B1, B2].

e The ratio between the computational unit for a cotimg intensive jolyx and the

NCUX

X

packets of the same job needed to transfer is oh@sglomly ad; = O

110

[Y1, Y2].

* The number and size of the regions need to benfiedthe simulator before the
algorithms start to run.

* The network parameters between different pairsites s1eed to be fed into the
simulator, including transfer delay and bandwidth.

* Once ajob is created, several attributes are r@sditp it. These attributes include
job ID, creation time, required computational ufiie size (humber of packets),
and ratioR;. These attributes remain unchanged throughouifétene of the job
in the system.

» Let pbe the required average system load for our siioualawhich is the average
job arrival rate divided by the average job prooessate. Using this definition,

we adjust the job mean inter-arrival timel eeded to obtain the desired

Table 6.1: Simulation parameters (time unit = tu, pt = percent)

Simulation parameter Value
Number of regions or regional broker sites, 12

Size of each regiom, [10, 30]
Average processing power of sgeAPW, [10, 100]
Number of computational unit in a jgh NCU, [100, 30000]
Number of packets in a jgh Aix [1, 100]

Ratio of the computation unit to the number of padkr [1, 300]
the job,R

Mean transfer delay within a regiony, 0.05tu
Standard deviation of transfer delay, 50 pt
Mean transfer delay across regions, 0.1tu
Standard deviation of transfer delay, 50 pt
Bandwidth between any two sitd3)\V; [1, 100]
Period for periodic intra-region informati@xchangeT, 10 tu
Polling interval for inter-region information exahge, Ts 1ltu
Number of random sites for information update megion, | 2

wp

Table 1 displays the values of the parameters uséte simulations. Unless explicitly
mentioned, the default system parameters are @ppeall simulations. For each

simulation run, to eliminate the start-up transsemte ignore the first 2000 jobs. After the

111

warm-up time, we trace the jobs’ arrival, procegsamd finish times fronjoo tO jgggo.
Hereu equals to 8000 (for evaluation purpose). Afterhesicnulation run, we computed
the average response time of joB&RT). We carried out each measurement five times

with different random seeds.

6.2.2 Effect of system loading

We conducted a series of simulations with M@id P-RB under medium and high
system loading, ranging from 0.5 to 0.9. Figure &l Table 6.2 summarise the results

of this simulation.

c

>

£ 4000 ——MCT
i? 3500 —=— P-RE
x
<

2000 - w \ ‘ !
05 06 07 08 09

Average system loading,

Figure6.1: Effect of system loading

Table 6.2: Improvement factor (in percent) of P-RA over MCT in Figure 6.1

Average system loading Average
0.5 0.6 0.7 0.8 0.9
NB 9.60 | 12.95 17.48 23.80 28.98 18.55

At all of the loads tested, the general trend isaoflecrease in performance with
increasing system load. When the system loadingigh, the difference in thé&RT
between MCTand P-RB is high. P-RB has an average improvenastoirf of 18.55%
over MCT. At medium or high system loading, MCT magsult in the transfer of

multiple jobs to the site that provides the shadrfels completion time. The jobs have to

112

wait longer to reach the execution stage, and asae¢he queuing time component of the
response time of jobs. MCT and P-RB have differesponse to this situation. MCT
takes no action, but waits at the site for processOn the contrary, the LAP in our
algorithm plays a critical role. The jobs may be&alved in the load balancing of the
local region. Another reason is that inter-regioad balancing in the algorithm happens
only when a light region is found. The IDP also haseffect on th&RT at medium and
high system loading. We suggest that it may besbétt a job to be processed in a site of
the local region at high system load, because sdaehmaintains more accurate load

information of other sites in its local region theasite in a remote region.

6.2.3 Effect with different job arrival patterns

Our observations in the preceding section weréencontext of uniform job arrival rates,
but the mean job arrival rate in grid systems teroheterogeneous. In the simulation, to
reduce the simulation complexity, we consider thoiesses of job arrivals, each with a
different average job arrival rate. We randomlyssha third of the sites as lightly loaded
site (0= 0.3), a third of the sites as moderately loadessgt = 0.6) and other sites as
highly loaded sitesd = 0.9). Figure 6.2 shows th&RT with P-RB has an 18.21%

improvement over those with MCT.

4000 3202
g 3000 | 2619
(O]
E 2000
% 1000
<
0
MCT P-RB

Figure 6.2: Effect with different job arrival patterns

113

—+— MCT

3400
—=— P-RE

ART (time uni)

2500 - w ; \ !
1 15 2 2.5 3

CV ininter-arrival times of jobs

Figure 6.3: Senditivity to thevariancein theinter-arrival times of jobs

Table 6.3: Improvement factor (in percent) of P-RA over MCT in Figure 6.3

1 1.5 2 2.5 3 | Average
MCT | 1821 | 17.01] 1669 1853 23.04 18.69

6.2.4 Sengitivity to the coefficient of variation in theinter-arrival times

of jobs

The simulation examines the effect of the coeffitief variation CV) in inter-arrival
time to theART in the heterogeneous system. The setting of sy&tading was the same
as that in Section 6.2.3. Figure 6.3 showsAR# for differentCVs of job inter-arrival
rate. The figure shows that the advantage of P-RRB B-NB has not been weakened in

terms ofART. P-RB has an average improvement of 18.69% over fI@ble 6.3).

A higher CV in inter-arrival time implies that job arrivals aach node in the
system are clustered; the higher @¥, the more clustered the job arrival process.
Clustered arrivals mean that there are large gapaeen job arrivals, but that the
average job arrival rate remains the same. The rolotered the arrival process, the

more attempts the site makes at load distributiar. P-RB, this means that each site

114

receives load information more frequently and aatly from other sites in its local

region.

The long gaps between arrivals provide more oppdrés for P-RB in
distributing the load during the gap. When there ng gaps between arrivals, the
probability that a site will move into a lightlydded state increases. Thus, the probability
that the LAP in P-RB will locate a lightly loadedleswithin and across regions increases
with increasingCV in the inter-arrival times. In contrast, MCT doest make load
adjustments, even though the jobs may be dispattthederloaded sites or some sites

have become lightly loaded during the long gaps.

2700 —— MCT
2300 —=— P-RE

ART (time uni)

8 12 16 20 24 28 32

The number of regions,

Figure 6.4: Evaluation of scalability with different number of regions

Table 6.4: Improvement factor (in percent) of P-RA over MCT in Figure 6.4

8 12 16 20 24 28 32 Average
MCT | 14.08 | 18.21| 25.64 17.7% 1430 2551 19.86 19,35

6.2.5 Sengitivity to the number of regions

This section presents the performance of both digos to the different numbédr of
regions. We varied the number of regions from 82pin increments of 4. The setting of
system loading was the same as that in SectioB.6A%. other parameters were set to

their default values (Table 6.1). The simulatiosutes are presented in Figure 6.4 and

115

Table 6.4. The results show that P-RB performs 3%.®etter than MCT. Figure 6.4
shows that the advantage of P-RB over MCT doesl@pp¢nd on the number of regions.

=)
o 2700
£ 2600

2200 T T T T T T T T T T T T T
12345678 9101112131415

Polling interval for inter-regio
information exchangel, s

Figure 6.5: Sensitivity of performanceto different polling intervals at system

loading 0.5
4200
T 4100 f
o 4000
— 3800
% 3700,
3600 ————T—TT T T T T T T
1234567 89101112131415
Polling interval for inter-regio
information exchangel s

Figure 6.6: Sensitivity of performanceto different polling intervals at system
loading 0.9

6.2.6 Sengitivity to polling interval Tg

The parameteils controls the trade-off between inter-region netwtnaffic and the
guality of load balancing: intuitively, a smallealue of Ts provides a better balance at

the expense of greater inter-region network traffio observe the impact of this

116

parameter on the performance, we conducted sironkfior various values in the range
1-15. We set the system loading to 0.5 and O.l@ctel results are shown in Figures 6.5
and 6.6.

At the low system loadingp(= 0.5), the average response time increases asove
from left to right. This is because more lighthatted sites are available in the system at
low system loading. At the high system loadipg=(0.9), performance is not sensitive to
a range of values (from 1 to 10) since lightly ledites become fewer and fewer. This
suggests that at high system loading it is moréepable to make load balancing inside

regions than across regions.

6.2.7 Senditivity to accuracy of estimation of job execution cost

P-RB requires estimated job execution cost. Wesasskethe impact of incorrect job

execution cost estimation on the algorithm. Thelwataon method is the same as
described in Section 5.3.8. The setting of systeadihg is the same as one in Section
6.2.3. Figure 6.7 shows the performance for P-RBmwjob execution cost is estimated
(1) accurately, and (2) with a range size of prgalcerrors. The Figure also shows the

performance of the algorithm without load balancing

6500 = = = i

6000 T
5500
5000 —e— P-RB(Accurate)
2888 —=— No load balancing
3500 P-RB (Estimated)
3000
2500 {
2000 T T T T T T T T

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8.8] [9,9]
Range size of estimation errors

ART (time unit)

Figure6.7: Theimpact of range size of prediction errorson the performance of
algorithm P-RB

In Figure 6.7,a andb increase from 10% to 90%, in increments of 10%sThBults in
the range of predicted error for the actual executiost ofx increasing from [-04, 0.1x]
to [-0.%, 0.%], while the average predicted error remains ungbdn(at 0). The Figure

117

shows that as andb increase, there is an overall increase inARE; this was due to
highly inaccurate information, especially when @neor is large. But the performance of
P-RB is still better than the situation withoutddaalancing when a and b reach [9, 9].

6.3 Summary

A performance-driven, region-based load-balancitgprighm has been proposed for
computational grids. Our algorithm does not requarecentralised decision scheme.
Instead, we developed a decentralised load-balgmugchanism for the intra-region and
inter-region load balancing directly in the sitdstra-region communication can be
minimised by MIF. To control inter-region commurtica, at most a remote regional

broker site is queried at a given time interval.

We extensively evaluated the algorithm using sitnotes. The results have
shown that it performs better than MCT, by req@rshorter average response times of

jobs.

118

Conclusion and future work

This dissertation has studied the issue of load-balancing in large-scale heterogeneous
computational grids. To explore the solution space for load-balancing in such
environments, we designed a survey for load-balancing solutions. We have developed a
system model to study load balancing problems in computational grid environments. In
particular, we have developed three decentralised algorithms for job dispatching and
load-balancing that use only partial information. All of them are scalable, dynamic,
decentralised and sender-initiated. We have built decentralised schemes that are capable
of efficient load assignment and redistribution to minimise the average response time of
jobs, despite the scalability of grid systems, the heterogeneous processing power of grid
sites, and considerable communication overheads involved in information collection.
This chapter concludes the dissertation by summarising the major contributions and

describing future research directions.

Section 7.1 highlights the main contributions. Section 7.2 focuses on future
directions, which are extensions of our past and current research on decentralised load-

balancing support for heterogeneous computational grids.

119

7.1 Main contributions

7.1.1 Desirability-aware load-balancing algorithm

Chapter 4 presented a new desirability-aware load balancing algorithm for heterogeneous

computational grids.

We gave two criteria for site desirability: processing power and transfer delay.
For each site s; in a grid, our algorithm uses the desirability of other sites to s; to form &
number of partners and p number of neighbours for the site s;. Partners are sites with
comparable or greater processing power, and neighbours are nearby sites with low
transfer delays. We have designed an approach for constructing the partner sites for each
site when a site joins the grid. We determined an approach to enable the set of partners
for a site to be updated dynamically at runtime based on feedback information, and a

relatively simple approach to form neighbouring sites for each grid site.

Rather than using the conventional periodic or polling approaches, state
information exchange between a site and its partners or neighbours is performed via

Mutual Information Feedback (MIF) to reduce communication overheads.

The algorithm comprises two specific policies for load distribution: Instantaneous
Distribution Policy (IDP) and Load Adjustment Policy respectively (LAP). When a new
job arrives at a site, it either remains at that site or is immediately allocated by IDP to it
or to one of its partner sites. Due to the likely fluctuating behaviour of grid resources,
continuous load adjustment is employed among neighbour sites under the guidance of

LAP to better exploit the grid environment.

Extensive simulation studies were conducted to analyse the performance of our
load-balancing algorithm. The algorithm was compared to the Nearest Neighbour load-
balancing algorithm. The results show that our algorithm performs better than the Nearest
Neighbor algorithm, and reduces the average job response time over a wide range of

system parameters.

120

Our algorithm (which considers the heterogeneity of sites) makes more powerful
sites carry higher loads, because jobs executed at fast sites are more likely to execute at
high speed. From the system perspective, our load-balancing scheme — which takes into
account the different network transfer delay between sites — enables quick responses to
load imbalances. In other words, the desirability-aware approach is “greedy” in the sense

that it tries, at each step, to make jobs assignments at lightly loaded sites.

7.1.2 Performance-driven desirability-aware load-balancing algorithm

Chapter 5 presented a novel performance-driven load-balancing algorithm for

heterogeneous computational grids while considering the site desirability.

The accumulated job execution time is defined as load index of a site. We
included the dynamic communication cost in the cost calculation for job execution at a
remote site, and how to determine the performance benefit that a job can gain for

execution at a remote site. The state information exchange is done via MIF.

The algorithm uses site desirability to guide load assignments (Chapter 4), and
integrates three dynamic approaches to make load distribution and redistribution driven
by the performance benefit that jobs can gain: IDP, LAP, and Augmented Load
Adjustment Policy (ALAP).

e IDP. A new job arriving at a site is immediately allocated to that site or one of its
partner sites, giving the job maximum performance benefit.

e LAP. The load adjustment policy aims to continuously reduce load difference
among a site and its neighbours by transferring the job that benefits most in the
global job queue of that site.

e ALAP. LAP causes a bottleneck in less powerful sites and their overlapping
neighbourhoods. The load adjustment can be further accomplished by transferring
to an augmented neighbour the job that benefits most from being in the global job
queue. How to find the augmented neighbour and how to trigger the ALAP were
described.

121

The performance-driven approach is “greedy” in the sense that it tries, at each step, to
make job assignments at the site that can provide most performance benefit. We
extensively evaluated the algorithm using simulations. Those results showed that our
algorithm outperforms the Performance-driven Neighbours-based algorithm, while

having a closer performance to the unrealistic algorithm, Central.

7.1.3 Performance-driven Region-based load-balancing algorithm

Chapter 6 presented a Performance-driven Region-based load-balancing algorithm for
heterogeneous computational grids by applying clustering approach. The algorithm is

partially based on research that was presented in Chapter 5.

The grid sites are clustered into regions around a set of known broker sites in
terms of network transfer delay; the regional brokers are organised in a fully
decentralised fashion. We developed a decentralised load-balancing mechanism for the
intra-region and inter-region load balancing directly in the sites. For each regional grid,
our algorithm integrates static IDP and dynamic LAP to make load distribution and
redistribution driven by the performance benefit that jobs can gain. The LAP also
considers load redistribution across regional grids. The intra-region communication is
minimised by MIF. To control inter-region communication, the random polling of a

remote regional broker site is performed by each regional broker site at a set time interval.

We used simulations to extensively evaluate the algorithm, and showed that it

performs better than Minimum Completion Time algorithm (MCT).

7.1.4 Discussion

Optimising workload allocation for heterogeneous grid systems is not an easy task. The
assignment of jobs to processing sites is done in such a way as to minimise the
average response time of jobs while minimising the overhead from communication
delay. Owing to the dynamic nature of the grid computing environment, designing an
ideal load-balancing algorithm on it remains a challenge. We hope our algorithms can
serve as examples for continuing work on research into decentralised load-balancing

solutions.

122

7.2 Future work

In the course of designing and evaluating decentralised load-balancing schemes for
heterogeneous computational grids, we have found several interesting issues that need

further investigation. These open issues are as follows.

7.2.1 Replication as fault-tolerant strategy

Our work points to the need to address the problem of efficient utilisation and satisfactory
response time, and the problem of fault-tolerance for job scheduling and load-balancing
in computational grids. Therefore, as grids are increasingly used for jobs requiring high
levels of performance and reliability, the ability to tolerate failures while effectively
exploiting resources in a scalable and transparent manner must be an integral part of grid

computing resource management systems.

One future direction is to integrate job replication strategy and our load-balancing
algorithms. Replication strategy has been widely used for job scheduling in
computational grids. It attains good performance without relying on information about
the grid or the job, although consuming a few more cycles. It can provide fault-tolerance

and decreased completion time.

7.2.2 Incorporation of security concerns

Grids are mostly formed with resources owned by many organisations and thus are not
dedicated for certain users. As such, jobs that are dispatched to a remote site may
experience security and reliability problems if the site is attacked by malicious users,
such that the jobs it is executing are destroyed. A grid job scheduler must be security-
driven, in that it must consider the risk involved in dispatching jobs to remote sites. Each
grid site can be modelled by a parameter called the security level that a grid site can offer
to remote jobs. Applying the notion of security into our load balancing algorithms is

clearly a research opportunity.

123

7.2.3 Consideration of resource availability

In the grid environment, numerous sites are capable of providing computing resources.
Some of these sites are frequently idle and able to constantly share computing resources;
some, however, are not. Therefore, when selecting sites for distributing jobs, if an
inefficient site is chosen, redistribution of jobs may frequently occur, and thus a reduction
in the execution performance of the system. How to select efficient sites is an issue
worthy of further investigation. This is an interesting research direction — to integrate the

idle-time concept with our load-balancing algorithms.

Most computing sites have daily routines with few idle day-time cycles and large
chunks of idle night or early-morning time cycles. In addition, the computing sites are
geographically distributed in different time zones on the grids. During a 24-hour cycle,
the area that contains the most idle computers can change. The jobs may be distributed to

sites located in idle night or early-morning time zones around the global.

7.2.4 Applying economic models for load balancing

The economic approaches have recently attracted considerable attention for job
scheduling and load balancing in large distributed system environments. The goal of grid
economy is not necessarily to determine the best resource for the execution of every job,
but to improve the distribution of the overall workload to maximise the number of jobs
that can simultaneously achieve a Quality of Service (QoS) objective, while limiting the

massive complexity and the computational overhead of the scheduling process.

This opens the possibility of investigating the dynamic adjustment of resource
prices, thus enabling a site broker to make load-balancing decisions on the basis of
economic models — for example, the use of queue waiting time as a stimulus for price

adjustment.

124

7.2.5 Load-balancing scheme for data grid

A data grid is a collection of geographically dispersed storage resources over a wide area
network. The goal of a data grid system is to provide a large virtual storage framework

with unlimited power through collaboration among individuals, institutions and resources.

We expect that heterogeneity will be a big challenge for data-intensive
applications running on data grids, where interconnections are relatively slow and
network latencies high. Some data sites may be over-utilised, while others may be under-
utilised. In designing an efficient load-balancing mechanism for data grids, the
performance of our load-balancing algorithms in such environments needs to be

investigated.

125

References

. L. Foster, C. Kesselman (Eds.), The Grid: blueprint for a new computing
infrastructure, Morgan-Kaufmann Publishers, 1% Edition 1999, 2" Edition 2003.

. W. M. Jones, L. W. Pang, D. Stanzione, W. B. IIl. Ligon, Job communication
characterization and its impact on meta-scheduling co-allocated jobs in a mini-
grid, in: Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 26-30 April 2004, pp:253-260.

. L. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: enabling scalable
virtual organizations, The International Journal of High Performance Computing
Applications 15 (3) (2001) 200-222.

. M. Anirban, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu, L.
Johnsson, Scheduling strategies for mapping application workflows onto the grid,
in: Proceedings of the 14th IEEE International Symposium on
High Performance Distributed Computing (HPDC-14), 24-27 July 2005, pp:125 —
134.

. R. Buyya (ed.), High performance cluster computing: architectures and systems,
vol. 1 and vol. 2, Prentice-Hall: Englewood Cliffs, NJ, 1999.

Community scheduler framework.

http://www.globus.org/toolkit/docs/4.0/contributions/csf.

126

10.
1.

12.

13.

14.

15.

16.

Foster, 1., Kesselman, C., and Tuecke, S., The anatomy of the Grid: enabling
scalable virtual organizations, International Journal of High Performance
Computing Applications, 15 (3) (2001) 200-222.

Platform Enterprise Grid Orchestrator (EGO).
http://www.platform.com/Products/Platform.Enterprise.Grid.Orchestrator/Product
Information/.

Moab grid suite. http://www.clusterresources.com/pages/products/moab-grid-
suite.php.

Globus, http://www.globus.org/.

I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit,
International Journal of Supercomputer Applications, 11 (2) (1997) 115-128.
Chapin, S., Karpovich, J., and Grimshaw, A. (1999). The Legion resource
management system. In: Proceedings of the 5th Workshop on Job Scheduling
Strategies for Parallel Processing, April 16, 1999, San Juan, Puerto Rico, Lecture
Notes in Computer Science (LNCS), Vol. 1659, pp. 162-178.

H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, Heuristics for
scheduling parameter sweep applications in Grid environments, in: Proceedings of
the 9th Heterogeneous Computing workshop (HCW'2000), May 1, 2000, Cancun,
Mexico, pp. 349-363.

R. Buyya, J. Abramson, and J. Giddy, Nimrod/G: architecture for a resource
management and scheduling system in a global computational Grid, in:
Proceedings of 4th IEEE Conference on High-Performance Computing in the
Asia-Pacific Region, 14-17 May 2000, Beijing, China, pp. 283-289.

M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima and H. Takagi,
Ninf: a network based information library for global world-wide computing
infrastructure, in: Proceedings of the International Conference on High
Performance Computing and Networking Europe (HPCN Europe), Vienna,
Austria, 28-30 April 1997, Lecture Notes in Computer Science (LNCS), Vol.
1225, pp. 491-502.

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, Condor-G: a

computation management agent for multi-institutional Grids, in: Proceedings of

127

17.

18.

19.

20.
21.

22.

23.

24.

25.

the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10), San Francisco, CA, USA, 7-9 August 2001, pp. 55-63.

S. Venugopal, R. Buyya and L. Winton, A Grid service broker for scheduling e-
science applications on global data Grids, Concurrency and Computation: Practice
and Experience, 18(6) (2005) 685-699

T. Hey and A. E. Trefethen, The UK e-science core programme and the Grid,
Future Generation Computer Systems, 18(8) (2002) 1017-1031.

W. Hoschek , J. Jaen-Martinez, A. Samar , H. Stockinger , K. Stockinger, Data
management in an international data Grid project, in: Proceedings of the first
IEEE/ACM International Workshop on Grid Computing, Bangalore, India, 7
December 2000, Lecture Notes in Computer Science (LNCS), Vol. 1971, pp. 77-
90.

Grid Physics Network (GriPhyN).http://www.griphyn.org/

W. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing
environments: The engineering aspects of NASA’s Information Power Grid. In:
Proceedings of the Eighth IEEE International Symposium on High Performance
Distributed Computing, Redondo Beach, CA, USA, 3-6 August 1999, pp. 197-
204.

S. Zhou, X. Zheng, J. Wang, P. Delisle, Utopia: a load sharing facility for large
heterogeneous distributed computer systems, Software - Practice and Experience,
23(12) (1993) 1305-1336.

J.M. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, C. Kesselman,
Monitoring and discovery in a Web services framework: Functionality and
performance of the Globus Toolkit’s MDS4, in: Technical Report ANL/MCS-
P1248-0405, Argonne National Laboratory, Argonne, IL, 2005.

K. Czajkowski, S. Fitzgerald, 1. Foster, C. Kesselman, Grid information services
for distributed resource sharing. In: Proceedings of the 10th IEEE International
Symposium on High-Performance Distributed Computing (HPDC 2001), San
Francisco, CA, USA, 6-9 August 2001, pp. 181-194.

X. Zhang, J.L. Freschl J, J.M. Schopf, A performance study of monitoring and

information services for distributed systems. In: Proceedings of the 12th IEEE

128

26.

27.

28.

29.

30.

31

38.

39.

40.

International Symposium on High-Performance Distributed Computing (HPDC
2003), Seattle, WA, USA, 22-24 June 2003.

X. Zhang, J.M. Schopf, Performance analysis of the Globus Toolkit monitoring
and discovery service, MDS2, in: Proceedings of the International Workshop on
Middleware Performance (MP 2004) at IPCCC 2004, April 2004.

G. Coulouris, J. Dollimore, K. Kinderberg, Distributed Systems: Concepts and
Design. Addison-Wesley: Reading, MA, 1995.

V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, Distributed job
scheduling on computational grids using multiple simultaneous requests, in:
Proceedings of the 11th International Symposium for High Performance

Distributed Computing, 23-26 July 2002, pp. 359-366.

Maui. http://www.clusterresources.com/pages/products/maui-cluster-
scheduler.php.
Load Sharing Facility. http://www.platform.com/Products/Platform.LSF.Family/.

. Portable Batch System. http://www.openpbs.org/.
32.
33.
34.
35.
36.
37.

Sun Grid Engine / CODEINE. http://www.sun.com/software/gridware/index.xml.

LoadLeveler. http://www-03.ibm.com/systems/clusters/software/loadleveler.html.
COSY. http://www.ccrl-nece.de/~falk/COSY/cosy.shtml.

Condor. http://www.cs.wisc.edu/condor/.

MOSIX. http://www.mosix.org/.

A. Barak A. and A. Shiloh, The MOSIX2 management system for linux clusters
and organizational Grids, white paper, March 2007.

R. Wolski, N. Spring, J. Hayes, The network weather service: A distributed
resource performance forecasting service for metacomputing, Journal of Future
Generation Computing Systems, 15 (5-6) (1999) 757-768.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, IDMaps: a
global internet host distance estimation service, IEEE/ACM Transactions on
Networking, 9 (5) (2001) 525-540.

A. Agrawal, H. Casanova, Clustering hosts in P2P and global computing
platforms, in: Proceedings of the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 12—15 May 2003, pp. 367-373.

129

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S. Ratnasamy, M. Handley, R.M. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: Proceedings of IEEE INFOCOM, 23-27
June 2002, volume 3, pp. 1190-1199.

M.A. Baker, G.C. Fox, and H.-W. Yau, Review of cluster management software,
NHSE Review, July 1996, available at http://
http://nhse.cs.rice.edu/NHSEreview/CMS/.

H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal load balancing in distributed
computer systems, Springer, London, 1997

J. Li, H. Kameda, Load balancing problems for multiclass jobs in
distributed/parallel computer systems, IEEE Transactions on Computers 47 (3)
(1998) 322-332

X. Tang, S.T. Chanson, Optimizing static job scheduling in a network of
heterogeneous computers, in: Proceedings of the International Conference on
Parallel Processing, 21-24 August 2000, pp. 373-382.

D. Grosu, A.T. Chronopoulos, M.Y. Leung, Load balancing in distributed systems:
an approach using cooperative games, in: Proceedings of the International Parallel
and Distributed Processing Symposium, 15-19 April 2002, pp. 52-61, IEEE
Computer Society Press.

D. Grosu, A.T. Chronopoulos, Algorithmic mechanism design for load balancing
in distributed systems, IEEE Transactions on Systems, Man and Cybernetics -
Part B, 34(1) (2004) 77-84.

Z. Zeng and B. Veeravalli, Design and analysis of a non-preemptive decentralized
load balancing algorithm for multi-class jobs in distributed networks, Computer
Communications, 27(7) (2004) 679-694.

D. Grosu, A.T. Chronopoulos, Noncooperative load balancing in distributed
systems, Journal of Parallel and Distributed Computing, 65(9) (2005) 1022-1034.
S. Penmatsa, A.T. Chronopoulos, Cooperative load balancing for a network of
heterogeneous computers, in: Proceedings of the 20™ IEEE International Parallel

and Distributed Processing Symposium, 25-29 April 2006 Page(s):8.

130

51.

52.

53

54.

55.

56.

57.

58.

59.

60.

61.

S. F. El-Zogdhy, H. Kameda, and J. Li, Numerical studies on a paradox for non-
cooperative static load balancing in distributed computer systems, Computers and
Operations Research, 33(2) (2006) 345-355.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. Freund, Dynamic mapping
and scheduling of a class of independent tasks onto heterogeneous computing

systems, Journal of Parallel and Distributed Computing, 59 (2) (1999) 107-131.

. V. Berten, J. Goossens, and E. Jeannot, On the distribution of sequential jobs in

random brokering for heterogeneous computational Grids, IEEE Transactions on
Parallel and Distributed Systems, 17 (2) (2006) 113-124.

S.P. Dandamudi, Sensitivity evaluation of dynamic load sharing in distributed
systems, IEEE Concurrency, 6 (3) (1998) 62-72.

Eager D. L., Lazowska E. D., and Zahorjan J. A comparison of receiver-initiated
and sender-initiated adaptive load sharing. Performance Evaluation, 6(1) (1986)
53-68.

S. Zhou, A trace-driven simulation study of dynamic load balancing, IEEE
Transactions on Software Engineering, 14 (9) (1988) 1327-1341.

P. Krueger and N.G. Shivaratri, Adaptive location policy for global scheduling.
IEEE Transaction Software Engineering, 20(6) (1994) 432-444.

O. Kremien and J. Kramer, Methodical analysis of adaptive load sharing
algorithms. IEEE Transactions on Parallel and Distributed Systems, 3(6)
(1992)747-760.

N.G. Shivaratri, P. Krueger, M. Singhal, Load distributing for locally distributed
systems, Computer, 25 (12) (1992) 33-44.

H.-C. Lin, C. S. Raghavendra, A dynamic load-balancing policy with a central job
dispatcher (LBC), IEEE Transactions on Software Engineering, 18 (2) (1992)
145-158.

M.H. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load balancing on
highly parallel computers, IEEE Transactions on Parallel and Distributed Systems,
4 (9) (1993) 979-993

131

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Eager D. L., Lazowska E. D., and Zahorjan J. Adaptive load sharing in
homogeneous distributed systems. IEEE Transactions on Software Engineering,
12 (5) (1986) 662—675.

K. Benmohammed-Mahieddine, P.M. Dew, and M. Kara, A periodic
symmetrically initiated load balancing algorithm for distributed systems. In:
Proceedings of the 14th International Conference on Distributed Computing
Systems, 21-24 June 1994, Poznan, Poland, pp. 616—623.

M.J. Zaki, W. Li, S. Parthasarathy, Customized dynamic load balancing for a
network of workstations, Journal of Parallel and Distributed Computing 43 (2)
(1997) 156-162.

C.Z. Xu and F.C.M. Lau, Iterative dynamic load balancing in multicomputers,
Journal of the Operational Research Society, 45 (7) (1994) 786-796.

F. C. H. Lin and R. M. Keller, The gradient model load balancing method, IEEE
Transaction on Software Engineering, 13 (1) (1987) 32-38.

J. Watts, S. Taylor, A practical approach to dynamic load balancing, IEEE
Transactions on Parallel and Distributed Systems 9 (3) (1998) 235-248.

K. Antonis, J. Garofalakis, P. Spirakis, A competitive symmetrical transfer policy
for load sharing, in: Proceedings of the 4th International Euro-Par Conference on
Parallel Processing, 1-4 September 1998, UK, Lecture Notes in Computer Science
(LNCS), Vol. 1470, pp. 352-355.

L. Anand, D. Ghose, V. Mani, ELISA: an estimated load information scheduling
algorithm for distributed computing systems, Computers and Mathematics with
Applications 37 (8) (1999) 57-85.

M. C. Luis and D. S. Isaac, Rate of change load balancing in distributed and
parallel systems, Parallel Computing, 26 (9) (2000) 1213-1230.

M. Mitzenmacher, How useful is old information?, IEEE Transactions on Parallel
and Distributed Systems, 11 (1) (2000) 6-20.

M. Dahlin, Interpreting stale load information, IEEE Transactions on Parallel and

Distributed Systems, 11(10) (2000) 1033—-1047.

132

73

74.

75.

76.

77.

78.

79.

80.

81.

82.

. Y. Amir, B. Awerbuch, A. Barak, R. Sean Borgstrom, A. Keren, An opportunity
cost approach for job assignment in a scalable computing cluster, IEEE
Transactions on Parallel and Distributed Systems, 11 (7) (2000) 760-768.

W. Shu and L.V. KaleA, A dynamic scheduling strategy for the chare-kernel
system, in: Proceedings of the 1989 ACM/IEEE conference on Supercomputing,
November 1989, Reno, Nevada, USA, pp. 389-398.

K. Antonis, J. Garofalakis, I. Mourtos, and P. Spirakis, A hierarchical adaptive
distributed algorithm for load balancing, Journal of Parallel and Distributed
Computing, 64 (1) (2004) 151-162.

Z. Zeng and B. Veeravalli, Design and performance evaluation of queue-and-
rate-adjustment dynamic load balancing policies for distributed networks, IEEE
Transactions on Computers, 55 (11) (2006) 1410-1422.

P. Dikshit, S. K. Tripathi and P. Jalote, SAHAYOG: A test bed for evaluating
dynamic load sharing policies, Software - Practice and Experience, 19 (5) (1989)
411-435.

M. M. Theimer and K. A. Lantz, Finding idle machines in a workstation-based
distributed system, IEEE Transactions on Software Engineering, 15(11) (1989)
1444—-1458.

H.Shan, L.Oliker, and R.Biswas, Job superscheduler architecture and performance
in computational grid environments, in: Proceedings of the ACM/IEEE
conference on Supercomputing, 15-21 November 2003.

M. Harchol-Balter, A. B. Downey, Exploiting process lifetime distributions for
dynamic load balancing, ACM Transactions on Computer Systems, 15 (3) (1997)
253-285.

W. Zhu, P. Socko, B. Kiepuszewski, Migration impact on load balancing—an
experience on Amoeba, ACM SIGOPS Operating Systems Review, 31(1) (1997)
43-53.

D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance benefits of
migrating active processes for load sharing, ACM SIGMETRICS Performance
Evaluation Review, 16 (1) (1988) 63-72 .

133

83.

84.

85.

86.

87.

88.

&9.

90.

91.

92.

93.

S. Lu and L. Xie. A scalable load balancing system for nows. ACMSIGOPS
Operating Systems Review, 32 (3) (1998) 55-63.

C.Z. Xu and F.C.M. Lau, Optimal parameters for load balancing with the
diffusion method in mesh networks, Parallel Processing Letters, 4 (1-2) (1994)
139-147.

X. Qian, and Q. Yang, Load balancing on generalized hypercube and mesh
multiprocessors with LAL, in: Proceedings of 11th International Conference on
Distributed Computing Systems. 20-24 May 1991, pp. 402 —409.

B. Shirazi, A.R. Hurson, K. Kavi, Scheduling and Load Balancing in Parallel and
Distributed Systems, IEEE book, May 1995.

Y. Lan and T. Yu, A dynamic central scheduler load-balancing mechanism, in:
Proceedings of IEEE 14th Annual International Phoenix Conference on
Computers and Communications, 28-31 March 1995, pp. 734-740.

Shivaratri N. G. and Krueger P. Two adaptive location policies for global
scheduling algorithms. In: Proceedings of the 14th International Conference
Distributed Computer Systems, 28 May — 01 June 1990, pp. 502-509.

A. Barak and O. La'adan, The MOSIX multicomputer operating system for high
performance cluster computing, Future Generation Computer Systems, 13 (4-5)
(1998) 361-372.

D. Z. Gu, L. Yang and L. R. Welch, A Predictive, Decentralized Load Balancing
Approach, in: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, Denver, Colorado, 04-08 April 2005.

R. Mirchandaney, D. Towsley, J. A. Stankovic, A adaptive load sharing in
heterogeneous distributed systems, Journal of Parallel and Distributed Computing,
9 (4) (1990) 331-346.

R. Mirchandaney, D. Towsley, J. A. Stankovic, A Analysis of the effects of
delays on load sharing, Transactions on Computers, 38 (11) (1989) 1513-1525.
A.Y. Zomaya, and Teh Yee-Hwei, Observations on using genetic algorithms for
dynamic load-balancing, IEEE Transactions on Parallel and Distributed Systems,

12 (9) (2001) 899 — 911.

134

94. G. Cybenko, Dynamic load balancing for distributed memory multi-processors,
Journal of Parallel and Distributed Computing, 7 (1989) 279-301.

95.J. Song, A partially asynchronous and iterative algorithm for distributed load
balancing, Parallel Computing, 20 (6) (1994) 853-868.

96.Y. F. Hu, R. J. Blake, An improved diffusion algorithm for dynamic load
balancing, Parallel Computing 25 (4) (1999) 417—-444.

97. L. He, S. A. Jarvis, D. P. Spooner, X. Chen, G. R. Nudd, Hybrid performance-
based workload management for multiclusters and grids, IEE Proceedings
Software, 151(5) (2004) 224-231.

98. C. C. Hui and S. T. Chanson, Theoretical analysis of the heterogeneous dynamic
load balancing problem using a hydrodynamic approach, Journal of Parallel and
Distributed Computing, 43 (2) (1997) 139-146.

99. C.C. Hui, S.T. Chanson, Hydrodynamic load balancing, IEEE Transactions on
Parallel and Distributed Systems, 10 (11) (1999) 1118-1137.

100. R. Diekmann, A. Frommer, B. Monien, Efficient schemes for nearest
neighbor load balancing, Parallel Computing, 25 (7) (1999) 789-812.

101. R. Elsasser, B. Monien, R. Preis, Diffusion schemes for load balancing on
heterogeneous networks, Theory of Computing Systems, 35 (3) (2002) 305-320.

102. K. Benmohammed-Mahieddine, P. Dew, A Periodically symmetrically
initiated load balancing algorithm for distributed systems, Operating Systems
review 28 (1) (1994) 66-77.

103. Y.Wong, K.Leung, and K.Lee, A stochastic load balancing algorithm for
i-computing, Concurrency and Computation: Practice and Experience, 15(1)

(2003) 55-78.

104. D. J. Evans and W. U. N. Butt, Load balancing with network partitioning
using host groups, Parallel Computing, 20(3) (1994) 325-345.
105. C. Xu, F. Lau, B. Monien, and R. Luling, Nearest neighbor algorithms for

load balancing in parallel computers, Concurrency: Practice and Experience, 7 (7)
(1995) 707-736.
106. P. Sanders, Analysis of nearest neighbor load balancing algorithms for

random loads. Parallel Computing, 25 (8) (1999) 1013-1033.

135

107. T. Thanalapati and S. Dandamudi, An efficient adaptive scheduling
scheme for distributed memory multicomputers, IEEE Transactions on Parallel
and Distributed Systems, 12 (7) (2001) 758-768.

108. V. Stergios and K. C. Sevcik, Parallel application scheduling on networks
of workstations, Journal of Parallel and Distributed Computing, 43(1) (1997)
1159-1166.

109. M. Harchol-Baker, M. E. Crovella, and C. D. Murta, On choosing a task
assignment policy for a distributed server system, Journal of Parallel and
Distributed Computing, 59 (2) (1999) 204-228.

110. H.Y. Sit, K.S. Ho, R.W.P. Luk, L.K. Ho, An adaptive clustering approach
to dynamic load balancing, in: Proceedings of the 7th International Symposium on
Parallel Architectures, Algorithms and Networks (ISPAN’04), 2004, pp. 415420,
IEEE Computer Society Press.

111. X. Deng, H. Liu, J. S. Long, and B. Xiao, Competitive analysis of network
load balancing, Journal of Parallel and Distributed Computing, 40 (2) (1997) 162—
172.

112. C. Xu and F. Lau, Load balancing in parallel computers. Theory and
Practice. Kluwer Academic Publishers, 1997.

113. K. K. Goswami, M. Deverakonda and R. K. Iyer, Prediction-based
dynamic load-sharing heuristics, IEEE Transactions on Parallel and Distributed
Systems, 4 (6) (1993) 638—648.

114. PK.K. Loh, W.J. Hsu, C. Wentong, N. Sriskanthan, How network
topology affects dynamic load balancing, IEEE Parallel and Distributed
Technology 4 (3) (1996) 25-35.

115. D. Arredondo, M. Errecalde, S. Flores, F. Piccoli, M. Printista, R. Gallard
Embedded intelligent assistance for load distribution and balancing, in:
Proceedings of the 9th International Conference on Parallel and Distributed
Computing and Systems, October 1997, pp.188-195.

116. A. Corradi, L. Leonardi, F. Zambonelli, Diffusive load-balancing policies
for dynamic applications, IEEE Concurrency, 7 (1) (1999) 22-31.

136

117. S. Ruchir, V. Bharadwaj, and M. Manoj, On the design of adaptive and
de-centralized load balancing algorithms with load estimation for computational
grid environments, To appear in IEEE Transactions on Parallel and Distributed
Systems, 2007.

118. K. Y. Kabalan, W. W. Smari, and J. Y. Hakimian, Adaptive load sharing
in heterogeneous systems: Policies, modifications, and simulation, International
Journal of Simulation, Systems, Science and Technology, 3 (1-2) (2002) 89-100.

119. M. Arora, S.K. Das, R. Biswas, A de-centralized scheduling and load
balancing algorithm for heterogeneous Grid environments, in: Proceedings of the
International Conference on Parallel Processing Workshops, 18-21 August 2002,
pp. 499-505.

120. R. V. wvan Nieuwpoort, T. Kielmann, and H. E. Bal,
Efficient load balancing for wide-area divide-and-conquer applications,
in: Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP'01),
Snowbird, UT, 18-19 June 2001, pp. 34-43.

121. W. Yibing, R. Hyatt, An improved algorithm of two choices in
randomized dynamic load-balancing, in: Proceedings of the Fifth International
Conference on Algorithms and Architectures for Parallel Processing,
23-25 October 2002, pp. 440-445.

122. M. Mitzenmacher, The power of two choices in randomized load
balancing, IEEE Transactions on Parallel and Distributed Systems 12 (10) (2001)
1094-1104.

123. Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal, Balanced allocations,
SIAM Journal on Computing, 29 (1) (1999) 180-200.
124. K. G. Shin, C. Yi-Chieh, A coordinated location policy for load sharing in

hypercube-connected multicomputers, IEEE Transactions on Computers,
44 (5) (1995) 669 — 682.

125. C. Hou and K. G. Shin, Implementation of decentralized load sharing in
networked workstations using the condor package. Journal of Parallel and

Distributed Computing, 40 (2) (1997) 173-184.

137

126. X. Zhang, Y. Qu, and L. Xiao, Improving distributed workload
performance by sharing both CPU and memory resources, in: Proceedings of the
20th International Conference on Distributed Computing Systems (ICDCS'2000),
Taipei, Taiwan, 10-13 April 2000, pp. 233-241.

127. K.Q. Yan, S.C. Wang, C.P. Chang and J.S. Lin, A hybrid load balancing
policy underlying grid computing environment, Computer Standards & Interfaces,

29 (2) (2007) 161-173.

128. H. Chi-Chung, S.T. Chanson, Improved strategies for dynamic load
balancing. IEEE Concurrency, 7 (3) (1999) 58 — 67.
129. S. T. Chanson, D. Wantao, H. Chi-Chung, T. Xueyan, T. Mingyan,

Multidomain load balancing, in: Proceedings of International Conference on
Network Protocols, 14-17 November 2000, pp. 315 — 324.

130. S. P. Dandamudi, K. C. M. Lo, A hierarchical load sharing policy for
distributed systems, in: Proceedings of the Fifth International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS '97), 12-15 Janauary 1997, pp:3 — 10.

131. M. Avvenuti, L. Rizzo, and L. Vicisano, A hybrid approach to adaptive
load sharing and its performance, Journal of Systems Architecture, 42 (9-10)
(1997) 679-696.

132. C. Junwei, D. P. Spooner, S. A. Jarvis, S. Saini, G. R. Nudd, Agent-based
grid load balancing using performance-driven task scheduling, in: Proceedings.
International Parallel and Distributed Processing Symposium,
22-26 April 2003.

133. S. Vadhiyar, J. Dongarra, Self adaptivity in Grid computing,
Concurrency and Computation: Practice and Experience 17 (2-4) (2005) 235-257.

134. E. A. Billard and J. C. Pasquale, Load balancing to adjust for proximity in
some network topologies, Parallel Computing, 22 (14) (1997) 2007-2023.

135. K. Nishimura, H. Ueno, M. Yamamoto, H. Ikeda, A dynamic load
balancing method based on network delay for large distributed systems,
Electronics and Communications in Japan (Part I: Communications), 84 (6) (2001)

11-21.

138

136. T. Kunz, The influence of different workload descriptions on a heuristic
load balancing scheme, IEEE Transactions on Software Engineering, 17 (7) (1991)
725-730.

137. Z. Xu, C. Tang, and Z. Zhang, Building Topology-Aware Overlays Using
Global Soft-State, in: Proceedings of the 23rd International Conference of
Distributed Computing Systems, 19—22 May 2003, pp. 500-508.

138. S. Xian-He, W. Ming, GHS: A performance system of Grid computing, in:
Proceedings of the 19th IEEE International Symposium on Parallel and
Distributed Processing, 4—8 April 2003.

139. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, D.
V. Wilcox, PACE — A toolset for the performance prediction of parallel and
distributed systems, International Journal of High Performance Computing
Applications, 14 (3) (2000) 228-251.

140. M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task
execution times through analytic benchmarking for scheduling in a heterogeneous
environment, IEEE Transactions on Computers, 48 (12) (1999) 1374-1379.

141. M. Dobber, R. D. van der Mei and G. Koole, A prediction method for job
runtimes on shared processors: Survey, statistical analysis and new avenues

Performance Evaluation, 64 (7-8) (2007) 755-781.

139

Publications from thesis

Journal Paper

e K. Lu, R. Subrata, and A. Y. Zomaya, On the performance-
driven load distribution for heterogeneous computational Grids,
Journal of Computer and System Science, 73 (8) (2007) 1191-
1206 (Elsevier)

Conference Papers

e K. Lu, R. Subrata, and A. Y. Zomaya, An efficient load
balancing algorithm for heterogeneous grid systems considering
desirability of grid sites, in: Proceedings of the 25th IEEE
International Conference on Performance, Computing, and
Communications, 10—12 April 2006, Phoenix, Arizona, USA.

e K. Lu, R. Subrata, and A. Y. Zomaya, Towards decentralized
load balancing in a computational grid environment, in:
Proceedings of the first International Conference on Grid and
Pervasive Computing, May 3-5, 2006, Taichung, Taiwan,
Lecture Notes in Computer Science (LNCS), Vol. 3947, pp. 466-
477, Springer-Verlag Press.

e K. LuandA.Y. Zomaya, A hybrid policy for job scheduling and
load balancing in heterogeneous computational grids, in:
Proceedings of the 6th IEEE International Symposium on
Parallel and Distributed Computing, 5-8 July 2007, Hagenberg,
Austria.

