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Abstract

Recently, there has been a spectacular hike in the popularity of cloud computing sys-

tems in oder to facilitate the rental of IT resources on-demand over a network, charge

according to a pay-as-you-go substratum, and multiplexe several users on the same

physical infrastructure. Based on the deployment models, Clouds can be classified as

public, private or hybrid. Although most of the main issues with cloud environment

have been addressed in the past researches, there are still a number of challenges posing

both industrial and scientific users to execute their application properly on Cloud. On

the one hand, users want to cut down the total expenses incurred while meeting their

performance wishes; on the other hand, choosing the key tradeoffs for attaining the most

cost-effective deployment plan to scale out the application is almost out of the knowledge

for common users, especially with the existing diversity of cost to performance ratio in

cloud resources. To gain a complete view of the impacts of ever-increasing heterogeneity

of resources and users’ utility function on the efficiency of scheduling tasks in the Infras-

tructure as a Service environment (IaaS), it is essential that a framework be designed

to take meticulously these factors into consideration.

In this thesis, we adopt a systematic approach to investigate the efficiency of near-

optimal deployment of large-scale CPU-intensive Bag-of-Task applications running on

hybrid cloud resources with the non-proportional cost to performance ratios (resource

heterogeneity). We present analytical solutions in both known and unknown running

time of the given application. Our framework tries to optimize the users’ utility by

choosing the most desirable tradeoff solution between the application completion time

(makespan) and the total expenses incurred.

In particular, we approach the “cloud resource management” problem from various

aspects which make this thesis bring following major contributions.

1- We propose a schedule schema to provide a near-optimal deployment of Bag of Task

application regarding users’ preferences. Our approach is to provide a set of Pareto-

optimal solutions to the user, and then user may select one of the possible scheduling

points based on her internal utility function regarding both the deadline and total cost

factors. Our framework can work effectively when user’s utility function follows specific

patterns like p-norm models.

2- Our proposed framework can cope with uncertainty in the tasks’ execution time.

Uncertainty of the environment, here in the execution time of tasks, poses even harder

challenges for reaching an optimal resource allocation in any high distributed computing

system including Cloud environment. We address the case of coping with uncertainty in



task execution time by introducing two methods. First, we present an estimation method

based on a well-known Monte Carlo sampling method called AA algorithm, which uses

the minimum possible number of sampling to predict the average task running time.

Second, we assume that our framework has access to some different code analyzer,

code profiling or estimation tools, and then we introduce a hybrid method to evaluate

the accuracy of each estimation tool in certain interval times for improving resource

allocation decision.

3- We propose approximate (near-optimal) resource allocation strategies that run on

hybrid cloud computing system. In essence, the proposed strategies first determine either

an estimated or an exact optimal resource allocation schema based on the information

provided from both users’ side and environmental parameters. Then, in assignment

phase, we exploit dynamic resource allocation methods to assign tasks to resources in

order to reach an optimal schema as close as possible. Here we propose two approaches.

A fast yet simple method based on First Fit Decreasing (FFD) algorithm, and a more

complex approach based on the approximation solution of the transformed problem into

a subset sum problem. Extensive real experiment results conducted on a testbed hybrid

cloud (using Amazon EC2 as a public cloud and our in-house 2x40-core cluster as a

private cloud) confirm that our proposed framework can deliver a near optimal resource

allocation respecting user’s utility function to improve effectiveness of cloud computing

systems. Moreover, our approach outperforms an enhanced version of list scheduling

algorithm by reducing both makespan and total cost significantly, in both clairvoyant

and non-clairvoyant cases.
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Chapter 1

Introduction

If you want to shine like sun first you have to burn inside

–Persian proverb

Cloud computing can be defined as a model for delivering computing services (such

as infrastructures, platforms, and softwares) through a network (typically Internet, or

web-based tools and applications). This new business paradigm can help companies to

reduce the cost of information management, since they are not required to own their

hardware, storage, network, licensed software etc. any longer; and only pay the cloud

provider based on their consumption (or PAYG1 maner). Server virtualization, the iso-

lated and transparent hosting of multiple servers in the same hardware, has accelerated

the successful achievement of cloud computing in the last decade. In the clod computing

context, almost every resources such as servers, computing, networks, and storage are

construct and delivered to the end-user in a virtualized form. Virtualization allows to

share resources among different applications in order to optimize the server utilization.

There are three fundamental models for delivering services in Cloud computing,

namely Software as a Service, Platform as a Service, and Infrastructure as a Service.

These collection of services can be considered to be built on top of each other. Saas

allows end users to access complete applications remotely. It is mainly accessed through

a web portal and service oriented architectures based on web service technologies Users

typically use thin clients, whereas all computations are run, maintained, and supported

by the service vendor (e.g Google docs, GMail). In PaaS model, virtual machines with

already included operating systems, tools and frameworks required for a particular appli-

cation are delivered to the user. The principal users of this layer are developers seeking

to develop and run a specific application for a particular platform. Users of PaaS has

1Pay-As-You-Go

1



Chapter 1. Introduction 2

typically no access to control the operating system, hardware or network infrastructure

(e.g. Amazon Elastic MapReduce). There are at least two important factors that IaaS

virtual machines can be characterized: the promised level of processing capacity and

the reserved amount of access to storage or network access. Clients can operate directly

on operative system, storage, deployed application and sometimes firewall , in a con-

venient, on-demand fashion. Nevertheless, the customer cannot control the underlying

cloud infrastructure. The most notable example in this category is Amazon EC2. In all

three mentioned models, cloud services are completely transparent to the final user and

require minimal interactions with the cloud provider. In our study, we consider cloud as

a large pool of easily accessible visualized computer resources that are dynamically pre-

sented to and highly abstracted from the end-user in terms of a service level agreement2

between user and the provider of cloud services3.

Depending on the organizational structure or the provisioning location, cloud ser-

vices can be deployed in different ways, too. Three main deployment models are distin-

guished as public, private, and hybrid service usage. Having been available transparently

to the all type of end users, public cloud services and resources are working in a massive

resource pools to be shared by users via a public network. Public cloud provider can

signicantly reduce the prices for cloud resources, operation, support, and maintenance

by optimization techniques of related operations such as load balancing, consolidation,

etc. Having made services accessible only for users of designated organization, private

cloud services are offering within the data centers belonging to the company. While it

is not as large-scale as public cloud, private cloud give the advantage of control over

corporate data, security guidelines, and system performance to the enterprise. To gain

the maximum advantage from the good aspects of each of above mentioned models, most

enterprises acquire cloud services by using a mix of multiple private and public cloud

service types (known as hybrid model). Hybrid cloud solution provides fairly balance

between scalability, performance, security, reliability, and the total cost of ownership.

One of the biggest challenges posed by a hybrid cloud is how to efficiently balance

the workload between private and public clouds to reach the highest possible perfor-

mance. Other challenges include keeping security and privacy, lack of standards, and

compliance with evolving technologies coming to the market continuously. In the subse-

quent chapters, we will discuss more on our solution to overcome the issue of optimized

capacity expansion of large scale application into hybrid cloud.

2SLA
3This is in accordance with IaaS paradigm
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1.1 Large-Scale Bag-of-Tasks Application on Hybrid Cloud

It has been widely recognized that a large fraction of the workloads submitted to the

high-performance and high-throughput computing systems can be categorized as a form

of Bag-of-Tasks application. Massive parallelism has been seen in many programs in

science (such as study of microbial genomes), engineering (such as parameter sweeps) and

business analytic applications, all of them can be classified as BoT. This type of workload

has been reportedly very common and that being as much as 70% in parallel systems

and up to 96% in grid environment. The good news is that BoT jobs are formed of lots

of tasks that are independent from each other, hence, can be run by their own. In other

words, BoT jobs inherently exhibit horizontal scalability and can be fit naturally to the

hybrid cloud deployment model. However, optimized scheduling of tasks to resources in a

dynamic large-scale environment thousands of heterogeneous resources is a complicated

problem. In fact, myriad of BoT scheduling algorithms have been suggested for different

types of distributed systems, mostly tightly-coupled homogeneous systems. However,

there are few researches in approaches which focus on the idea of optimizing multi-

objectives simultaneously (in our context, minimizing the total execution cost as well as

decreasing the running time of BoT applications) in a hybrid cloud environment. Having

no prior accurate information about the running time of submitted tasks thwarts the

most existing solutions in practical situations, too.

To counter such lack of solutions for cost-effective large-scale BoT scheduling in

hybrid Clouds, we present several algorithms which are able to accomplish the submitted

applications to satisfy conflicting users’ objectives (makespan and total cost) with or

without prior knowledge of the processing time of tasks. The approach can be used

when either users have no knowledge about their personal preferences (regarding time

or money) or they would like to hide it for some reasons (Chapter 5 and 6), or when

their utility function characteristic follows a specific form (Lebesgue p-Norms functions)

(Chapter 4).

1.2 Research Objectives

In contrast to scheduling of tasks in traditional distributed computing systems, cloud

scheduler has less controller over the available cloud resources, which make cloud schedul-

ing problem even more challenging than the traditional one. Therefore, the well-studied

scheduling approach proposed previously for the traditional parallel systems cannot be

directly applied to cloud environment. Below we identify the main objectives we take

into account in this thesis.
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It is normal that cloud environment possess resources with non-proportional cost to

performance ratio. For example, this ratio for Amazon EC2 m1.small versus c1.medium

instance is close to 1 over 5, at the time of writing this thesis. So, to scale out the CPU-

intensive BoT application by dynamically renting public cloud resources, scheduler must

be carefully aware about the degree of the performance that is achievable, since it is not

in exact harmony with the usage cost of these resources generally. One objective of

this thesis is to identify factors and major obstacles that influence reaching an effective

deployment over the hybrid cloud environment.

The second goal of this project is to give the user a practical way to compromise

between two conflicting objectives she normally possesses. On one side, the uesr tries

to maximize the performance of tasks’ execution on the distributed system; on the

other side, this goal is in conflicting with achieving a minimum total cost (especially in

heterogeneous environment). This issue will be discussed in more details in Chapter 5,

and we will give a practical way how the cloud middle-ware can help users to choose

among different possible allocation schema, even she is not fully aware about her utility

function, which ties time and cost together. To this end, we use the concept of Pareto

frontier and introduce some algorithms to reach solutions for approximating the set of

possible achievable Pareto scheduling points. We try to develop some fully polynomial

approximation schema for the seemingly NP-hard cloud resource allocation problem

respecting the users’ preferences. This will be discussed in Chapters 5 and 6. In addition,

users may have different utility function model that can represent the relation between

the time and cost that they actually want to spend on finishing their applications in the

cloud. We introduce a new user-tunable utility function model in Chapter 4 which is

based on p-norm model and try to reach an optimized cloud resource allocation for this

model by giving a solution for the obtained binary nonlinear programming problem.

Several existing scheduling schemes are based on assumption of complete knowl-

edge of tasks and environmental parameters, but in reality there is not any advanced

information about these characteristics. Some of these parameters, such as tasks’ run-

ning time, can be estimated using other sources, such as historical data, profiling and

analysis tools. Because the classical deterministic approaches provide a schedule which

is far from the optimal one in uncertain situation, we investigate how one can achieve a

Pareto optimal resource allocation under uncertainty in the cloud infrastructure. These

factors are introduced and discussed in more detail in Chapter 6.
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1.3 General Approach

Our solution tries to use the strengths of private in-house infrastructure computing with

the almost unlimited resource availability of public cloud system to provide an adaptive

reliable environment that can control the trade-off between total incurred expense and

the quality of scheduling in terms of makespan. In general, we often referred to a

Pareto-frontier optimization approach for dealing with conflicting objectives of users.

We generally decompose the resource allocation problem into several steps:

• Submission. In order to reach the best balance between time and cost in the

resource allocation problem, it is important that users be able to submit their

information as well as preferences properly to the system. In some cases, the

user has a priori knowledge about the execution time of submitted tasks and

is fully aware about her preference about relation of time an cost. However, in

several other cases, users are doubtful about their preferences regarding the two

conflicting goals. In addition, estimation of tasks’ execution time is either too

difficult or inaccurate to be followed by common users. Our framework provide

facilities for getting the user’s knowledge provided that this information is ready.

If user has no knowledge about the parameters, the framework can still effectively

continue its duty and reach a near-optimal solution. In Chapter 4, we specifically

discuss the case when user’s utility function form follows p-norm model. In Chapter

5, we introduce an approach to handle the case of unknown utility function. And

in Chapter 6, our solution deals with the problem when both utility function as

well as tasks characteristics are unknown in advance.

• Optimization. Based on the submitted information and collected data, our frame-

work builds an optimized scheduling schema by taking the user’s interest into

consideration. Specifically, if the users’ utility function follows the p-norm model,

we transform the resource allocation problem into a binary nonlinear program-

ming problem which a its relaxed version is solvable using the Lagrange multiplier

technique. Details of such approach will be provided in Chapter 4. If task’s run-

ning time is unknown in advance, then we exploit a Monte Carlo sampling method

called AA algorithm to predict the average of task running time, and then an

FPRAS4 scheme will be used to find out the most efficient allocation. If user

does not have any information about her utility function or reluctant to reveal her

preferences to the cloud middle-ware, then our approach is to find all the possible

4An FPRAS algorithm can produce a solution in a certain distance, called (1+ε) factor, from optimal
value with a confidence interval of δ
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Pareto frontier schedule points and present this set to the user. Then framework

asks user to choose one of the scheduling point based to realize the maximum

utility. Finally, our system finds a near-optimal schedule by transforming the orig-

inal problem into the famous subset sum problem. We use an FPTAS schema to

solve the relaxed version of task allocation problem. Details of the process will be

presented in Chapter 5.

In the case that user does not have any information about neither tasks execu-

tion time nor her utility function, but access to a some prediction tools which can

estimate the running time of submitted tasks, our system can use the estimation

tools to generate a set of best possible Pareto-optimal scheduling points that can

be delivered to the user. To improve the measurement of each estimation tool,

we devise a method that adds several breakpoints to each task. So, our system

can compare the actual running time with the estimation values given by each

estimator tool to assign an accurate weight to each one. Based on the desirable

resource allocation schema selected by user, the workload of each machine is cal-

culated, and the actual task assignment will be made by a technique inspired by

First Fit Decreasing method. In order to control and correct the scheduling policy,

the predicted tasks’ running times values are compared with the real ones in spe-

cific breakpoints. Based on the difference between predicted and actual values, the

system recalculates the amount of workload for each resource periodically. Details

of this process will be presented in Chapter 6.

• Deployment. After finding the optimal solution for the above-mentioned circum-

stances, a deployment plan is necessarily to reach the suggested optimal point as

close as possible. One can use a simple to understand, and easy to implement

deployment plan such as List heuristic, a more complex solution such as subset

sum-based approximate deployment plan which needs a lot of efforts to understand

and implement, or a paradigm between these two approach, such as one based on

First Fit Decreasing algorithm. We use all of these deployment schema in our

work, and provide both advantages and disadvantages of each method individu-

ally. In addition, we will present a comprehensive performance analysis of each

plan through Chapters 4 to 6.

1.4 Main Contributions

This thesis presents research on the methods of optimized deployment of Bag of Tasks

application on Hybrid cloud computing environment. We answered several problems in
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the form of new algorithms and frameworks, aiming optimization of different objectives.

The tangible results of this work can be summarized as follows.

• A schedule technique that propose optimized deployment regarding

users’ preferences We designed a hybrid cloud scheduler which can propose

a set of Pareto-optimal points to the user, and then user may select one of the

possible scheduling points based on her internal utility function about time and

cost. In this way, users are not needed to explicitly reveal their utility function. It

is useful because sometimes users are not fully aware about their complex prefer-

ences, or they are not willing to express it, as they may think it may reduce their

chance for any bargain in future. In addition, our framework can work effectively

if user’s utility function follows specific patterns such as p-norm models.

• A framework that can cope with uncertainty in the tasks’ running time

Uncertainty in task’s running time is a clear fact. While in some occasion the lower

and upper bound of this duration might be provided, the exact duration of a task is

generally unknown until finishing of the task. A schedule must take the uncertainty

associated with unknown values of such parameters into consideration and be able

to reach effectively to an optimized solution. We will provide two methods to cope

with such a phenomenon. First, we introduce an estimation method based on a well

known Monte Carlo sampling method to predict the average task running time of

submitted jobs. This method is an FPRAS algorithm which can be considered as

the most efficient randomized algorithm for handling stochastic NP-hard problem.

Second, we assume that our framework has access to different code analyzer, code

profiling or estimation tools, and then we introduce a method to evaluate the

accuracy of each estimation tool in certain times. Our algorithm can calculate

the workload of each resources in an optimized manner based on the information

provided in previous steps, and then try to reach the optimized resource allocation

via employing an FPTAS algorithm. Details will be discussed in Chapter 6.

• Near optimal resource allocation strategies that utilize hybrid cloud

computing via dynamically renting available resources Our infrastructure

first determine either an estimated or an exact optimal resource allocation schema

based on the information provided from both users side as well as environmental

parameters. The next challenging step is how to actually assign tasks to resources

in order to reach an optimal schema as close as possible. We exploit mainly two

methods in order to approximate the optimal solution, including a simple and fast

approach based on First Fit Decreasing algorithm, and a more complex approach
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based on the approximation solution for subset sum problem which yields a closer

solution to suggested values. All the introduced techniques have been extensively

evaluated by real experiments run on top of Amazon EC2 as the public cloud and

our in-house system as the private cloud.

1.5 Thesis Organization

This thesis consists of six chapters. Beside Chapter 1 presenting the introduction,

the other six chapters can be followed as follows. Chapter 2 introduces neces-

sary background knowledge and technical terms used in this thesis. The provided

background knowledge includes an overview of main concepts in cloud computing

environment such as virtualization, hypervisor, and different layers and deploy-

ment models of cloud environment. Then, we present several important features

and notations of scheduling theory and resource allocation in cluster, grid, and

cloud systems. And finally we introduce BoT application and present important

previous works related to BoT scheduling in HPC environment.

In Chapter 3, we introduce a motivating example to describe the issues when a

real world application is running on the hybrid cloud environment. Based on this

example we try to analyze our research problems profoundly.

In Chapter 4, we propose a new cost model (based on the p-norm function) from

users perspective to tie two goals of minimizing the total cost and makespan to-

gether. We reformulate the the problem of resource allocation of hybrid clouds as

a binary nonlinear programming problem, and develop an FPRAS5 to find a near

optimal solution for it when there is no advanced knowledge about the processing

time of BoT applications.

in Chpater 5, we present a framework for hybric cloud deployment of large-scale

BoT applications with the main objective of optimizing the performance to cost

ratio. In this scenario, user submits a BoT job by specifying both application and

resource information. Here, task lengths of the BoT application are assumed to

be known in advance. Then, our framework generates all scheduling candidates

in Pareto-frontier and sends them back to the user to select one of them. Finally,

our framework try its best to propose and deploy a schedule plan which is close to

the selected point.

5fully polynomial time randomized approximation scheme
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Chapter 6 extends the ideas presented in the previous chapters such that the

framework can handle effectively with parameter uncertainty. In this way, we

assume that task’s running time is not give a priori, and there are some tools

available to estimate it using sources such as historical data, profiling or analysis

tools. The main question here is that how a scheduler can effectively use these

tools to achieving an optimal cloud resource allocation. Again, the scheduler try

to provide user with Pareto-frontier possible scheduling without asking the user to

present her utility function, U(time, cost). And in the final step, the framework

tries to reach the optimal scheduling based on the user’s choice. This is not an

easy job, because the tasks execution time will be revealed in the run-time, and

may be different from the initial estimation. So, scheduler needs to take this into

account and adjust the resource allocation dynamically. Finally, a summary of our

contributions and future works will be presented in Chapter 7.



Chapter 2

Background and Related Work

In this chapter we try to provide a basic knowledge of characteristic, methodologies

and modeling related to Cloud computing, followed by quick overview of virtual-

ization technology, and then scheduling of BoT in HPC systems. Throughout this

thesis, the chapter can be used as the first choice of reference for the reader, where

further references will be given for deeper understanding. The chapter starts with

basic idea of cloud computing, and virtualization concepts. Then, a closer look at

the traditional scheduling theory is introduced. Finally. important characteristics

and definitions of resource allocation and BoT scheduling in both traditional and

modern HPC systems, which play a central role in the research target of later chap-

ters, are presented. Since these concepts are presented in brief, we refer readers to

[1] for more information about these basic concepts.

2.1 Cloud Computing Environment

With the advent of Cloud paradigm, all type of users all over the world, expect

certain places, can access and utilize a set of hardware and software computing re-

sources in the remote data-centers as services by means of API’s [2]. This paradigm

enables customers to avoid costly yet complicated provisioning plan, instead allow-

ing them to utilize the infrastructure, platform and software offered by commercial

or open source cloud initiatives.

Amazon was one of the major drivers of cloud computing, by first modernizing

their internal data centers to use a cloud-like model and then creating a new

product to provide cloud services to external customers in the form of Amazon Web

Services (AWS) in 2007. Since then, cloud computing has rapidly gained attention

10
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and importance, and has become a new industry buzzword. Cloud computing can

take one of the well-known service models of Infrastructure as a Service, Platform

as a Service, or Software as a Service (refer to [3] and Section 2.2.2). Deployment

models can be either Public, Private, or Hybrid cloud. Furthermore, there are

three distinguished models for deployment plan in Cloud paradigm, namely public

cloud, private cloud, and hybrid cloud.

Several other key features have been recognized for cloud computing, too,

including self-servicing usage , accessing a pool of resources via internet worldwide,

very quickly elasticity for multi-talent and on-demand resource consumption in a

controlled and measured way which altogether lead to increasing efficiency, faster

return on investment, better utilization of the available resources, and ultimately

reduction on IT-related costs. In addition, this on-demand feature allows big

companies to dynamically handle burst computing needs (which is unpredictable

usually) of their IT usage.

Cloud computing’s adoption has been largely driven by advances in virtu-

alization. The use of virtual machines allows for rapid configuration of software

packages regardless of the actual underlying hardware. Those VMs can reside on

the same physical host (almost) without the users being aware of each other1.

Cloud services can offer a wide range of software services, too. Having provided

several APIs or development tools, it allows developers making scalable applica-

tions on top of available services, which leads to approach the ultimate goal of

running everyday IT needs in the cloud. API web services are valuable tools to

enable information from one system (even running on different messaging product

platform) to be transparently available to other applications over the network (or

Internet generally). Several service providers are providing a common mechanism

for delivering their services to be accessible by employing protocols such as SOAP

or REST2, well known examples include Amazon, Google, and Facebook.

SOA can provide standards to bring a loosely coupled distributed computing

which is not depend on any protocols but simple ones such as SOAP or REST.

In this paradigm, software resources (like Object, Methods, and so on) can be

seen as services which are self contained and well-defined modules for providing

standard business functionality completely independent from the state of others.

So, to accomplish a complex business logic, an enterprise application will be made

as a set of several services interacting together. In a cloud realm, an enterprise

1In practice, this leads to some degree of drop in both performance and security of the host
2known as SOA (service-oriented architecture)
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application can be made by compiling several software services. Services can be

run on the same or different cloud providers. Some well known examples of such

building block services include authentication, accountant, time management, or

payment system.

2.2 Virtualization

Today’s large-scale data centers, which are normally composed of thousands of

computers, are built to serve many users and host many disparate applications.

For the purpose of both overcoming most operational issues of building and main-

tenance of such big data centers as well as improving the utilization of computer

systems, hardware virtualization is currently considered as a perfect approach and

plays a key factor indeed. This technique let several operating systems with dif-

ferent software stacks can execute on a single workstation [4].

Being adapting the virtualization technique as a mainstream component tech-

nology in today’s data-centers, several researchers have addressed three basic issues

regarding the management of a virtualized infrastructure, namely workload isola-

tion, application migration, and consolidation[5].

Workload isolation is defined as the ability of separation of multiple software

stacks in their own VMs to attain improved security, higher reliability, and even

better performance. Both of computational and network resources can be isolated

(either physically or logically) so that the resource consumption of one application

or it failures cannot affect the others as shown in Figure 2.1.
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Fig. 2.1: Workload isolation as one of the main virtualization us-
ages: Isolating software stacks in their own VMs can improve system

security and reliability
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Virtualized workload migration is defined as the ability of moving workloads

(both data and applications) non-disruptively between dispersed virtual environ-

ments in real time without violating service level agreements. Since the intro-

duction of virtualized server environments in progressive IT enterprises, workload

mobility has been targets to address especial needs of the business such as disas-

ter planning strategies and disaster avoidance, data center maintenance without

downtime, applications’ dynamic deployment, Data Center capacity expansion,

migration or consolidation of data centers, resource distribution, and workload

balancing. To achieve these goals, a true workload migration must support non-

disruptive live migration of the VM memory content and its state, while both

the VM volatile and non-volatile data have to be available throughout the live

migration process.

Workload consolidation, one of the most significant opportunity introduced

by virtualization technology, is a promising strategy to multiplex servers’ capacity

by hosting multiple VM workloads on a single server. This technique delivers a

simple, cost-effective solution to not only reduce the number of servers in a data-

center, but also can increasingly raise the utilization levels of servers [6]. Reduction

of the number of servers leads to a lower consuming energy and carbon emissions

level, freeing up the rack space, easier administration and management tasks, lower

software licensing costs, and reduction in the total cost of ownership as a whole.

Before initiating a complex server consolidation program, having a good analysis

of end user requirements, application requirements, and the given infrastructure

environment is absolutely essential [7, 8]. However, determining which VMs should

be consolidated on which target to find the optimal performance and energy point

is a computationally challenging problem for corporate data-centers with large

numbers of servers and comprehensive traces of workload characteristics.

A noteworthy work in [8] introduced the relationships between performance

degradation, energy consumption, CPU utilization and disk utilization in the con-

solidation problem. Using the traditional bin-packing problem, their proposed

task consolidation algorithm relys on the Pareto front to reach a balance between

the power consumption and system performance. Another notable study in [9]

presents a comprehensive study of the latest solutions for controlling performance

overheard in different cloud scenarios by highlighting the causes and metrics of VM

performance overhead in IaaA cloud. They argue that concurrent live migration

of VMs, concurrent deployment and snapshotting of several VMs, and inability
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to isolate shared storage and network resources between VMs are commonly oc-

curring routine operations in an IaaS cloud datacenter which are the main root

of VMs performance overhead within a datacenter and significantly degrade their

performance. Authors of [10] proposed two different energy-conscious consolida-

tion heuristics, namely MaxUtil and ECTC, to decrease the total amount of energy

consumed in a cloud environment without any negative affect on the system per-

formance. The work improved in [11] by proposing a task consolidation algorithm

that finds the best compromise between MaxUtil and ECTC heuristics. In order to

incorporate task consolidation into the power management, Nathuji et al. [12] pre-

sented the VirtualPower approach which can exploit both hardware power scaling

and software-based methods for controlling the power consumption of underlying

virtualized platforms. For a detailed technical overviews of the above-mentioned

concepts, the interested reader is referred to [13–21].

2.2.1 Hypervisor

Hypervisor firmware is a technology at the heart of system virtualization that

can use to run virtual machines within a physical host server. The hypervisor

manages the execution of multiple instances of a variety of guest operating systems

by sharing the virtualized hardware resources such as processor, memory, disk and

networking. Hypervisors provide the means to logically divide a single, physical

blade server, allowing multiple operating systems to run securely on the same

machine to increase its utilization. Popek and Goldberg breaks these middle-wares

down into two different catagorize of Type-1 or bare metal, and Type-2 or hosted

hypervisors[22]. Being completely independent from the operating system, Type-

1 hypervisors are interacting directly with hardware, partitioning it into multiple

virtual machines, and offering a higher level of virtualization efficiency and security.

While Type-2 hypervisors are those that run within the host operating system, so

the underlying hardware is directly managed by the host OS.

By building a a more efficient virtual data center environment, bare-metal

hypervisor are dominantly used in both the current cloud computing market as

well as business-wide virtual desktop deployments. Furthermore, concepts such as

server consolidation and server orchestrating are made more efficient by introduc-

ing Type-1 virtualization. As there is no underlying operating system, the install

footprint can be greatly reduced (for exmaple the overall footprint of the current

version of ESXi is only 150 MB. The management functionality of Type-1 platform

is often accomplished through remote management tools.
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VMware vSphere/ESX Server/ESXi, Microsoft Hyper-V, Citrix XenServer,

Xen, Intel VT, Oracle VM server and VirtualBox, IBM PowerVM, and AMD-V

are the current existing major players in the market of underlying hypervisor and

virtualization platform.

2.2.2 Cloud Types

Inspired by the abstraction level of the provided capability, services in cloud com-

puting can be categorized to three broad classes of Infrastructure as a Service,

Platform as a Service, and Software as a Service [2].

IaaS is the most basic on demand cloud-service model which offers virtualized

resources such as computation, mass storage, bandwidth and communication as

an abstracted view on the hardware to the users. By allocation physical resource,

the virtualization layer provide each virtual machine with an environment that

it thinks the whole underlying physical resource belongs to them totally. Being

considered as the bottom layer of cloud systems, there are several dedicated infras-

tructure services available currently in the market for calculation tasks (Hadoop),

mass storage (Amazon S3, Dropbox) or even for the networks (OpenFlow). Ama-

zon Web Services [23] mainly offers VMs carrying a software stack. These cus-

tomizable VMs can be configured very similarly to the ordinary way of configuring

a physical server, but with less effort to save lots of time. More discussion on the

technical points of Amazon cloud service architecture can be found on [24]. Table

2.1 shows an extended list of IaaS cloud serveices and tools.

In PaaS model, a computing platform and a solution stack are presented to

the user as an abstracted programming platform with encapsulated infrastructure.

In this service model, developers are able to create and deploy their own applica-

tions without knowing or concerning with the number of processors or amount of

memory that applications will be using. There are normally different levels of scal-

ability and maintenance offered by these services. Sometimes other facilities for

application design, development, marshaling, database integration, security, scala-

bility, testing, and deployment are also included. Google AppEngine, a well-known

PaaS example, provide an environment for developing or hosting scalable (Python

or Java) web applications. Other famous PaaS technology platform providers in-

clude Azure by Microsoft, Facebook Platform, Salesforce, and Zoho Creator.

Software as a Service, the most dominant cloud model, is an application

delivery model in order to alleviate the burden of software maintenance, local
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Table 2.1: Infrastructure as a service: offerings and tools

Organization Cloud service Description

Amazon Elastic Compute Cloud (EC2) Virtual servers

Amazon Dynamo Key-value pair store

Amazon Simple Storage Service (S3) Mass storage

Amazon SimpleDB Database as a Service (DaaS)

Amazon CloudFront Content Distribution Network (CDN)

Amazon SQS Message queues

Dropbox Dropbox Cloud Storage Mass storage

Reservoir Open Nebula Virtual open source server pools

Google Google Big Table Distributed storage of structured data

Google Google File System Distributed file system

Eucalyptus Sys. Eucalyptus Open source AWS implementation

10gen Mongo DB Database for cloud storage

installation, development and testing. In this model, the target application en-

tirely resides on the remote server, enables users to access desirable services of

the application on demand. Several applications such as DBMS software, man-

agement software, CAD software, development software, accounting, CRM, ERP,

CM) and service desk management have relied on the SaaS model, experiencing a

growing market of $21bn in 2014 [25]. Microsoft live (office) applications, Google

docs, Salesforce CRM, Adobe Photoshop Express eCloud Manager are among the

well-known industry players who are aggressively adapting and developing SaaS

applications.

2.2.3 Cloud Deployment Models

Recommended by the National Institute of Standards and Technology (NIST), A

deployment model distinguishes the cloud environments based on some important

factors such as the ownership, size, customization capabilities, and security re-

quirements. While public cloud model has been introduced as the initial approach

to building IT cloud services, other types of service deployment have been emerged

to provide companies with different degree of flexibility or security control, each

owns its advantages and disadvantages. In this sense, we accept “public”, “private,

and “hybrid/mixed” clouds as the main deployment plans that organizations can

choose to deploy their applications.



Chapter 2. Background & Literature Review 17

A “public” cloud infrastructure comprises cloud services owned by a large

cloud service provider and publicly accessible to customers. The cloud provider is

responsible for the creation and on-going maintenance of the public cloud and its IT

resources. In this model, customers are able to dynamically provision computing

resources from cloud provider over the Internet. Studies suggest that using of

resource in public cloud can be the most cost effective deployment model for the

small and medium sized companies. In return, customers must agree to receive a

reduced control and monitoring in terms of resource security and governance.

Scenarios where cloud infrastructure is dedicated, delivered or belonged ex-

clusively to a specific company, are referred to as “private” cloud. Sharing many

characteristics of a traditional client-server architecture, the available services are

delivered to the customers on demand from a distributed infrastructure in a trans-

parent way. Security is the main concern that a private cloud would be preferred

over a public one. So, control over the sensitive data remains within the organiza-

tion for its internal use. The best-known examples of cloud management platforms

are Eucalyptus, CloudStack, OpenStack and OpenNebula to turn a data-center

into a private cloud.

In the hybrid cloud model, services from both the public and the private

cloud are brought together. Being the most common method of cloud deployment

in a large organization, hybrid cloud tries to combine the advantages of the other

models to offer firms the maximum flexibility. So, companies can leverage third

party cloud providers to control any unpredicted sudden burst in workload by

transferring certain operations or load peaks to the public cloud. Several issues

such as performance tuning, business continuity, disaster recovery, standards and

governance issues, defining and achieving quality of service (QoS), data storage

or its ownership, the interoperability issues, and security and privacy issues at

various levels of the enterprise application need to be addressed properly when an

enterprise decide to take the advantages of using a hybrid cloud architecture.

2.3 Bag of Task Application

Bag-of-Tasks are referred to applications with a large amount of independent tasks.

A task is a basic compute unit in the concerned infrastructure. If several tasks

are grouped in a larger structure that needs to be completed in full, it is refereed

as Bag of Task application. BoT application, also known as parameter sweep, are

composed of myriad of independent tasks with a huge demand of computational
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power such that easily overwhelm the compute power of todays’ personal box.

Previous studies showed that Bag of Tasks are highly proper for executing on

large distributed systems such as cluster, grid or cloud platforms [26–30].

There are at least two reasons why studying BoT applications are important

for distributed systems’ research community these days. First, many applications

in science and engineering exhibit massive parallelism and are composed of thou-

sands of independent tasks; hence, can be classified as BoT applications. Second,

profound analysis of characterization of workloads in parallel and distributed sys-

tems shows that, with few expectations, around 96% (70%) of total CPU time

consumption in the today’s grid (or cluster) environment is generated by BoTs

[31–33]. Because of this large fraction of job workloads in today’s parallel and dis-

tributed system, proper resource allocation regarding of true characteristics of BoT

applications is critical for any resource managing system that desire to achieve an

acceptable level of performance. However, scheduling of such applications is not

a routine work. There are lots of parameters, from both theoretical and practical

aspects, which make it a complex and difficult decision to properly allocate the

available resources of to run BoT tasks. Heterogeneity of platform resources (or

instances in cloud environment), dealing with not only the computation intensive

tasks but also data intensive ones, presence of users with conflicting interests and

vague objective functions, designing a fault tolerance managing system, and com-

plexity of stochastic behavior of submitted workload or job are among of most

important factors that have been proven to cause the designing of an optimal

resource management system of BoT application be as one of the most daunt-

ing problem seen in the field. A comprehensive survey about significant efforts

on design of scheduling algorithm to manage Bag of Task applications on differ-

ent homgeneous or heterogeneous distributed platforms such as Cluster, Grid, or

Cloud computing will be presented in the next sections.

2.4 Algorithmic Complexity & Approximation Schema

Complexity theory is a mathematical powerful tools to classify problems as “hard”

or “easy”, from computational point of view. There exist several problems that

can be solved in polynomial time non-deterministically, whilst a provided solution

can be verified for the correctness in polynomial time. These problem are classified

as NP complexity class. P class contains different decision problems in which are

solvable on deterministic Turing machine in the polynomial time. NP -complete
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complexity class contains all problems that are in NP class and if can be de-

cided in polynomial time, then other problems in NP class, which are reducible

to that problem in polynomial time, would be solvable in polynomial time, too.

NP -hard complexity class contains all problems that are reducible from at least

one NP -complete problem in polynomial time. NP -hard problems do not neces-

sarily belong to NP class. Regarding the input size of the problem, nobody can

yet discovered a method for solving NP -complete problems runs in a reasonable

amount of time. Figure Figure 2.2 shows a schematic diagram of relation between

P , NP , NP -complete, and NP -hard complexity classes, provided that P 6= NP .

A pseudo-polynomial time algorithm is one that its execution time is polynomial

in terms of the actual numeric value of its input, but still is exponential in the

number of input digits, which is also known as the size of the input). A problem

belogns to weakly NP-complete class provided that it is an NP -complete problem

with known pseudo-polynomial time algorithms, otherwise it is called strongly NP-

complete [34]. The interested reader is referred to the Garey & Jahnson book for

extensive points of this theory [35].

NP 

P 

NP-hard 

 

 

 

NP-Complete 

Fig. 2.2: Diagram of the relationship between P , NP NP -complete,
and NP -hard complexity classes provided that P 6= NP

The most common approach to deal with the problems in NP -complete or

NP -hard class is to relax the requirement of finding an optimal answer, and alter-

natively establish a good solution that are provably close to the optimum. All var-

ious type of heuristics such as simulated annealing, genetic algorithms, and Tabu

search are examples of techniques yield good results in practice. Approximation

techniques follows the same approach, trading quality for time. Approximation

algorithm tries to find a solution as close as possible to the optimal value in a

low-ordered reasonable amount of time. More formally:

Definition 2.4.1. a ρ-approximation algorithm for an minimization (maximiza-

tion) optimization problem is a polynomial time algorithm for which it has been
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proven that for all instances of the problem produces a solution whose value of the

approximate solution will not be more (less) than a factor ρ times of the optimum

solution.

ρ is also known as “performance guarantee ratio”, “approximation ratio”, or

“approximation factor”. ρ can be figured as the algorithm’s quality measure. In

other words, closer value of ρ to “one” shows a better solution. If the approxi-

mation ratio is bounded by a constant in polynomial-time, then the problem is

said to belong to the “APX” class. Another important class of polynomial time

approximation algorithms is known as “PTAS” (polynomial time approximation

scheme) class [36]. An algorithm of this class receives ε > 0 value as well as an

instance of an optimization problem as the input, and it produces a solution with

performance guarantee of 1 + ε [37, 38]. The execution time of a PTAS algorithms

is polynomial regarding n, for a fixed value of ε. However, a major issue with

PTAS algorithms in practice is that its running time can increase dramatically

when ε approaches to zero, for example consider the running time of an algorithm

bounded by O(n
1
ε ). To put more restriction on the algorithm running time, and

make it useful in practical situation indeed, a class of algorithms called “FPTAS”

(fully polynomial-time approximation scheme) has been introduced which guaran-

tees the algorithm to be polynomial in terms of both n and ε−1. It is obvious that

an FPTAS schema is the most desirable achievable result can be derived for an

NP− problem [38].

2.5 Scheduling Theory

The decision-making process of allocation of available resources to submitted tasks

in order to optimize one or more objectives of interest is called “scheduling”. The

reason why searching for a good schedule is worthy lies behind the fact that the

choice of schedule plays one of the most significant role on the system’s perfor-

mance. The scheduling problem are among the most difficult problem in combi-

natorial optimization and stochastic modeling theories, as characteristics of both

the resources and tasks can have many different formats. For example, tasks may

take specific priority level, starting time or certain due date. The target objective

may take several shapes, too. For example, one may be interested solely in the

minimization of the completion time of the last task, while another may be in-

terested of the minimization of the number of tasks completed in a given period,
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or minimization of the total cost of scheduling, or even a combination of several

objectives.

2.5.1 Deterministic Scheduling: Preliminaries & Notation

A very considerable amount of research was undertaken to help understand the

deterministic scheduling theory. A very useful notation has been invented and

developed during this time. Throughout this thesis, an enhanced version of this

notation will be used. We use n to refer to the total number of jobs, m to show the

number of machines, subscript j and i to refer to a task and a machine, respectively.

Both n and m are assumed to be finite. The pij represents the time required of task

j to be processed completely on machine i. The due date dj of task j represents

the latest time that job should be delivered to users. Completion of task j after dj

is allowed; however, a penalty may be incurred. To show the importance of task j

relative to the others in the system, we normally use a priority wight factor of wj .

Scheduling problems can be described by a triplet α|β|γ, where α field de-

scribes the machine environment, the β field corresponds to the processing charac-

teristics and problem constraints, and the γ notation reflects the target objective

function(s) should be optimized. Some traditional values specified in the α field

are: single machine (α = 1), Identical parallel machines (α = Pm), parallel ma-

chines with different speeds (α = Qm), and unrelated parallel machines (α = Rm).

In our study, the machine environments model can be categorized as Qm.

The β field captures the various processing restrictions on the problem. Re-

lease dates (β = rj), preemptions allowance (β = prmp), precedence constraints

(β = prec), and machine breakdowns (β = brkdwn) are some possible entries.

In this study, we will use additional constraints as appears in the Bag of Task

scheduling in cloud environment. γ field shows the objective to be optimized

(often minimized) and essentially captures the designing of scheduling algorithm.

Although a large list of possible objective functions can be figured out, there are

still a few which are fundamentally well studied before by different researchers.

Examples of possible objective functions include makespan (γ = Cmax), maximum

lateness (γ = Lmax), total weighted completion time (γ =
∑
wjCj), discounted

total weighted completion time (γ =
∑
wj(1 − e−rCj ), total weighted tardiness

(γ =
∑
wjTj), weighted number of tardy jobs (γ =

∑
wjUj), total cost and so

on [39]. In this study we mostly focus on the makespan and the total cost of

scheduling, as well as different combinations of them.
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2.5.2 Scheduling Theory Background

The work presented by Horowitz and Sahni in [40] is probably the first impor-

tant research study discussed the problem of scheduling of a set of independent

submitted tasks in a environment consists of several heterogeneous multiproces-

sor units with the goal of minimizing the makespan. Later Graham showed that

list scheduling (LS) rule can produce an O(2− 1
m) approximation schema for any

given instance of P ||Cmax problem and this worst case is tight [41]. List algorithm

selects the next available task in a pre-specified queue for scheduling and assign it

to free processors greedily. Although the worst ratio of list scheduling seems to not

be impressive, further study on the average performance of this algorithm showed

that if jobs’ processing time are uniformly distributed, then the solution provided

by list scheduling rule is asymptotically optimal when n grows faster than m [42].

Authors of [43] studied several algorithms which has been already presented

for the problem of scheduling of n tasks that are on independent from each other

and ready to run on m processors which are non-identical, too. They particularly

showed that, for large n in this problem, LPT schema (longest processing time

first) yields a near optimal solution. The non-preemptive assignment of this prob-

lem has been examined thoroughly in [44–48]. Authors showed that MULTIFIT3

and LPT algorithms can produce 13
11 (which is tight) and 4

3 −
1

3m approximation

solutions, correspondingly.

Burkard and He in [49] showed a worst case bound which is tight for scheduling

of jobs by means of MULTIFIT algorithm. The underlying system that they were

interested was two parallel uniform machines, and they combine the MULTIFIT

heuristic with FFD and LPT heuristic to reach a better solution. It is noteworthy

to mention that the non-preemptive scheduling case for n jobs which are independet

from each other on a set of uniform resources in order to reach a minimize solution

for makespan is NP -hard, even in the case of two resources.

Hochbaum and Shmoys of [50] presented the first PTAS approximation for

which the solution has a relative error ε > 0 comparing to the optimum value.

Having used an ε-dual approximation algorithm, the main idea was to take tasks

execution times away into k = 1
ε2

equal span intervals, and then round each exe-

cution times to the lower end of containing interval. Although the new version of

this problem (with fixed number of task lengths) now is solvable by using a simple

3The MULTIFIT algorithm is based on the bin-packing heuristic algorithm called the first-fit de-
creasing (FFD). MULTIFIT uses FFD and binary search to find the shortest feasible schedule.
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dynamic programming technique in polynomial time, its running time is so huge

(O
(
(nε )

1
ε2
)
), which makes it disputable in practical situation.

Authors of [51] presented the first efficient polynomial O(logm) and 6− ap-

proximations for the problem ofQ|prec|Cmax4. In [52], it has been shown that there

is not any approximation solution for the problem of P |prec|Cmax with approxi-

mation ratio better than 4
3 unless P = NP . In [53], author derived an improved

2-approximation version for these two problems. The essential idea is to give pri-

ority to those tasks that have highest level within the critical path (CP). In [54],

several PTAS solutions for scheduling of n jobs with given processing time on a set

of uniformly related machines with different weights have been presented. They

analyzed several objective functions corresponded to the makespan or completion

time somehow, such as optimizing different lp norms related to the completion time

vector5, or the problem of job scheduling with rejection for which delay to run a

job after its deadline associates with a specific amount of penalty, and the final

aim of the problem is to minimize the maximum amount of completion time in

addition to minimize the total penalty of rejected tasks. The basic idea used in [54]

was replacing the size of all jobs by a nearest constant number, and then giving an

exact solution for the rounded instance. Finally, they handle to re-construct a near

optimal solution for the original scheduling problem using a backward method. We

will use a similar rounding technique in our work, too, which will be presented in

Chapters 4 and 5.

Sahni presented an FPTAS algorithm for the minimum criteria problem of

P2||
∑
wjCj [57]. The main idea used in that work was to order tasks based on

the weighted shortest processing time (WSPT) rule. This technique later used

by different researchers to solve many other scheduling problems (e.g., look at a

discussion presented in [58] introduced an FPTAS for Qm||
∑
wjCj).

If each job has a release date rj then minimizing
∑
Cj is NP -hard in the non-

preemptive case. Lenstra [59] showed that even the problem with single machine

case (1|rj |
∑
Cj) belongs to NP -hard class. Baker presented an O(nlogn) solution

for the preemptive version of this problem, i.e. 1|prmt, rj |
∑
Cj [60]. Before, Smith

[61] showed that the problem of 1|d̄j |
∑
Cj can be solved in O(nlogn) by choosing

the job with largest processing time at each time. Interestingly, authors of [62]

showed that the problem of 1|prmt, d̄j , rj |
∑
Cj is NP -hard. It means that if there

4scheduling of jobs with some defined precedence-constrained running on a set of uniform machines
in parallel manner

5This objective function is motivated by storage allocation problems [55, 56]
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exist both release dates and deadlines in a problem, there is not any polynomial-

time solution even in the simple case of only one machine. Hence, we can solve

only problems with either deadlines or release dates, but not both.

First approximation algorithms for the problem of minimization of makespan

for a set of jobs with precedence constrained and release date on a set of uni-

form machines in parallel manner (Qm|prec, rj |Cmax) has been presented in [63].

Their algorithm has an O(
√
m) approximation ratio. The approximation bound

for this problem has been improved significantly in [64] where Chudak invented

an O(logm)-approximation schema, after fifteen years. Recently, authors of [65]

derived a heuristic algorithm with improved ratio bound of 1+O(
√
m) for the prob-

lem of Qm|rj |Cmax. Du showed that the problem of Pm|prmt, rj |
∑
Cj is NP -hard,

even for two identical and parallel machines [66]. Thus, when jobs have different

release dates there is no hope to develop a polynomial time optimal solution for

multiple machines. The case is much promising when jobs possess different dead-

lines. Authors in [67] gave a polynomial-time algorithm for Pm>1|prmt, d̄j |
∑
Cj ,

when all tasks are submitted to be scheduled at time t = 0, preemption is allowed,

and all jobs must complete its processing before or at their deadline. Afterward,

Gonzales et. al. introduced a polynomial-time solution for Qm|prmt, d̄j |
∑
Cj

problem [68].

In [69], authors analyze the problem of scheduling n jobs without precedence

constraints on a set of m uniform machines while preemption is allowed without

any penalty. They have been successfully generating the entire Pareto-optimal

curve of schedules for the flow-time and make-span objectives. Flow time, defined

as fj = Cj− rj , measures how long a job remains in our system, waiting to receive

the required service. From the quality of service point of view, long tasks can

tolerate longer delays than short tasks. The strategy they used was to develop an

initial algorithm that produces a schedule with minimum flow-time, subject to a

fixed make-span deadline, which is an alternation between two well known rules

of Shortest Processing Time on Fastest Machine (SPT-FM) as well as Longest

Remaining Processing Time on Fastest Machine (LRPT-FM). A modified version

of this idea is utilized in our study, which will be presented in Chapter 5.

Scheduling of identical independent jobs on a set of uniform parallel machines

when processing times or machine speeds are random and preemption is not al-

lowed has been addressed first in [70]. Authors discussed that in random case the

meaning of efficiency and cost-effectiveness of a give schedule is difficult to define.
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They argued that not only the expected value of an objective parameter is im-

portant, but the variance of those performance metrics should also be considered.

In their work, authors addressed two performance measure of minimizing the ex-

pected sum of completion times and maximizing the probability that jobs will be

finished before a common due date.

And finally, the problem of minimizing the total tardiness or total earliness

has been shown to be challenging scheduling case even in the presence of single

processor. All of the introduced techniques such as integer programming, branch

and bound, etc. take too much computational time to reach a promising solution

[71–76]. Surveys of techniques introduced for scheduling with objectives of total

earliness and total tardiness can be found in [77–80]. There are other new criteria

have been defined in this context, such as stretch factor, sj =
fj
pj

, which reflects user

willingness in a better way. Interested reader is referred to works on [79, 81–84]

2.6 Resource Allocation in HPC Systems

The well established paradigm of distributed computing tries to combine the ca-

pability of myriad of resources which are distributed through a network in an

efficient way. This paradigm normally uses to satisfy major needs of distributed

application such as scalability, reliability, and information sharing. In many type

of applications, the nature of distributed applications demand using a communi-

cation network that connects many boxes. A distributed system often possess a

higher reliability than a single CPU or machine. Apparently node failures in a

distributed system should not stop running of the whole application comparing

to failure in a single resource. Two important techniques to provide a reliable

distributed system are check pointing and replication. For a thorough review of

the original motivations from the users point of view into distributed systems,

interested reader is referred to [1]. Scalability can be defined as the ability of a

system to be enlarged to accommodate and handle a growing amount of workload.

Adding more resources into a particular application can be categorized broadly as

either horizontal or vertical scaling. Scaling out6 is referring to add more nodes

or resources to a system. For example, adding a new computing resource to an

already running system which is distributed, too. Alternatively, a system can be

scaled up7. It means to add one (or more) powerful resource(s) to a single node

6Scale horizontally
7Vertical scaling



Chapter 2. Background & Literature Review 26

in a system while keeping other resources unchanged. For example by adding a

faster CPU (or replacing the old RAM units with faster memory units) to a single

computer box, we literally scale up the system.

HPC systems can be categorized to three main classes of “cluster”, “grid”,

and “cloud”. Cluster systems (which is a base platform of all other distributed

computing paradigm) is an aggregation of the local, independent resources work

closely together to share the workload, with the main goal of representing a uniform

system image to the external users. The befit of using a cluster system over a

supercomputer is that normally the total cost of buying and setting up individual

machines by a high-speed network is less than higher-priced supercomputer system,

while a cluster results in higher reliability, higher availability, as well as lower

maintenance costs. IBM’s Parallel Sysplex [85], Microsoft Cluster Service [86],

and Oracle Solaris Cluster [87] are different technologies from today big software

vendors to implement a cluster system. A modern cluster constitutes of a set

of computer systems which connected together via high-speed and low-latency

network (or LAN switches) and have access to different storage devices, too [78].

Such systems can be served as execution of compute-intensive applications as well

as replicated storage or backup servers.

Resources in grid computing are connected together in a more loosely cou-

pled way than clusters. Some specialized software normally used in grid computing

to make it easier to mange distribution of data and algorithms across the grid’s

machines. Grid systems have been known for different administrative domains

which are dispersed geographically while each of these domain sites has possess

their own access policy, make them a distinguishable contrast form cluster sys-

tems. Examples of famous grid system includes World Community Grid which

aims to create the world’s largest public computing grid to tackle most impor-

tant scientific research projects [88], European Grid Infrastructure which tries to

provide a grid computing environment by accessing to high-throughput computing

resources across Europe [89], folding project in Stanford University which concerns

of disease research to simulates protein folding [90], SETI@home runs on top of

BOINC8 environment and hosted by University of California, Berkeley with the

main purpose of analyzing radio signals to detect intelligent life outside Earth [91],

Einstein@Home which intend to search through data from the LIGO detectors for

evidence of continuous gravitational-wave sources [92], and the list goes on.

8BOINC (Berkeley Open Infrastructure for Network Computing) is a famous open source middle-ware
system used for volunteer and grid computing
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Cloud computing, as mentioned several times before in this study, bring the

dynamic provision of scalable virtualized resources over the network (or Internet)

worldwide. Visualization is a key concept utilized by cloud paradigm to provide on-

demand resource reservation. For a comprehensive comparison between grid and

cloud paradigm from different aspects such as architecture, programming, data,

security or compute model, and the business schema we refer interested reader to

[78, 93]. Due to the fact that resource allocation scheam used for HPC systems have

a huge impact on their performances, we try to collect a compact introduction to

different feature of some well known resource management strategies used in these

systems in the following sections. Interested readers are referred to [78, 93, 94] for

a comprehensive surveys and system taxonomies.

2.7 Resource Allocation in Cluster

There are currently two major approaches of “batch scheduling” and “virtual

slices” to share resources in a cluster. In batch systems, resources’ requests are

placed in some queues and wait till gain exclusive access to those resources, while in

virtualized approach, allow users to have a virtual slice of actual physical resources.

A major problem in both approaches is that a percentage of resources is not being

fully utilized; hence, the resources are wasted. During last two decades, several

prototypes and tools have been constructed to address properly the problem of

sharing cluster resources. Here we present a brief summary of the top major con-

temporary and active projects for handling the problem of resource allocation in

cluster systems. The list includes HTCondor [95], MOSIX [96, 97], QNX [98, 99],

and LSF [100] projects.

HTCondor is a free open source project running by the Center for High

Throughput Computing in the Department of Computer Sciences at the University

of Wisconsin-Madison since 1984 [101]. Condor framework provides a job queuing

mechanism and priority scheduling policy to monitor and mange effectively con-

sumption of available resources as well as to accomplish workload management of

compute-intensive jobs. It supports transparent migration of a job to a different

machine if it detects that the current hosted machine is no longer available. The

essential Conder’s features includes check-pointing and automatic transparent mi-

gration9, remote system calls, ordering of job execution to satisfy dependencies

9A job can be transparently migrated to a different machine if HTCondor detects that the current
hosted machine is no longer available
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among jobs, introducing pool of machines, constructing a grid computing envi-

ronment, handling to return back resources promptly upon owner request, and

classAd mechanism to match-make between resource and jobs. ClassAd means

that while jobs can specify both requirements and preferences of themselves, each

machine can also state preferences and requirements of jobs it is willing to execute.

For a detailed specification of Conder system, interested readers are referred to [95]

and a complete manual in [102].

MOSIX10 is a distributed cluster operating system intended to improve the

Linux kernel to manage cluster computing and multi-cluster clouds. It has been

developed since 1977 at the Hebrew University of Jerusalem. It provides applica-

tions with a SSI11 as a single Linux run-time environment. It supports automatic

resource discovery and dynamic load-balancing, which means users can continu-

ously run their normal applications in a sandbox while MOSIX transparently and

automatically seek new resources or migrate processes among nodes or live queuing

of batch jobs. form the scalability point of view, workstation and cluster nodes

can join or leave at any time as a full transparency model. By using optimiza-

tion algorithms that respond to variations in cluster resources and a decentralized

control and autonomy model, MOSIX is more robust against failure. Several tests

confirms that this cluster operating system is most suitable for running scientific

and engineering applications with low to moderate amount of I/O. The interested

reader is referred to [103–107] for a comprehensive review about MOSIX.

QNX is a commercial distributed operating system which was originally devel-

oped by Canadian company QNX Software Systems12 and supports real-time and

embedded systems by successfully applying the idea of micro-kernel operating sys-

tems. This operating system has been successfully used in a variety of devices such

as shipping navigation systems, industrial control systems, medical instruments,

defense systems, nuclear power plants, and other mission-critical applications. The

main basic idea of QNX is that most of its kernels should run in the form of small

tasks, or micro-servers which makes the whole operating system quite small. This

idea is completely different from other traditional monolithic kernels like Windows

9x series or Linux, which thier kernel composed of huge numbers of parts with

special abilities. The main kernel only includes CPU scheduling, inter-process

communication, interrupt handler and timer. All other abilities (even memory

management) must run as user processes.

10Multicomputer OS for unIX
11Single System Image cluster is a cluster environment that appears to be one single machine
12QNX company was acquired by BlackBerry in 2010
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Other main features of QNX microkernel include transparent distributed pro-

cessing, modular architecture, symmetric mulitprocessing (SMP), process monitor-

ing, and following to POSIX API specifications. Because QNX separates compo-

nents such as drivers, protocol stacks, file systems, and applications from each other

and from the microkernel itself in a clean way, the system upgrades and software

hot-swaps on the fly is supported without expensive downtime or any experience of

interruptions in its servicing functionality [99]. In addition, applications and sys-

tem services can distributed through the without any special code within the QNX

microkernel system. QNX allows leveraging of massive multiprocessing compute

power of the available multi-core and multi-processor platforms, while offering a

light approach to fault isolation as well as automatic recovery, which provide a

self-healing system [99]. The interested reader is referred to [99, 108–111] for more

in-depth information on QNX.

Platform LSF13 is an enterprise-class job scheduler and resource management

suite for distributed HPC environments which was originally developed by Plat-

form Computing and was acquired by IBM in 2012. It supports policy-driven allo-

cation (by creating multiple queues) and high-throughput low-latency scheduling

tools to handles job management across distributed resources for executing batch

jobs on networked Unix and Windows machiens. LSF provides several tools for

managing, monitoring, and analyzing the workload for a heterogeneous network of

computers and it unites a group of UNIX and NT computers into a single system

to make better use of the resources on a network. It automatically selects hosts

in a heterogeneous environment by considering both the current load conditions

as well as the resource requirements of the applications 14 into account [112]. It is

also one of the job scheduler mechanisms used by GRAM15 in Globus Toolkit. For

a complete overview of LSF suite, the interested reader is referred to [113–116]

2.8 Resource Allocation in Grid

A grid system can be described as an agreement between several independent

(and most likely selfish) organizations to share resources, with little or no primary

controlling unit for any type of mandatory interaction. Each organization owns

and runs a cluster which can possess identical or non-identical processors. The

13Load Sharing Facility
14batch processing
15Grid resource allocation manager is a software component of the Globus for accomplishing several

features such as lcoating, submitting, monitoring, and canceling jobs on the resources of Grid system
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objective of each organization could be minimizing the time at which all the locally

produced jobs are finished. Interestingly, an organization does not care about the

performance of other organizations or about the actual global makespan. In this

setting the famous problem of multi-organization scheduling problem (MOSP) is

defined as the minimization of the makespan of all jobs, which is not hard to show

that MOSP is an NP-hard problem. In addition, a non-cooperative solution for

which all the organizations compute and minimize their own make-span can be

several times worse than the optimal one. From the game theory, we know that

a specific price must be paid to get the organizations incentive to participate for

producing a better solution within the platform when each companies tends to

behave selfishly. More discussions about this approach can be found in [78, 117–

120]

In a remarkable work in [121], authors addressed the problem of on-line

scheduling of jobs in a hierarchical server environment. The goal is to minimize

the maximum total load on each server. Here, being online means that decisions

must be made without any knowledge of future; in addition, previous decisions

can not be revoked. Hierarchical servers refers to the servers which form a hier-

archy of capability. In this way, a job which could run on a given server may run

on any higher server, too. This problem is an important practical paradigm for

which involves different classes of service and it has interesting relationship with

the problem of scheduling on related machines. They investigated several variants

of the problem such as existing of weighted jobs, possibility of job fraction, and

temporary jobs which may depart the system after specific amount of time. For

each of these variants, some deterministic or randomized algorithms have been

presented and their lower bounds and competitive ratios have been analyzed.

In [122], authors addressed non-clairvoyant online job scheduling in Grids.

Their grid model consists of a large pool of identical CPU’s within several ma-

chines. Jobs are submitted over time and cannot be executed on different ma-

chines once scheduled. For the problem of GPm|sizej |Cmax, their result proved

that the guaranteed makespan by List scheduling in multiprocessing system, i.e.

2 − 1
m , is not achievable for Grid environment unless P = NP . In other words,

list algorithm remarkably preforms worse in Grids comparing to its performance in

traditional distributed systems. They improved conventional list scheduling and

presented an approach that uses several lists for Grid environment. Their anal-

ysis showed that the approximation factor for the improved version is 3 in the

concurrent-submission case and 5 in the over-time submission case.
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Authors in [123] presented a dynamic, policy-based, and adaptive allocation

algorithm which uses a two-layer hierarchical structure respecting the main prop-

erties of Grids for the problem of GPm|rj , sizej |Cmax. Their analysis showed a

decent bounds of the competitive ratio for certain workload pattern.

Authors of [124] address the problem of online scheduling of parallel jobs on

available resources in a grid environment in a non-preemptive non-clairvoyant man-

ner. They assumed there are some tools that can predict the unknown execution

time of each task by using the history of tasks running time. To analyze the behav-

ior of several resource allocation strategies, they evaluated different performance

metrics, such as mean waiting time, mean slowdown, utilization, throughput, and

sum of weighted completion times (
∑
pj × sizej ×Cj16 which are commonly used

to show the goals of different stack-holders of a typical Grid environment (i.e., end-

users, resource provider, and system administrator, respectively). They presented

a deep analysis of performance evaluation of fourteen allocations strategies. The

simulation results revealed that MPL and LBalS allocation strategies are more

robust and can outperform the rest, for the objective of either minimizing the total

waiting time, total weighted completion time, or total system slowdown. Another

interesting observation made by these authors is that the users’ run time estimate

can not help to improve the performance of any strategy. So, they suggested that a

simple scheduler with minimal requirement of information can achieve a significant

performance in practice.

There have been several resource management systems for Grid environment

introduced in the last few years with different architectural design, scope, schedul-

ing policy, and platform target, including (but not limited to) 2k [126], AppLeS

[127], Condor [101], European DataGrid [128], Globus Toolkit[129], Nimrod/G

[130], and PUNCH [131]. For a deep understanding of characteristics and architec-

tural concepts of above grid resource management systems, the interested rereads

are referred to [132–139]. Further, a complete overview of the algorithms proposed

for the workflow scheduling problem on grid systems can be found in [140–146].

Several heuristics have been proposed for scheduling of BoT applications on Grid,

too; such as Max-Min, Min-Min, Round robin order Replication[147], Sufferage

[148], XSufferage [149], and Storage Affinity [150]. Almost all of these algorithm

can not guarantee the quality of schedule in practical situation, especially because

they are too dependent on the prediction information about tasks and performance

16Refer to [125]) for getting more information about advantages of using this metric
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of grid resources, which is rarely available. A brief description of the most well

known resource allocation strategies in Grid can be found in Table 2.2.

Lee and Zomaya in [151] introduced two novel scheduling algorithms, called

Shared-Input-data-based Listing (SIL) (target application is data-intensive BoT)

and the Multiple Queues with Duplication (MQD) (target application is computa-

tionally intensive BoT) in grid platform to tackle large-scale bag-of-tasks schedul-

ing problems. The primary strong point of both mentioned algorithms is the

scheduling decision is made without fully accurate performance information. SIL is

composed of two main phases of “Task Grouping Phase”, and “Scheduling Phase”.

The former tries to categorize tasks into a collection of smaller lists regarding the

patterns that are detected on data sharing observation. It then assigns these lists

to appropriate sites. The latter step dynamically assigns tasks to different hosts.

MQD Algorithm make the scheduling decisions by taking the most recent work-

load motif into account within the hosts. To address the the dynamic nature of

the grid (such as resource failure and inefficient system utilization), it also uses a

task duplication approach to both shorten the makespan and improve system uti-

lization. Experimental results showed that both SIL and MQD outperforms many

previously well-known Grid scheduling algorithms (i.e., SA, Max-Min, Min-Min,

Sufferage and RR) in terms of both reducing the average makespan and handling

resource failures.

Anglano and Canonico in [152] analyze the scheduling problem of a set of

competing BoT applications that are submitted for execution on a Desktop Grid

for the goal of minimizing both the makespan and the entire turnaround time17.

The computing power provided by desktop grid make it particularly a perfect

platform for execution of BoT applications. Due to the fact that collecting re-

sources’ or applications’ information is too difficult or inaccurate, they presented a

knowledge-free approach, i.e., no information concerning the resources or the ap-

plications is available to the scheduler when jobs submitted to the system. Their

main results confirmed that (1) a simple scheduling policy such as FCFS often

results in unsatisfactory performance, and (2) there are suitable knowledge-free

scheduling policies that can obtain a performance level which is comparable to

that of knowledge-based strategies. Their proposed strategy consists of two main

independent steps of “bag selection” and then “scheduling of individual bag”. They

used WQR-FT policy for scheduling of individual BoTs. WQR-FT strategy is an

extended version of the classical WorkQueue algorithm by adopting check-pointing

17Turnaround time can be defined as the sum of the waiting times
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and automatic resubmission of failed tasks (more details can be found in [153]).

To evaluate the effectiveness of the proposed policy, authors of [152] performed

an exhaustive study to compare its performance with different knowledge-free bag

selection policies, such as FCFS-Excl, FCFS-Share, Round Robin, RR with No

Replica First, and Longest Idle. Their findings declare that there is not a sin-

gle strategy that can perform better for all different workload types. Specifically,

FCFS-based strategies can manage better those workloads with small task gran-

ularity, while Round Robin based strategies perform better for larger granularity

values. This result is consistent with our findings which will be presented in details

in Sections 5 and 6.

Benoit et al. in [154] presented the first efficient online scheduling technique

for multiple bag-oftasks applications on a master-worker platform which composed

of heterogeneous resources 18. In the online model there is not any beforehand

static information about the workload distribution characteristics before the ac-

tual execution of tasks. Their aim was to minimizes the maximum stretch19 of

the concurrent applications20. The big picture of their idea is to first derive an

optimal solution for the offline setting by solving a linear program system, and

then this solution has been adapted and recomputed for online scenarios to re-

act dynamically upon the arrival of a new tasks. The experimental comparisons

showed a significant performance improvement against classical existing greedy

heuristics such as FIFO, shortest processing time, shortest remaining processing

time, round-robin, minimum completion time, and demand driven.

A notable work in [156] analyzed the scalability of Bag-of-Tasks applications

running on dedicated, master–slave platforms which composed of homogeneous

resources. They could elaborately define a lower bound on the reachable scala-

bility on this infrastructure. Scalability can be categorized as either “fixed” or

“scaled” problem size21 [157, 158]. Both of the above mentioned scalability types

have been analyzed in their work. They proposed “input file affinity” factor to

measure the related scalability of an application. It is an intrinsic feature of the

given application and quantifies the degree of input files’ sharing among appli-

cation tasks. By correctly using this measure, they presented a new two-phase

18It is quite similar to classical client-server model
19Stretch can be interpreted as the maximum ratio of the actual time that an application has spent

in the system to the entire time that this application would have spent if executed alone[155]
20The aim is equivalent to minimize the largest slowdown of a given job which caused entirely by its

concurrent execution[155]
21also known as iso-efficiency metric
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scheduling algorithm called “dynamic clustering” to improve the scheduling scala-

bility of running BoT applications on master–slave system. Their new scheduling

strategy does not need to have a priori information about either the actual or the

estimated task execution times, i.e., it is totally “oblivious” to running time of

tasks. The result of comparing the scalability of their proposed algorithm to some

other well-known classic solutions, such as WorkQueue with Replication (WQR)

[153], min–min, Sufferage [159], and many others has shown that their proposed

algorithm is significantly more scalable than conventional heuristics, even those

which are not oblivious to task execution times.

Casanova et. al. in [160] studied the problem of non-clairvoyant scheduling

of multiple BoT applications when tasks’ characteristics follow an unknown distri-

bution with the aim of maximization of system throughput. They considered star-

shaped platforms made of a master machine linked to several heterogeneous worker

processors, whlie links’ communication pattern followed the “bounded multi-port”

model presented by Hong and Prasanna22 [161]. Their approach was to first drive

a polynomial-time approximation scheme for the clairvoyant case (via modleing

the problem as a linear program), and then splitting each application into sev-

eral virtual applications such that members of same virtual application can be

considered to have similar workload size by a factor of 1 + ε (semi-identical parti-

tioning). Through extensive experiments as well as theoretical analysis, they have

demonstrated that their heuristic always reach significantly better performance

than existing approaches such as on-demand heuristic, even in the very difficult

non-clairvoyant context.

Bertin et. al. in [162] have proposed a fair optimal distributed scheduling

algorithm for running multiple BoT applications with arbitrary communication-to-

computation ratio on a master-worker Grid platform with the aim of maximizing

throughput. The basic idea of their work was to convert the original problem

into the well known optimal flow control of multi-path routing problem, and then

applying the Distributed Lagrangian optimization23 (DLO) methodologies. This

solution gives a distributed self-stabilizing algorithm to control the supply and

demand dynamically. While DLO has been already utilized extensively in the

networking systems, its usage is very new yet appealing in the context of resource

sharing problem due to the fact that designer can achieve the optimal solution via

choosing among several fairness criteria in a hierarchical and distributed fashion.

22In this model, a processor can be involved simultaneously in several communications, however there
is a limit for the sum of communications bandwidth per node (both upload and download)

23including usage of distributed gradient descent method
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Their general proposed approach is based on following three steps. First, the

original problem has been modeled as a concave non-linear maximization problem.

Second, partial derivatives24 has been solved regarding to each primal and dual

variables; and finally, a distributed algorithm has been designed to implement the

structure of optimal values suggested by the previous step. It also has been shown

that the proposed algorithm is very efficient and converge in a acceptable running

time. It performs very efficient for large and complex grid environment with lots

of heterogeneous resources and combination of applications with CPU-bound and

network-bound features. In chapter 5 and 6, we will exploit a similar approach

based on Lagrangian optimization for the problem of BoT scheduling in Cloud

platform.

2.9 Resource Allocation in Cloud

Cloud computing paradigm allows a cost-effective solution for dynamic provision

and server consolidation to improve the utilization of system while keeping the total

cost low. Virtual machine technology, as a building block of this new technology,

can provide isolation, consolidation, and live migration of different workloads in

an efficient way. There are two extreme models of “datacenter virtualization” and

“infrastructure provision” from business point of view to cloud25. In the “datacen-

ter virtualization” model, enterprise companies normally understand the cloud as

an extension of virtualization in the datacenter. Their expectation from an infras-

tructure automation tool is orchestrating or simplifying the management of the

virtualized resources. In this philosophy, which is mainly supported by VMware,

the whole data center with its legacy applications is moved into virtualization in-

frastructure by building a private cloud on top of existing virtualized system. In

the second model, however, the cloud management tool can be considered as a

set of simple APIs to provision and supply virtualized resources on-demand. This

suitable model for building enterprise public cloud has a simple management tools

of virtual resources for launching new applications on IaaS platform.

Amazon Elastic Compute Cloud, Microsoft Azure, Google Application En-

gine, Eucalyptus, CloudStack, OpenNebula, and OpenStack are examples of well-

known cloud computing solutions. Amazon EC2 is a classic standard IaaS model

24Lagrangian function
25Sometimes “Cloud-in” and “Cloud-out” terms are used instead
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where enables a user to use a rental service of re-sizable virtual compute capac-

ity over the Internet via API’s26 to start/stop instances with a customized pre-

installed operating system. Virtualization in EC2 is doable by executing Xen on

top of the physical machines[163].

Eucalyptus27 is a Linux-based software framework dedicated to bring a cloud

computing environment into companies[164]. It enables pooling compute, storage,

and network resources that can be dynamically scaled up or down as application

workloads change. Eucalyptus has a set of API’s that is compatible with Amazon

EC2, makes enterprises convince to go the hybrid cloud model by outsourcing

the workload into the Amazon public cloud whenever is necessary. This software

has six main parts as: “Node Controller” (NC) which hosts the virtual machine

instances and manages the virtual network endpoints; “Cloud Controller” (CLC)

that offers EC2-compatible interfaces; “Walrus” which is a put/get storage service

and offers persistent storage to all of the virtual machines (similar to S3); “Cluster

Controller” (CC) which manages instance execution and service level agreements

per cluster; “Storage Controller” (SC)which manages block volumes and snapshots

to the instances within its specific cluster (equivalent to AWS EBS); and the

optional “VMware Broker” which physically runs on top of CC and provides an

AWS-compatible interface for VMware environments. For a detail explanation of

architecture of the Eucalyptus system, the interested reader is referred to [165].

Apache CloudStack and OpenNebula are two open source cloud computing

softwares for providing a highly available scalable cloud computing platform ser-

vice [166, 167]. They use existing hypervisors technologiess such as KVM, vSphere,

and XenServer for deploying and managing large networks of virtual systems. In

addition to components for accounting of network, compute and storage resources,

CloudStack and OpenNebula possess native API’s as well as Amazon S3/EC2 com-

patible API and primary/secondary storage support to build private, public and

hybrid implementations of infrastructure as a service. The interested reader can

find more detailed features and key functionality of CloudStack and OpenNebula

in [166, 168], respectively.

OpenStack is an open source cloud operating system founded by Rackspace

and NASA, and with partnerships with big companies such as AT&T, HP and

IBM and more than 200 companies, for building public or private enterprise scale

IaaS clouds. It enables enterprises and service providers to control, provision and

26web service interfaces
27Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems[164]
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manage large pools of compute, storage and networking resources within a data

center by using a web-based administrative control dashboard. Its distributed

and asynchronous architecture provides flexible designing an scalable cloud with

ability to integrate with legacy systems and third party technologies. Having no

proprietary hardware/software pre-requirements, OpenStack is designed to oper-

ate with multiple type of hypervisors, including KVM, LXC and XenServer. By

offering high-performance computing (HPC) for intensive workloads and scaling

vertically and horizontally, it can work nicely with Hadoop for big data needs, too.

Other key features include petabytes object storage, live VM management via

OpenStack image service , VM image caching, role based access control (RBAC),

resource utilization quotas, Local Area Networks management, and several other

useful features [169, 170].

Oprescu et al. in [171] presented BaTS to address the problem of executing

bags of tasks in the cloud with the objective of minimizing the completion time

under budget-constrained. Unlike similar studies with the same objectives, BaTS

does not require a priori knowledge and dynamically learns application perfor-

mance during runtime. In their task and machine model, they assume that the

tasks preemption is allowed, and all machines belong to certain categories (like

EC2 “Standard Large”). Their proposed algorithm needs no advance information

about task completion times and can learn the application throughput at run-time.

The basic idea is to anticipate an average value for the task execution time of each

group of tasks using an initial sampling phase , and then apply a cumulative mov-

ing average mechanism. Similarly, their system estimates the average speeds of

the available machines. Then, their approach formulate the problem of the best

affordable makespan meeting cost constraints via a “non-linear integer program-

ming” model (a Bounded Knapsack Problem), and finally solve it by means of

dynamic programming approach.

Their work differs from our system in several ways: First, their approach

assume that preemption with resume is allowed at arbitrary times. This turns the

problem out to be simpler comparing to the case of non-preemption tasks in our

study. We explain in more detail later how an optimized solution can be reached

if preemption with resume is allowed. Second, they only introduced a heuristic to

meet the objectives, we try to find the approximation factor of our solution, too. In

addition, by delivering a set of Pareto frontier solutions, our approach provide the

user with full flexibility of time-cost selection pairs, rather than forcing him/her

to choice first the budget. Finally, while they only addressed the single public
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cloud environment, our work exploits a hybrid cloud model including the local

computation resources.

Authors of [172] presented a portfolio scheduling to address the problem of

execution of long running time scientific applications on IaaS cloud resources.

Several studies demonstrated that there is not a unique scheduling algorithm able

to perform well against the various characteristics of scientific workloads. So,

authors of [172] proposed to select the most suitable policy dynamically from a

set of different available scheduling policies, called portfolio, based on the current

workload or system conditions. The utility function to represent user experience

in this work is quite similar to the p-norm model which we introduce in Chapter

4. The idea of portfolio scheduling is quite interesting and can be used with

conjunction of our work, too. One drawback of this idea is that evaluating all

policies may need a long time to accomplish in practice. Secondly, tackling bi-

objective utility function has not been addressed in the above-mentioned work.

Authors of [173] introduced a budget-constrained scheduling framework, called

BaTS, for executing heavy-tailed bags of tasks on Amazon EC2 platform. Likewise

our framework, BaTS framework prodece a list of makespan/cost choices based on

the estimation values, and delivers it to the user. Their idea, which is different

from us, is to replicate running tasks onto multiple idle machines, however. The

selection process seems to be very challenging and must affect significantly on the

overall performance of the system. Authors claimed that tasks would only repli-

cate on the idle machines, some questions arise here. For example, what is the

optimal time framework that BaTS framework should wait to consider a machine

as be an idle one. If this should be less than one ATU framework (i.e., one hour),

then it seems that the idea of replication is pretty useless. Because almost all

of the long tailed tasks will take more than one hour to accomplish. It means

that replication of long running time tasks increase the total cost of scheduling.

It seems that migration of task is a better idea than its replication if the current

machine that currently execute the task is not suitable. In our work, we try to

estimate the optimum value for the workload of each resource initially to avoid

idle machines in the case of heavy-tailed tasks. However, we admit that our idea

cannot cover all scenarios, too. This area of research needs further investigation

and study, we assume.

Authors of [174] presented SpeQuloS framework to enhances the Quality of
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Service of running BoT applications on cest effort distributed computing infras-

tructures28 with the main objectives of reducing the total execution time as well

as improving the stability of scheduling process. The main idea behind the work

is to monitor continuously the execution of tasks and dynamically get fast and re-

liable resources from public cloud whenever the situation becomes critical. Several

strategies have been proposed for decision of how and when resources should be

provisioned from cloud, too. There are some issues remained unanswered in this

report. Characterize of tail effect is among most challenging one. The metrics

that have been defined should be examined thoroughly in more platforms. In ad-

dition, applying the idea presented in SpeQuloS framework on hybrid cloud must

be carefully adjusted with the characteristics of new environment. Finally, the

idea must be enhanced to comply with the multi-objective schema, for example by

using similar methods suggested in our framework.

Authors of [175] investigate several leasing strategies from a broker’s perspec-

tive, and propose a framework to minimize the rental cost of cloud resources by by

finding a good combination of both on-demand and reserved instances for execut-

ing of a set of independent jobs with the assumption of knowing all characteristics

of tasks in advance. They have examined performance of their framework against

many job or VM selection strategies such as FCFS, round-robin, LJF, and so on to

evaluate the best reservation plan. The idea of making use of both on-demand and

reserved instances to reduce cost is pretty good and we consider to apply this idea

in our future plan. Their work differs from us in other aspects such as reaching to

a trade-off between money and time from users point of view, and the process of

suggesting multiple optimal points to the user to choose from. Our work covers

the non-clairvoyant case as well.

2.10 Summary

This chapter provided a brief background knowledge for readers to follow the rest

of the thesis. The background contains cloud computing and virtualization con-

cepts, features of scheduling theories, and introducing different methods of resource

allocation in traditional and modern HPC systems. In particular, we emphasized

28BE-DCI is an infrastructure that provides not being used computing units without any warrant
that the computing resources could be available during the application execution, BE-DCI may include
Desktop Grids or Cloud Spot Instances.
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the Bag-of-Tasks (BoT) scheduling because it has become more common in our re-

search topic. The concepts of these features will help to enrich the understandings

of the system, the modleing and the problem we are tackling in future chapters.
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Table 2.2: Some well known Grid resource allocation strategies

Strategy Description

Random Allocates job to randomly the admissible site

WQR Being unaware about the length of tasks, WorkQueue with Replication
policy schedules the tasks of in an arbitrary order, to execute in the
available processors

Max-Min The task with maximum earliest completion time among all of the un-
scheduled tasks with least completion time over all of the hosts is allo-
cated fairly to the host on which the minimum earliest completion time
is expected

Min-Min Selects the task that has the shortest earliest completion time and al-
locates it the host on which the minimum earliest completion time is
expected

Sufferage Schedules a task with longest value of difference between its earliest
completion time and its second earliest completion time. In other words,
it chooses the task that will be most penalized if is not allocated to the
most favorable machine but on its second most favorable box

XSufferage Allocates a task with the largest value of earliest site-level completion
time and its second earliest site-level completion time

Storage

Affinity

Aiming at minimizing data transfer, it determines assignments based on
the the amount of the input data already stored in the site

ML (Min-Load) Assign job to node with the least load per processor

MPL (Min-Parallel-Load) Assign job to node with the lowest parallel load per
processor

MLB (Min-Lower-Bound) Strategy chooses the node with the least possible
lower bound of completion time of previously assigned jobs, that is the
node with the lowest work per processor. The value normally provided
by the user at job submission, or estimated execution time is used.

MCT (Min-Completion-Time) the earliest possible completion time is deter-
mined based on a partial schedule of already assigned jobs

MWT Allocates a job to the node with minimum average job waiting time

MST Allocates a job to the node with earliest start time for this job

LBalS ,
LBalT ,
LBalW

Allocates job to the node with the least standard deviation of job pro-
cessor/job execution time/job work requirementsD per processor (con-
sidering all nodes) after assigning job j

MWWTS Allocates a job to the site with minimum average job weighted waiting
time

MSWCTW Allocates a job to the site with minimum sum of weighted (work) com-
pletion time
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Motivation Example and

System Model

Most complex problems arising in modern environemtns involve many conflicting

objectives to be optimised. Hence, mathematical decision models which represnt

the actual decision context by explicitly taking distinct goals into account are

more popular than models which aggregate all of them into a single indicator.

Multi-objective models make it understandable to show the conflicting nature of

the objectives and the possible satisfactory tradeoffs. An efficient Pareto optimal

solution is a feasible solution for which no improvement in all objective functions

can be achieved. In other words, an improvement in one objective function is only

possible in cost of degrading one (or more) other objective function value(s). The

study of multi-objective optimization problems normally requires finding the set

of Pareto-optimal solutions, by doing either a full computation of Pareto solutions

or by computing a representative sample, the method that we follow in this thesis.

On the other hand, uncertainty in execution time of tasks is an intrinsic

characteristic of real-world applications. It is generally impracticable that decision

aid models could capture all the relevant necessary information in advance to find

an optimal solution. In this context, it is important to provide decision makers with

a robust solution. This concept is linked to guarantee an acceptable performance

even under changing conditions and uncertain input data revealed in future [176].

In this chapter, we present some of the related works on multi-objective resource

management in Grid or Cloud environment. We discuss briefly the robust region

of the optimal Pareto frontier of previous works whenever applicable. Then we

show how uncertainty in characteristics of application can affect a robust solution

42
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by presenting an example. We then provide the model of both Cloud and target

application used in this study.

3.1 Bi-objective Analysis in Resource Assignment

Although a big portion of previous researches on task assignment in the Grid or

Cloud environment relied on the hypothesis that computation is free, we strive to

do literally consider the cost of execution in the target platform. In this way, we

try to consider optimizing of both the monetary cost and the makespan of BoT

scheduling simultaneously in our study.

Bi-objective analysis in resource assignment problems have attracted consid-

erable attention in past researches. In a notable work reported in [177], authors

develop a novel scheduling algorithm to optimize both the workflow latency as

well as satisfying throughput requirements by using different techniques such as

pipeline parallelism, clustering and task replication. In [178] a handful algorithms

have been presented that approximates the Pareto-curve of makespan and relia-

bility objectives to tackle the problem of task graphs’ scheduling in heterogeneous

parallel machines while each processor has a failure probability. They showed that

the product of objective functions is a crucial factor to let the user choose a trade-

off between maximizing the reliability and minimizing makespan simultaneously.

In [179], authors investigates the scheduling of workflow applications on grids

by considering both completion time and resource usage. Their algorithm, called

ADOS, incorporates an effective rescheduling method to deal with the fluctuations

of unforeseen performance. In [180], authors have studied the concurrent schedul-

ing of Parallel Task Graphs (PTG) onto heterogeneous platforms, which is closely

related to the scheduling problem of a multi-threaded programs on a multi-core

system. Optimizing both fairness and average global makespan was the main goal

of their study.

Saule and Trystram in [181] considered the problems of scheduling of a chain

of tasks on heterogeneous processors and scheduling of independent tasks on iden-

tical processors for the objective of optimizing both efficiency and reliability. They

drive a safety model for the reliability of the heterogeneous processors environment

and propose some dynamic programming heuristics to solve the mentioend multi-

objective optimization problem. Hirales et al. in [182] considered the problem of

non-clairvoyant multi-objective workflow allocation strategies on a computational

Grid where the scheduler has no knowledge of the real execution running time
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of the ready tasks. Authors of [183] tries to maximize the expected amount of

workload that gets computed by the assemblage of available remote homogeneous

computers. Their algorithm cope elegantly with uncertainty within an assemblage

risk such as unrecoverable interruptions by using check-pointing and work replica-

tion techniques.

Authors in [184] and [185] considered the problem of non-preemptive schedul-

ing of independent tasks on a set of unrelated machines when the processing cost

(cij) is considered and only a constant number of machine exists. The objective was

to find a simple FPTAS solution to approximate Pareto curve of optimal schedule

which is a trade-off between the makespan and the total cost. The proposed algo-

rithm can successfully obtain an FPTAS for constructing an ε-Pareto curve1 that

dominates all others solutions approximately while its running time is polynomial

regarding to both n and ε−1. Other researchers also used Pareto frontier approx-

imation technique for scheduling problem with multi-objective optimization. We

recall that because the size of Pareto set is exponential, even determining whether

a given point belongs to the Pareto curve is an NP-hard problem. Therefore, the

idea of ε−approximate Pareto curve, which is presented first in [186], is quite an

acceptable approach for dealing with optimization problem with multiple objec-

tives. Interested readers are referred to [186–193] for additional insight about the

technique of two ways approximation of the Pareto set.

3.2 Deploying of BoT Applications in Hybrid Cloud

When deploying an applications into Hybrid Cloud environment, users have to

decide compromising between the “total cost” and the “running time” of applica-

tion. On one end, users want to run the application as quick as possible. On the

other end, users want to pay less for accomplishing the application. However, in

a hybrid cloud platform, quenching both desires is almost impossible. The fastest

deploying solution is that one single machine is assigned for each parallel task to be

run, which is clearly the most expensive solution, too. There is also a cheap solu-

tion that only uses the least expensive machine for running the tasks, which often

results in an extremely time-consuming accomplishment. In these types of situa-

tions, the concept of user’s utility function, U(time, cost), has been widely used to

represent the monetary value that users are willing to attach to job completion.

1An ε-approximate Pareto curve can be described as a set of solutions that for every other solution,
the set contains a solution that is at least as good approximately (within a factor of 1 + ε) in all
objectives
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Assuming that the information about utility function is known by the resource

allocator at the time of scheduling, then a qualified scheduler is the one that

can effectively maximize user satisfaction. The concept of using utility function

in the field of HPC scheduling research has been recently emerged, such as the

works proposed in [194–200]. However, the fact is that real user preferences and

priorities are too difficult to be expressed. Furthermore, arbitrarily complex utility

functions could make the scheduling problem intractable. In fact, a large portion of

previous important researches on utility-based resource allocation have restricted

their attention to a simple linear shape of utility function. While, It has been

demonstrated that real users have such complex utility functions that could not

be effectively captured by linear shape or simple format [201, 202].

In Chapter 4, we propose a p-norm model that allow us to quantify users’

utility function and their preferences in a more complex way. However, the expo-

sure of users’ preferences might not always be legitimate or feasible. Users may

not be willing to provide details of their preferences in a real job submission due

to concern about privacy or reduction of bargaining power. In addition, in many

cases, users have been already bothered to put forward other information such as

job run-time estimations, and are not interested in struggling to identify additional

information for setting up the platform. We investigate how to generate possible

Pareto-frontier scheduling points and asks the user to select a single scheduling

point without forcing him/her to expose the utility function. This idea has been

implemented in a PANDA framework [203], which will be discussed in detail later

in Chapter 5.

Depending very much on structural processor components, it is almost im-

possible to found out the exact execution time of a tasks on on a computational

resource before its actual running. However, there are still some hopes to provide

an upper bound (such as WCET methodology [204]) or estimation function (which

is normally depends on input characteristics), or use some performance estimation

methods to predict the execution time of a given application on a specific machine.

Many of these methods are based on either “task profiling”, “machine benchmark-

ing”, or “statistical analysis” (or a combination of them) to provide an estimation

of tasks’ execution time [205–209].

Code profiling is a dynamic analysis that measures the run-time behavior

of the source code segments or the underlying platform to collect data such as

hardware counters, register traces, operating system’s kernel, or interrupt traces,

to understand program behavior. ATOM [210] is one of earliest instrumentation
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framework for building program monitoring routines to collect traces and measure

the performance of system. Analytic machine benchmarking which was first pre-

sented by Freund [211], and has been extended by many other researchers such as

[212–214], is a powerful comparative tool to determine the relative performance

differences between underlying machines via defining a number of primitive code

types. Then, the analytic benchmarking data and the code profiling data can be

combined to build an estimation for execution time. Statistical prediction methods

treat the execution time as a random variable and try to predict it by analyzing

the past historical observations by means of statistical techniques such as k-nearest

neighbor nonparametric regression [215, 216].

In Chapter 4 we will present a Mont-Carlo based statistical technique for pre-

dicting the execution time of the submitted Bag-of-Tasks applications. In Chapter

6 we will show how we can use the output of several Code-profiling tools to ef-

fectively schedule a given BoT application with the unknown tasks running time

2. The big picture of the idea presented in 6 is to use a combination of several

estimator tools in order to generate all (possible) Pareto frontier scheduling points

which can hypothetically be achieved. At the end, we give some heuristics (or ap-

proximation algorithms) to approach the user’s selection of optimized scheduling

as close as possible.

3.3 Motivation Example

We presents some scenarios here to depict what is the possible challenges that

a typical users faced to submit his/her applications on cloud platform. We will

discuss (1) the advantages of using hybrid cloud with deadline constraints BoT

applications, and (2) how available estimation tools can be used to handle the

uncertainty in task running times.

In the first scenario, consider running a BoT application/job with 36 tasks in

a hybrid cloud which the attributes of both tasks and the platform shown in Tables

3.1 and 3.2. If the cost of running the job is only a concern and the user lacks

advance knowledge on characteristics of both tasks and the system resources, the

sole use of private cloud is a likely option scheduling approaches, such as a FIFO

or random scheduler. One can easily calculate that the application will complete

in 6.1 hours in the best case. However, suppose the case that user is constrained

by a deadline of 2 hours to finish the whole application.

2also known as on-clairvoyant scheduling
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Table 3.1: Task characteristics for our motivating example. The num-
ber of tasks is 36. ˆpi,j denotes the estimation of the runtime of task i

(in minutes) using tool j

No. of Actual Estimated Estimated

tasks running time by Tool 1 by tool 2

8 37 30 ≤ ˆpi,1 ≤ 48 26 ≤ ˆpi,2 ≤ 43

8 23 20 ≤ ˆpi,1 ≤ 30 16 ≤ ˆpi,2 ≤ 27

4 15 13 ≤ ˆpi,1 ≤ 20 10 ≤ ˆpi,2 ≤ 17

16 12 10 ≤ ˆpi,1 ≤ 16 8 ≤ ˆpi,2 ≤ 14

Table 3.2: Resource characteristics for our motivating example.

Resource Type #resources Relative speed Relative cost/hr

Private 2 1 2

Public Type1 5 1 1

Public Type2 5 2 4

As one straightforward suggestion, the user can make use of public cloud

resources facing the tradeoff issue between minimizing total cost and makespan.

If the user has an accurate prior knowledge about both tasks running time and

resources, and if he/she makes scheduling decisions focusing on only makespan

by allocating an equal workload to each resource/machine, then in the optimal

solution, job completes its execution in 61 minutes (a makespan of 61 minutes).

However, accomplishing the tasks based on the least makespan policy leads to

another challenge. Since most IaaS public cloud providers charge the user based on

the usage in one one hour ATU3, even though the achieved makespan is minimal,

the user is charged for the full 2 hours of usage. If the user has no idea about

his/her utility function, it is essential to have some tool to assist the user in the

selection of computational resources to fulfill both deadlines and budgets.

Now, consider a scenario that the user has no prior knowledge about the task

running times, but instead has access to two code-analyzing estimation tools, each

of which produces an estimation result within ±30% of the actual running time.

Nominal results are shown in the two right-hand columns of Table 3.1. many

potential advantages would be realized providing the user decides to exploit these

tools. However, several questions and concerns will arise, too, such as:

3Accountable Time Unit
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– What it is the outcome of each possible scheduling strategy in terms of per-

formance and cost?

– What is the best way to exploit these estimation tools?

– After the completion of each task, are there any feedback techniques available

to enhance the performance of our scheduling algorithm?

Next chapters aim to provide reasonable answers to these and other similar

questions.

3.4 Problem Analysis

To have a comprehensive mathematical model for describing an scheduling prob-

lem, one must present the modeling of machines, jobs or tasks, and the objectives

aimed by the problem. This section presents the main models and terms used in

the remainder of this thesis. We exploit a hybrid approach of using both public

and private resources if the private capacity are not enough to guarantee the given

level of performance. This can result in a reduction of total economical costs to

run the application.

Public Cloud Model: Throughout this thesis, we use notation of Γu to

refer the set of all available resources in public IaaS cloud. We also assume that

provider offers different k instance types. Machines in each instance types differs

from other type because of difference either in type or cost. So, we can assume

that the computing capacity of a resource of type i ∈ {1 . . . k} is guaranteed at

level si. Computing capacity here can be imagined as the average CPU speed

or the amount of RAM assigned to the machine during the application execu-

tion, and is referred as resource capacity, resource performance or resource speed

throughout this thesis interchangeably. Machines of each type of the public cloud

is connected with monetary costs ci, too. We assume the amount of ci does not

change during application life-cycle phase. Today’s cloud provider charges users

for renting resources based on their usage during an specific period of time known

as accountable time unit or ATU. We adopt one hour as ATU in this study as

many cloud providers (including Amazon) calculate the usage hourly. Addition-

ally, there might be a limitation on the total number of resources that a user can

rent from a particular type. If such a limitation exists, we denote it with Li. For

example, Li is limited to be 20 in the current Amazon EC2 environment for a

regular user.
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Private Cloud Model: The organization’s infrastructures and/or data-

center resources can be defined as the private cloud, whether hosted on either inside

or outside of the organization. We use Γv to show the pool of resources within

the private cloud, like CPU, Memory, etc. Assuming that there are different k′

resource types in the private cloud, the capacity of private cloud resource is shown

by si′ for i′ = 1 . . . k′ (or i′ = k . . . k + k′ − 1). Because the organization has to

buy and manage the private resources by itself, it sounds reasonable that a cost

can be associated with each of these resources, which might be even higher than

the cost of public resource with the same capacity. In Section 5.8.2 we will discuss

famous techniques can be used to analyze the total cost of ownership of private

resources. We use ci′ to refer to the cost of the private resource i′ based on ATU

period, for i′ = 1 . . . k′. It is worth to mention that despite its high initial cost

and unpredictable running cost, private cloud provide normally more flexibility

in terms of both customization and privacy. The public cloud resources can be

added to or removed from the private system at anytime according to the decision

of scheduling algorithm. Byzantine failures of public or private resources are not

considered in this thesis, meaning that machines follow their running properly and

tasks’ execution is not at risk.

Bag-of-Task Application: We consider a BoT application, B, to consist

of n independent tasks and be CPU-intensive. Here, the size of BoT application

(n) is so large that overwhelm the capacity of resources provided by the private

cloud. Each task j; 1 ≤ j ≤ n, required the running time of Pj to accomplish,

providing that it is assigned to run on a resource with unitary speed, si = 1.

Further, we assume that each Pj value is a random variable comes from an unknown

distribution density F . We denote the mean and variance of this random variable

by µ and σ2, respectively. The processing times are considered to be non-negative

and mutually independent. In our thesis, task preemption is not allowed, so once

a task is assigned to run on a machine, the whole part of it must be executed

without any interruption. If task j is assigned to run on a resource of speed si,

and cost of ci, then the processing time and the cost of executing task j is equal to
Pj
si

and
ci×Pj
si

, respectively. As a user hires a public cloud resource in whole hour

duration, the total cost to finish a set of tasks in a specific public cloud resource is

cid
∑
j∈Ji

Pj

si
e, where Ji is the set of all tasks assigned to resource i. We use |B|R to

represent the amount of time (in seconds) taken by a BoT application to complete

its execution in a reference machine R.

The makespan of a BoT application is the time elapsed from BoT submission
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until its completion. The performance metrics which are targeted in this thesis

are mainly the monetary cost of all BoT tasks and makespan. The utility function

of a user is a function of the above-mentioned performance metrics that quantifies

the happiness of the user by using a particular strategy for running the BoT.

Normally, users try to optimize their utility function. For example, if a user does

not care about the makespan and solely interested in the cheapest strategy, she

should provide the system a utility function that only includes the total cost of

scheduling.

The problem to be solved is effective scheduling of the submitted application

on hybrid cloud infrastructure respecting the user’s utility function. To gain the

maximum effectiveness of the hybrid cloud resources, this research aims to propose

mechanisms to automatically determine the amount of resources of each type to be

used in an optimal fashion. The second goal of this research is to provide the user

with a set of Pareto-efficient scheduling points with dual objectives of minimizing

total cost as well as make-span, and determine strategies to guarantee achieving

the user’s selection in practical situation. If the performance of an strategy is worse

than or identical to another strategy for both total cost and makespan metrics,

and strictly worse for at least one metric, then we said that the first strategy is

dominated by the second strategy. The set of all strategies that is not dominated

by any other strategy forms Pareto-frontier set. In other words, any approach

that optimizes the utility function of user must be in Pareto-efficient set. We

recall that previous researches in different contexts showed that even determining

Pareto-efficient strategies are computationally intractable problems.

We introduce PANDA scheduling framework in Chapter 5 which answers what

mixture of resources in public or private cloud must be used to achieve the optimum

allocation schema respecting user’s preference for different makespan-cost trade-

off. This solution uses an FPTAS methods, means that it uses an approximate

algorithm to reach a close optimal answer in the polynomial time in terms of both

approximation factor and input size. An extended version of PNADA will be

introduced in Chapter 6 for handling uncertainty in tasks running time with the

similar approaches and aims discussed for original version of PANDA. We evaluate

our framework through both simulations and real environments experiments, and

show that it can performs better in comparison to scheduling strategies commonly

used for cloud environment.
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3.5 Summary

One of the main challenge that scientists face when try to execute a large scale

Bags-of-Tasks application in hybrid computational cloud environments is the short-

age of tools that offer Pareto-efficient strategies for different (even unknown) utility

functions of users. In this chapter, we showed the importance of bi-objective anal-

ysis in resource assignment of hybrid cloud model regarding the user-defined utility

function. Then, through a motivation example, we showed the main topics that

our thesis is trying to deal with. We also provided a formal model for the envi-

ronment we target in our thesis, including models for both the available resources

as well as the submitted application. Finally, this chapter discussed briefly how

our framework provides a clear understanding of the possible trade-offs of total

cost versus makespan (Pareto-optimal solution) to execute user’s application in

the hybrid cloud environment.



Chapter 4

A p-norm model for Optimized

Bot Application Deployment

and Cloud Resource Allocation

4.1 Introduction

To dynamically expand the capacity of in-house computing systems, public cloud

computing can be considered as a promising solution. Particularly, flexibility of

public cloud resources with a pay-as-you-go pricing model enables tightly budgeted

users, such as small organizations and individuals to “cost effectively” access mas-

sive computing resources. However, the reality is that the degree of performance

gain is often not strongly correlated with the usage cost of these resources; this

is particularly true when CPU-intensive applications run on cloud resources with

the non-proportional cost to performance ratios (e.g., Amazon EC2 m1.small and

c1.medium with such ratios of 1 and 5, respectively). This issue in scaling out

is a major obstacle that must be resolved for the cost effective deployment of

application into multiple cloud environment.

In this chapter, we present some resource allocation algorithms to enable

the execution of BoT applications spanning beyond the private system/cloud (i.e.,

hybrid-cloud) by explicitly taking into account the cost efficiency—the cost to per-

formance ratio. We give solutions of proposed objective function in both known

and unknown running time of the given application. We also assume that both

private and public cloud can possess several types of resource (resource hetero-

geneity). This complies with the practical situation which an in-house system can

52
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evolve over time expanding it with more powerful machines and keeping legacy

systems (delaying their decommissioning).

To cope with the “unknown running time” case, we develop a fully polyno-

mial time randomized approximation scheme (FPRAS). Such an FPRAS algorithm

takes two parameters of (1) ε > 0 as an approximation factor, and (2) δ > 0 as a

confidence interval, and produces a solution that lies within a factor (1+ε) of being

optimal with high probability (exact definition will be reported later in this sec-

tion). The running time of an FPRAS algorithm is guaranteed to be polynomial

in terms of job size (n or the number of tasks in a given job), the approxima-

tion factor (ε), and the confidence interval (log(1/δ)). To address the resource

allocation problem without any advanced knowledge about the processing time,

we incorporate a Monte Carlo sampling method inspired by the work in [217] to

estimate the average of tasks’ running time.

In Section 4.2 we present our model for resource allocation problem. Section

4.4 details both our near optimal solution and resource allocation algorithm. Sec-

tion 4.5 presents the results obtained from experiments as part of our algorithm

evaluation followed by our conclusion in Section 4.6.

4.2 Problem Formulation

We describe our research problem by formulating the resource allocation problem

as an optimization problem. The models for public cloud, private cloud, and Bag

of Task application follow the model presented in Section 3.4.

• Use Case Scenario: A sample use case scenario of our proposed system (as

depicted in Figure 4.1) can be described as follows: the user submits a Bag of

Task job along with several other parameters (the details of these parameters,

such as r and desirable weighting of each resource, will be described in the next

section). If the tasks running time is not known in advance, the framework will

perform an estimation phase, which will be discussed in detail in Sec. 4.4.3, to

estimate the total workload submitted to the scheduler. Otherwise, the system

jumps up to the next step of finding the optimal resource allocation.

In the next step, the framework tries to solve a system of equations (given

by Equations 4.14 and 4.16), in order to figure out the optimal workload value

that must be assigned to each resource. The next step is answering the question

of how to assign properly a set of tasks that does not exceed the optimal workload
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which calculated in the previous step. To overcome this, we apply a FFD-based

allocation algorithm which is given in details by Algorithm 2 and 3. Finally, every

tasks will be deployed to run on the proper resource located either in private or

public cloud. During the execution phase, some sort of performance monitoring

actions can be done to report the user the overall system performance time to

time.

4.3 Lp-form Cost Model and Cloud Resource Alloca-

tion Problem

When a user submits an application to be run using the cloud resources, there

are two conflicting objectives of “minimizing the total cost” and “maximizing the

performance” (or minimizing the makespan) that the user had to reach a compro-

mise between them in a rational way. Let σ denote a particular resource allocation

schema for a given application. Further, let C(σ) and T (σ) denote the total cost

and the makespan reached by this resource allocation scheme, respectively. Com-

parably, assume Ci(σ), Ti(σ), and ψi(σ) denote the corresponding cost, time (in

terms of hour or ATU) and the assigned workload of resource i reached by σ. Here,

resource i may belong to either public or private cloud.

By using preliminary calculus, the accuracy of the following equations is easy

to be checked.

C(σ) =
∑

i∈Γu∪Γv

Ci(σ) (4.1)

T (σ) = max
i∈Γu∪Γv

(Ti(σ)) = lim
r→∞

(
∑

i∈Γu∪Γv

Ti(σ)r)
1
r (4.2)

Ci(σ) =

cidTi(σ)e if i ∈ Γu

ciTi(σ) if i ∈ Γv

(4.3)

Ti(σ) = ψi(σ)/si (4.4)

Equation 4.2 comes from the fact that in the Lp-norm space (Lebesgue spaces)

of a vector z, L∞-norm is equal to the maximum norm of that vector [218]. 1

1Lp-norm (p-norm) of a vector z can be defined by (∀p ≥ 1 ∈ <): ‖z‖p = (|z1|p + |z2|p + · · ·+ |zn|p)
1
p .

The L∞-norm or Chebyshev distance is the limit of the Lp-norms when p → ∞ which has the same
definition as: ‖z‖∞ = max {|z1|, |z2|, . . . , |zn|}
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Fig. 4.1: The storyline of process flow through our proposed frame-
work. In this scenario, we assume that user submits a BoT job with-

out any knowledge about tasks’ running times.

Inspiring from the definition of Lp-norm, we introduce the following user-

tunable objective function to correlate two goals of minimizing the total cost and

makespan together.

minZ(σ) =
∑

i∈Γu∪Γv

αi × (Ci(σ))r; r ≥ 1 (4.5)

In the above, αi can be considered as a restriction weight that user assigns

to each resource based on his/her previous knowledge or assumption. When αi

is large, it means that user does not have a desire for spending too much money

to rent resources of type i. One reason can be imagined as the user has some
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previous experience about the unexpected breakdown of that resource. Parameter

r, on the other hand, enables user to express his/her preference for each criterion.

Two values of r have been already extensively studied.

– r = 1: In this case, a large makespan scheduling with minimum value of total

cost is achieved. The scheduling scheme normally comprise of a solution that

assign all tasks to the most efficient resource types; i.e., the resource type

that has the highest value of si
αici

(turns Eq. 4.5 to be similar to Eq. 4.1).

– r = ∞: This case turns basically Eq. 4.5 to have an exact behavior as Eq.

4.1 has (means that they both have same minimum point). So, this leads

to a solution that make the entire tasks’ load equally (or wighted) balanced

between all available resources. In this case, the result normally has the least

value of makespan with a large total cost value.

In the next section, we reformulate Equation 4.5 as a binary non-linear op-

timization problem and then in Section 4.4.1, we provide solutions of different r

values.

4.3.1 Formulation as Binary Nonlinear Programming

A Nonlinear Program (NLP) is an minimization (or maximization) problem such

that a nonlinear “objective” function, Z(x), must be minimized (or maximized)

subject to some other (nonlinear) “constraint” functions that define limitations

on the values of vector x. In binary problems, each variable can only take on the

value of 0 or 1. Optimization problem of Equation 4.5 can be restated as a binary

nonlinear programming as follows:

minZ(σ) =
∑

i∈Γu,1≤j≤n
αicid

xi,jPj
si
er +

∑
i∈Γv ,1≤j≤n

αici(
xi,jPj
si

)r (4.6)

s.t.
∑

i∈Γu∪Γv ,j=1···n
xi,j = n (4.7)

xi,j ∈ {0, 1}; ∀i ∈ Γu ∪ Γv, j = 1 · · ·n (4.8)

In the above equations, the binary variable xi,j represents whether task j is

assigned to resource i or not.

Integer programming problems are well known to be NP-hard. So, it is usually

impossible to find any method to reach even a close optimal solution. Relaxation
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is a traditional technique to deal with IP problems. However, a solution for the

relaxed version of above mentioned “Binary Integer” problem (which obtained by

replacing Constraint 4.8 with 0 ≤ xi,j ≤ 1) is most likely far from the optimal

value.

To overcome this issue, we reformulate Equations 4.6–4.8 in order to remove

the binary constraint. Let us define ψi as the total workload assigned to resource

i. Then, we substitute the value of
∑
xi,jPj with the ψi to reach a relaxed version

of the original problem as follows:

min
∑
i∈Γu

αicid
ψi
si
er +

∑
i∈Γv

αici(
ψi
si

)r (4.9)

s.t.
∑

i∈Γu∪Γv

ψi =
∑

j=1···n
Pj (4.10)

A solution for Equations 4.9 and 4.10 can be considered as a close solution of

the optimal value for the original problem. In the following section, we present a

solution for Equations 4.9 and 4.10 to approximate the optimal value of Equation

4.6.

4.4 Near Optimal Task Assignment

In this section we provide a solution for optimization problem stated by Equation

4.9 in two separate cases. First, we discuss if all tasks’ running times are known

in advance, and then we extend our solution in case that there is no beforehand

information about the tasks’ running time.

4.4.1 Solution for Known Tasks’ Running Time

To solve the optimization problem stated by Equation 4.9, we first relax it by

removing the integral condition. It can be seen that the relaxed version satisfies

Karush-Kuhn-Tucker (KKT) conditions, so, we can apply Lagrange multipliers

method to reach a system of equations to find the minimum value. Let us show

the total number of available resources in both cloud by m, i.e., m = |Γu ∪ Γv|,
and define βi as αi × ci/sri . Equation 4.9 can be relaxed as follows:
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min

m∑
i=1

αici
(ψi
si

)r
s.t.

m∑
i=1

ψi =

n∑
j=1

Pj

(4.11)

By introducing Lagrange multiplier (λ), the Lagrange function can be written

as:

Λ(ψi, λ) =

m∑
i=1

βiψ
r
i − λ(

m∑
i=1

ψi −
n∑
j=1

Pj) (4.12)

One can find the optimal solution of relaxed version by solving the following

system of equations.

∇Λψi,λ = 0 (4.13)

or equivalently:

∂Λ(ψi, λ)

∂ψj
= rβjψ

r−1
j +

∑
i=1..m;i 6=j

βiψ
r
i − λ = 0 ;∀j = 1 . . .m

∂Λ(ψi, λ)

∂λ
=

m∑
i=1

ψi −
n∑
j=1

Pj = 0

(4.14)

Let ψ∗ = 〈ψ∗1, ψ∗2 · · ·ψ∗m〉 be the optimal solution of Equation 4.13 (or Equa-

tion 4.14). Each ψ∗i shows the amount of workload in resource i in optimal case.

The next step is to find a subset of tasks which add up exactly or as close as pos-

sible to the value of ψ∗i . Such task assignment will be presented later in Section

4.4.4, after discussing our method of finding optimal value in the non-clairvoyant

case.

4.4.2 Solution for Unknown Tasks’ Running Time (Non-Clairvoyant

Case)

In this section, we deal with the task assignment problem if all Pj ’s in Equation

4.10 are not known a priori. We present an FPRAS algorithm which consists of
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two steps: estimation and task assignment. For a given optimization problem, an

FPRAS algorithm can produce a solution within a factor of (1+ε) of the optimal

value with a confidence interval of δ. The running time of such algorithm is

polynomial in terms of input size, ε−1, and log(δ−1). Naturally, an FPRAS scheme

can be considered as the most efficient randomized algorithm for tackling NP-hard

problem in the stochastic manner.

4.4.3 Estimation

To solve the system of equations given by Equation 4.14, we need to estimate the

unknown value of
∑n

j=1 Pj . To this end, an estimation procedure based on a well

known Monte Carlo sampling method called AA algorithm [217] can be employed.

This sampling algorithm uses the minimum possible number of experiments to

predict the average task running time, µ̂, (which is equivalent to
∑
Pj/n) and

satisfies the following condition.

Pr[µ(1− ε) ≤ µ̂ ≤ µ(1 + ε)] ≥ 1− δ (4.15)

Here, µ is the actual average value, µ̂ is the estimated value of µ, ε is the the

approximation factor and δ is called the confidence factor.

The estimation procedure is presented formally in Algorithm 1. It consists of

three main steps. Each step can be recognized by a while loop. In the first step, it

produces an initial estimation of µ̃Z. In the second step, it determines the number

of experiments needed to produce ρ̂Z as an estimation for unknown value ρ with a

probability of at least 1−δ′. The last step (the third while) takes both of previous

outputs, µ̃Z and ρ̂Z, to set the minimum number of experiments needed to be run

on the private cloud to produce µ̂ which is an (ε, δ)-estimate of µZ.

After finding an estimation of µ, we replace the value of
∑n

j=1 Pj (in either

Equation 4.10 or 4.14) by the estimation value of µ̂× n as follows:

∂Λ(ψ̂i, λ)

∂ψ̂j
= rβjψ̂

r−1
j +

∑
i=1..m;i 6=j

βiψ̂
r
i − λ = 0 ;∀j = 1..m

∂Λ(ψ̂i, λ)

∂λ
=

m∑
i=1

ψ̂i − µ̂× n = 0

(4.16)

Let us show the solution of the Equation 4.16 by vector ψ̂ = 〈ψ̂1, ψ̂2 · · · ψ̂m〉. We

will continue by giving our task assignment in the next section.
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Algorithm 1: Estimation of µ based on AA algorithm

input : ε, δ, n, Γv ∪ Γu, B;
output: µ̂Z; //an estimation of average tasks’ running time in B
begin

S ← 0; c← 0; ε′ ← min{1
2 ,
√
ε}; δ′ ← δ/3;

Υ1 = 1 + (1 + ε′)2.87ln(2/δ′)
ε′2 ;

while S < Υ1 do
Pick a random integer number, h, in range [1,n];
Run task indexed by h, Th, in private cloud;
S ← S + Ph; //Ph: running time of Th
c← c+ 1;
B ← B − Th;

end
µ̃Z ← S/c;

Υ2 = 5.75ln(2/δ′)
ε′µ̃2Z

;

S ← 0; c← 0;
while c < Υ2 do

Pick two random integer numbers, h1 and h2, in range [1,n];
Run tasks Th1 and Th2 in private cloud;
S ← S + (Ph1 − Ph2)2/2;
c← c+ 1;
B ← B − {Th1 , Th2};

end
ρ̂Z = max{S/Υ2, ε.µ̃Z}
Υ3 = 5.75ln(2/δ′).ρ̂Z

ε′2µ̃2Z
;

S ← 0; c← 0;
while c < Υ3 do

Pick a random integer number, h, in [1,n];
Run task Th in private cloud;
S ← S + Ph;
c← c+ 1;
B ← B − Th;

end
µ̂Z = S/Υ3

end

4.4.4 Task Assignment

In Sections 4.4.1 and 4.4.2, we discussed how to find the optimal workload received

by each resource. In this section, we present two algorithms to find a subset of

tasks which adds up as close as possible to the value of ψ∗ (in case of known tasks’

running time) or ψ̂ (in case of unknown tasks’ running time). This problem can

be considered as a general case of bin packing, knapsack, or subset sum problem.

For example, in the standard version of subset sum problem a set of integers and
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an integer target t are given, and aim is to find a non-empty subset sum to t. All

of the above-mentioned problems belong to NP − complete class [219]. There are

many well-known approximation algorithms in the literature [220–223] to solve

these basic problems efficiently. They are often too difficult to understand or

implement, however. Therefore, for the purpose of this research, we take advantage

of a simple and fast approach based on First Fit Decreasing (FFD) algorithm [224],

which generates reasonably a good outcome. FFD solution for bin packing problem

can be described as follows: In the first step, we must sort both the items into

their decreasing sizes and the bins according their capacities. Then the next item

is put into the first bin where it fits. Slightly modified versions of this approach are

given in Algorithms 2 and 3, where our aim is to decrease the amount of wasted

capacity of resources as much as possible.

In the case of known task’s running time, i.e., Algorithm 2, we do as follows:

Knowing that each resource i should not receive a total workload more than ψ∗i (in

the optimal solution), we assign a task j to an already allocated resource i if its

current workload plus Pj (the task’s running time) does not exceed ψ∗i . Applying

this rule in addition to the rule of “selecting the most cost-effective resource first”

can produce a near optimal solution.

Similarly, in the case of unknown task’s running time, i.e., Algorithm 3, we

pick a task from tasks’ queue and add it to the next efficient resource if the expected

value of this task’s running time, i.e., µ̂, plus the current assigned workload of that

resource does not exceed the value of ψ̂i.

Variable S[i] in these two algorithms holds the current assigned workload of

each resource i. With these simple controls, we are able to assign a task to the

most cost efficient resource provided there is sufficient residual capacity in it. By

applying the similar approach given in [224], one can expect that both Algorithms

2 and 3 are constant approximation algorithms with approximation ratio of 11/9.

4.5 Experimental Evaluation

In this section, the performance evaluation results of the proposed approach us-

ing running BoT application on a hybrid-cloud infrastructure are represented. It

follows the model we already discussed in Section 3.4.

The private cloud used in our study was composed of our in-house 4x10

core cluster with 2.4 GHz Intel Xeon processors, with a total of 256GB RAM.
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Algorithm 2: Hybrid-Cloud resource allocation algorithm in known tasks’ running time
case
input : αi’s, r, n, Γu ∪ Γv, and B with known Tj ’s;
output: resource allocation scheme
begin

Sort resources by cost efficiency, i.e., si
αici

S[i]← 0; ∀1 ≤ i ≤ |Γu ∪ Γv|
Calculate ψ∗i from Equation 4.14;
Sort tasks in B into their decreasing running time;
while B is not empty do

Pick the next available task Tj in B;
if there exists a resource i such that S[i] < ψ∗i − Tj then

Assign task Tj to resource i;
else

Assign all remaining tasks in B to resources in Γv using List scheduling;
end

end
After detection of completion of task Tj on resource i:

S[i]← S[i] + Pj ;
B ← B − Tj ;

end

Public cloud consists of instance types from Amazon EC2 cloud. We use four

different instant types from EC2 which called “M1 Small Instance”, “M1 Large

Instance”, “High-CPU Medium Instance”, and “High-CPU Extra Large Instance”,

respectivley. Standard instances normally supply a balanced set of RAM and CPU

capacity, suitable for a variety of application types. On the other hand, high-

CPU instances possess more CPU capacity than RAM which make them best

fit for CPU-intensive applications. Details of processing capacity and the cost

of each resource are shown in Table 4.1. In this table, processing capacities are

relative speeds based on the reference resource considered as public “m1.small”

isntance. To mimic a real BoT workload, we created several sets of tasks which

their characteristics are similar to the patterns reported by Iosup et al. [225].

Task characteristics are summarized in Table 4.2. The running time of each task

is defined in terms of how much CPU time is required for its execution if we assign

it to a standard small instance (m1.small) in Amazon EC2 public cloud. In Table

4.2, we categorize BoT applications into Short, Long and Mixture of both based

on task running time. Symbols of U(a, b) and N(µ, σ) show a uniform distribution

with the minimum and maximum values of a and b, and a normal distribution

with mean µ and standard deviation of σ, respectively.
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Algorithm 3: Hybrid-Cloud resource allocation algorithm in unknown tasks’ running
time case
input : ε, δ, αi’s, r, n, Γu ∪ Γv, B with unknown Tj ’s;
output: resource allocation scheme
begin

Sort resources by cost efficiency, i.e., si
αici

S[i]← 0; ∀1 ≤ i ≤ |Γu ∪ Γv|
Run Algorithm 1 to find µ̂;
Calculate ψ̂i from Equation 4.16;
while B is not empty do

if there exists a resource i such that S[i] < ψ̂i − µ̂ then
Pick an integer number, h, from [1..|B|];
Assign task h, Th, to resource i;

else
Assign all remaining tasks in B to resources in Γv using List scheduling;

end

end
After detection of completion of task Tj on resource i:

S[i]← S[i] + Pj ;
B ← B − Tj ;

end

Table 4.1: Hybrid cloud settings with different per hour cost to per-
formance ratios.

Cloud Instance Type Normalized Proc. Capacity Cost

m1.small 1 $0.080
Amazon EC2 c1.medium 5 $0.165
US East (VA) m1.large 4 $0.320

c1.xlarge 20 $0.660
Private 4x10 Xeon Processors 10 $0.320

Table 4.2: Different BoT workload characteristics used here

Type Task’s Running Time (minute)

Short U(0,8)
Long N(36,6)
Mixture N(12,3)

4.5.1 Hybrid-Cloud and BoT Application Setting

We compared our proposed algorithm with a heuristic algorithm which chooses

tasks with some order (if possible) and assigns them to the next most cost efficient

resource. A resource i is more cost efficient than another resource j if and only if
si
αici

>
sj
αjcj

. This heuristic acts similar to the traditional List scheduling algorithm.
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For different values of parameter r, we run the heuristic algorithm as follows:

For r = 1, the heuristic algorithm tries to balance the tasks’ load among all

available resources in both private and public clouds. For r = ∞, it only chooses

most cost efficient resources for load balancing. For other values of r, the greedy

approach chooses m − r + 1 most cost efficient resource types for load balancing,

which m shows the total resource types.

4.5.2 Result

Experimental results are analyzed and discussed based on three performance met-

rics: makespan, total cost, and objective function value (z). In all of the experi-

ments, we used different values for ε ranging from 0.1 to 0.4 with an step of 0.1 as

well as different values for δ as 5%, 10%, 15% and 20%.

In Figure 4.2, we compare performance of our algorithm with the heuristic

algorithm2. Due to the similar patterns, only those graphs concerning two ex-

treme values of ε and δ are presented. The results confirm that our approach can

successfully reduce both time and cost (hence, the objective value) of using hy-

brid cloud resources. The average reductions in makespan and total cost in each

scenarios are given in Table 4.3. The average reductions of makespan and cost

usage are approximately 7.5% and 4.8%, respectively. It can be seen that though

the greedy algorithm can reach to an acceptable solution when the BoT comprised

only short tasks, it fails to reach a good result in the other situations. One rea-

son for this phenomena is that greedy heuristic assigns blindly the long tasks to

resources without any per-calculation, while our approach considers a limitation

on the maximum workload of each resource, based on the solution for Equation

4.14 or 4.16. Therefore, we can conclude that the performance of greedy algorithm

degrades significantly when the granularity of task, in terms of running time, is

increased.

Another observation is that performance of our algorithm is not too sensitive

to the large values of either ε or δ. One may expect that when either ε and δ

gets larger, the quality of solution must decrease. In practice, however, this does

not happen and Algorithm 1 produces a good estimation of µ. Interestingly, one

anomaly has been detected when the values of ε and/or δ are chosen very small, for

example below 5%. While one expect that small values of ε and/or δ may result

2Each point in Figure 4.2 shows a particular value of r starting from 1 and being incremented by 1.
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in higher accuracy of both prediction of µ and the performance of algorithm, in

reality, the algorithm’s performance decreases significantly.

In fact, by choosing a small value for either ε or δ, the number of tasks used

for Algorithm 1 increases; this leaves little room to optimize the assignment of

rest of tasks. As an example, to reach an estimation with ε = 1% and δ = 1%,

nearly half of the available jobs should be used for prediction process; which leads

clearly to a poor performance. We have observed that the values of ε and δ around

10 ≈ 30% and 5 15%, respectively are most appropriate.

The overhead of our scheduling algorithm can be negligible comparing to the

actual value of BoT application running time. For example, for acceptable values

of ε = 10% and δ = 5%, the overhead is less than 1% of total BoT application

running time.

4.6 Summary

We have addressed the problem of BoT task assignment on a hybrid-cloud en-

vironment. When a large-scale BoT application runs with support of the public

cloud resources, the assignment of tasks should explicitly take into account the

cost efficiency. Introducing a novel objective function, we dealt with the problem

by formulating it as an optimization problem. We have used an FPRAS algorithm

in case of unknown running time of tasks, where our algorithm combines a Monte

Carlo sampling method to estimate the unknown values. Our method provides an

effective means for the user to run large-scale CPU-intensive BoT applications with

or without prior knowledge of task processing time. The quality of the task as-

signment algorithm has been evaluated by running experiments using the in-house

cluster as the private cloud, and Amazon EC2 instances as the public cloud.

Table 4.3: Differences between the total cost and makespan of the
proposed algorithm versus the greedy approach for different BoT

types and sizes. Total number of leased machines is equal to 100

BoT size (n) BoT Type Diff. Cost(%) Diff. Makespan(%) Sum of Diff.(%)

3*10k Short 4.0 6.3 10.3
Mixture 4.0 6.8 10.8
Long 4.1 10.3 14.4

3*100k Short 4.2 5.6 9.8
Mixture 5.1 8.5 13.6
Long 5 9.3 14.3
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.2: Performance of our proposed algorithm (with two different
values of ε and δ) versus that of greedy approach with different sizes of
BoT (n = 10k in Figures (a), (c), and (e) and n = 100k in Figures (b),
(d), and (f)). Scenarios correspond to tasks with (a) and (b) short
running times, (c) and (d) mixture of both short and long running
times, and (e) and (f) long running times. The number of machines

taken from each instance type is set to 20 (100 total machines).



Chapter 5

PANDA: a Framework for

Pareto-Optimal Cloud Bursting

Fast, Cheap, Reliable, Choose two.

–Engineering tagline

5.1 Introduction

The massive horizontal parallelism of BoT applications often overwhelms the ca-

pacity of private clouds. This capacity limitation can be easily overcome with the

adoption of virtually ‘unlimited’ resource capacity of public clouds. However, the

degree of performance gain is often not strongly correlated with the usage cost.

This cost efficiency issue in scaling out is a major obstacle. Cost efficiency can

be translated to the performance to cost ratio from the user’s perspective; and is

subjective to the user (user’s utility).

In this chapter, we address the cloud bursting of large-scale BoT application

with the main objective of optimizing the performance to cost ratio. The idea is the

user is enabled to optimize the user’s utility by choosing the best tradeoff point

between application completion time and cost. We have designed the PANDA

(PAreto Near-optimal Deterministic Approximation) scheduling framework with a

fully polynomial-time approximation scheme (FPTAS) as a novel static scheduling

algorithm.

67
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5.2 Pareto Optimality of Cloud Bursting

In the context of cloud bursting, the user often has two conflicting objectives of

minimizing cost (c) and maximizing performance (or minimizing makespan (t)).

Normally, there is no solution that achieves the best value of both criteria simulta-

neously. If so, the concept of Pareto optimality is useful. A schedule σ′ is said to

be dominated by another one σ if the values of both metrics of cost and time are

worse than or equal to that of the latter, and strictly worse in at least one criterion.

A schedule σ∗ which is not dominated by any other schedules is Pareto-optimal.

The Pareto frontier is the set of all feasible Pareto-optimal points. In practice, the

user’s attention can be restricted to Pareto frontier points. Each user possesses

a utility function, U(c, t), to represent the value of a particular schedule from

the user’s interest. However, actual user preferences are difficult to obtain; and

perhaps a complex utility function could make the scheduling problem intractable.

The use case scenario of PANDA is as follows: the user submits a BoT job

specifying application information (e.g., input parameters, data) and/or resource

requirements. Task lengths of the BoT application are estimated (or obtained).

The Pareto frontier generator produces all scheduling candidates in Pareto-frontier

and sends them back to the user. The user selects a scheduling point to real-

ize the maximum utility. Then, PANDA finds a near-optimal schedule based on

the selected point and the actual execution is carried out. A schematic diagram

of PANDA processes with specific components is given in Figure 5.1. PANDA

enables the user to realize the best performance to cost ratio (based on user’s

particular interest or utility) when running BoT application in a multi-cloud envi-

ronment. We have much reduced the gap between theory and practice with a proof-

of-concept and its thorough evaluation using a real-world application (ISOMAP

[226]). PANDA is also capable of effectively dealing with uncertainties in appli-

cation or resource performance. The remainder of this section is organized as

follows. Section 5.3 gives the problem formulation of cloud bursting. Section 5.4

presents our approach to schedule BoT application, and provide analyses on the

algorithmic complexity of our algorithm. Section 5.5 presents a proof of concept

of the PANDA framework. We also presents a discussion on costs associated with

private clouds, and describe how the typical List scheduling heuristic is extended

for fair comparisons. In Section 5.8, our evaluation methods are described. And

lastly, Section 5.9 presents the experimental results.
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5.3 Problem Formulation

In the following, we formulate the cloud bursting of BoT applications as a binary

integer programming problem. The models for public cloud, private cloud, and

Bag of Task application follow the model presented in Section 3.4.

5.3.1 Performance versus Cost

The set of solutions for the following objective function is equal to the set of

Pareto-efficient frontier (see proof in [193]). Time and Cost refer to the makespan

and the total expenses incurred of job completion, respectively.
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min z = θ Cost + (1− θ)Time; ∀0 ≤ θ ≤ 1 (5.1)

The value of θ helps the user make better realization of the optimization goal.

When θ is close to zero, the user is willing to pay less money, which normally leads

to a schedule with larger makespan. On the contrary, when θ approaches to one,

the user tends to opt for an expensive schedule with a shorter makespan. Two

values of θ studied widely before:

– θ = 1: This generates a solution that all tasks run in resources of the most

cost effective type, i.e., the resource type with the highest values of si
ci

.

– θ = 0: This leads to a load balanced solution among available resources.

Specifically, each resource of type i receives a load proportional to the value

of si/
∑

κ∈Γ∪{v} Lκsκ.

In spite of these two cases, identifying the true value of θ is generally difficult.

Indeed, the user requires all knowledge about the relative importance of all objec-

tives in priori to supply the true value of θ. To overcome, we offer a posteriori

approach by delivering a (sufficiently) large representative set of Pareto options

among which the user chooses the preferred one. When effect of ATU-based pric-

ing is considered, scheduling schema with integer completion times and minimum

costs are good candidates to tackle Equation 5.1.

Figure 5.2 shows 150 points of different schedules for running the ISOMAP

application on Amazon EC2. There are clearly no Pareto points within some

subranges, e.g., within interval (21,21.5) as all of points are dominated by a Pareto

point annotated by T2. This fact helps us identify a set of Pareto candidates to

deliver to the user, i.e., schedules with integer completion times and minimum

costs. Let E denote the set of Pareto points being delivered to the user. Let Tbest

and Tworst show the best and the worst makespan achievable for the execution of

a given BoT application. We define T0 = Tbest, T|E| = Tworst and Tr = bTbestc +

r∆T − ϕ, for 0 < r < |E|, where ∆T is a positive integer number (the time step)

and ϕ called gap factor is a small positive number to maintain a gap, e.g., ϕ =5

minutes. Tr’s are the end-points of subrange when the interval of [Tbest,Tworst] is

divided into |E| subranges.

We are able to restate Equation 5.1 as a binary optimization problem, and

its solution produces set E based on Equation 5.2. We set a binary variable xi,j

to 1 iff task j is chosen to run on the resource i and 0 otherwise.
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min Cost =
∑

i∈Γ,1≤j≤n
cid
xi,jPj
si
e+ cv

(
xv,jPj
sv

)

s.t. : Time = max
i∈Γ∪{v}

(
n∑
j=1

xi,jPj
si

) < Tr∑
xi,j = n AND xi,j ∈ {0, 1}

(5.2)

where Equation 5.2 must be held ∀i ∈ Γ ∪ {v}, j = 1 · · ·n. A solution to

the minimization problem stated by Equation 5.2 gives exactly |E| Pareto optimal

points while each of them has a makespan at most up to Tr, for 0 ≤ r < |E|.

5.4 Pareto-Optimal Scheduling BOT Applications

In this section, we present an FPTAS solution for the optimization problem stated

by Equation 5.2.

An FPTAS algorithm takes both the problem specifications and a value ε > 0

as its input, and approximates the optimal solution within a ratio bound of (1+ε).

For any choice of ε, it has a running time that is polynomial in terms of both n

and 1/ε. Our FPTAS solution algorithm (Algorithm 6) consists of three steps:

pre-processing, task assignment, and solution refinement.

Fig. 5.2: Pareto frontier for a BoT app (ISOMAP).
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5.4.1 Preprocessing

In the first step of our algorithm, tasks are preprocessed for their lengths to be

equalized. This preprocessing enables us to find the optimal workload for each

resource. To this end, we take a small real number, called µ, and replace each

task of length Pj as a set of new tasks each of them with its length equal to µ

(choosing µ = 1 is normally appropriate for real application). The number of these

equal length tasks is n∗ =
∑n

i=1b
Pi
µ c instead of n in the original problem. Now,

we deal with a new profile of the problem where there are n∗ tasks of identical

length P = µ. It can be easily shown that in an optimal solution for this new

problem, each resource of a particular type receives the same amount of workload.

Let xi show the number of tasks assigned to resource of type i. The scheduling

problem for the new version can be restated as an integer (but not necessarily

binary) optimization problem as follows:

min Cost =
∑
i∈Γ

Licid
xiP

si
e+ Lvcv(

xvP

sv
)

s.t. : Time = max
i∈Γ∪{v}

(
xiP

si
) < Tr∑

i∈Γ

Lixi + Lvxv = n∗

(5.3)

where both xi and xv belong to Z≥0. As we target BoT applications with a large

number of tasks, we can use a relaxation technique (by removing the integral

constraints) to transform the above problem into a nonlinear version solvable in

polynomial time.

We sort resources in descending order by their cost efficiency (si/ci), such

that for any two resources i and j, if i < j then si/ci ≥ sj/cj . Then, the solution

for the relaxed problem can be stated as:

xi =
Trsi
P

n∗ −
i−1∑
k=1

Lkxk ≥
LiTrsi
P

n∗ −
∑i−1

k=1 Lkxk
Li

(5.4)

Note that changing the profile of original problem, by introducing µ, does not

impose any extra cost in terms of the running time of algorithm.
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Algorithm 4: Trimming procedure

input : `, δ: a sorted list of real numbers and a trimming factor
output: `′: a trimmed sorted list of real numbers
begin

Let ` = 〈z1 · · · z|`|〉
`′ = 〈z1〉
last = z1

for i = 2 · · · |`| do

if zi >
last
1−δ then

`′ = `′||zi
last = zi

end

end
return `′

end

5.4.2 Task Assignment: Subset Sum Algorithm

Let x∗=〈x∗1, x∗2 · · ·x∗k, x∗v〉 represent the optimal solution based on Equation 5.4.

Now that we find a subset of tasks that exactly add up to the value of x∗i or get

as close as possible. This can be considered as a general case of the subset-sum

problem which is already shown to be NP-complete (see e.g., [227]). The problem

can be stated formally as follows. Given n numbers as π = {P1, P2 · · ·Pn}, and a

set of real numbers x∗1, x
∗
2 · · ·x∗k, x∗v. We seek a subset of π, namely π1, π2, · · · , πk,

whose sum is as close as possible to each value of x∗i . These subsets must form a

partition in the sense that they are disjoint and cover π. Our proposed approach

to do this is summarized formally in the outer for loop of Algorithm 6. Here, for

each target value of x∗i , we compute sums of all subsets {P1, P2...Pj} (the inner for

loop). However, to reduce the size of such big sets, the sum of the first j numbers

in π′ is trimmed by a proper parameter.

The trimming process takes place in the inner for loop that constructs a

sorted list `j based on {P1, P2 · · ·Pn}. Specifically, auxiliary procedureMerge(`, `′)

returns the sorted list that is the merger of its two sorted input lists ` and `′ in

which duplicate values are removed. The merged list (`j) is then trimmed using

Algorithm 4 for all elements in the output list to satisfy the trimming property.

Given a parameter δ, where 0 < δ < 1, real number z approximates real

number y by factor δ, if y
1+δ ≤ z ≤

y
1−δ . Let ` indicate a list of some real numbers,

i.e., ` = 〈z1 · · · z|`|〉. List ` is trimmed by parameter δ, if we remove as many

elements as possible from ` such that every element removed is approximated by

some remaining element in the list by factor δ.
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The trimming procedure can dramatically reduce the number of items in a

list while keeping a close representative value in the list for each deleted item

[219]. Algorithm 4 trims the input list ` in time Θ(|`|), assuming that ` is sorted

in increasing order, and outputs a trimmed and sorted list `′. In Algorithm 6,

trimmed elements larger than
x∗i

1− ε
2|π′|

are removed as we only look for a subset

whose sum is x∗i , (or close to it by the factor of ε
2|π′|). Once the nearest value to

the target value, x∗i , is found, numbers that create x∗i are removed from set π′, and

the procedure is repeated for the next target value.

5.4.3 Refinement

Lastly, we attempt to further reduce z value using task rearrangement (Algorithm

5). The optimal solution found by Equation 5.4 is not necessarily integer. Rather,

it provides a lower bound on the optimal value. The feasible set of original integer

problem is given by the set of all integer-valued points for xi. One may simply

round the fractional solution given by Equation 5.4 to obtain an integral feasible

solution. However, the rounded solution is most likely not optimal for the original

problem due to the simplification we made by replacing the value of dxiPsi e with
xiP
si

.

A simple and yet effective solution for this discrepancy is task rearrangement.

Besides making schedule feasible, we attempt to rearrange tasks in the way cost

and/or makespan is reduced. For example, a task currently assigned to a slow

resource is moved to a faster resource such that the time required by the faster

resource to run all assigned tasks including the task being moved does not incur

any extra cost. Yet, the completion time with the moved task still remains within

the original multiple of ATUs for tasks without the moved task.

In each iteration of the while loop of Algorithm 5, two resources i and j are

selected and a certain number of tasks in one resource (i) are moved to the other

resource (j) if this rearrangement reduces ζ = Cost(x). Specifically, the amount

of time that resource i is leased (in whole hours) but not utilized (partial hour) is

identified by ri; and this is used to calculate values of l and u for each resource.

These values indicate the numbers of tasks that can be removed from and added

to resource i, respectively, without change to resource rental time (in full hours).

Then, the algorithm finds a combination of tasks (δxi) currently running on the

other resource, j, for which the sum of these tasks is equal to either lj or uj .

For every possible combination of tasks, the value of ζ(x) is checked to see if it
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Algorithm 5: Rearrange task assignment

input : n, P, Li, ci, si, Tr,x (workloads vector);
output: 〈x∗〉
begin

S = Φ;
while true do

Let ri = frac(xiPsi ); // get fractional part;
li = Lid risiP e;
ui = Lib (1−ri)si

P c;
∆ = {(δx1, · · · , δxk)|∃j :

∑
Liδxi = lj or

∑
Liδxi = uj ; δxj = 0; δxi ≥ 0;

{i, j} /∈ S; i, j ∈ Γ}
Find min∆ ζ(x±∆x) where

x±∆x =

{
(x + ∆x) if

∑
Liδxi = lj

(x−∆x) if
∑
Liδxi = uj

and
∆x = (δx1, δx2 · · · − 1

Lj

∑
i 6=j

Liδxi · · · δxk),

if ζ(x±∆x) < ζ(x) then
S = S ∪ {j};
Update x with ∆x

else
break

end

end

end

is reduced. ζ(x) denotes the total cost value of a specific configuration 〈x〉, as

described by Equation 5.3. Once the best possible reduction of cost is found, we

remove/add δxi tasks from/to each resource indexed by i and add/remove
∑
δxi

tasks—equal to either lj or uj—to/from resource j. We add resource j to a holding

set (S) to exclude it in the following rounds.

5.5 Proof of Concept Implementation

In this section, we demonstrate the feasibility of our framework.

5.5.1 Runtime Prediction Models

Due to the fact that HPC users need to provide run-time estimates for submitted

jobs and this estimation significantly impacts the performance of parallel and dis-

tributed systems, this topic have been the focus of several researches. As mentioned
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Algorithm 6: Approximate task assignment

input : n, ε,π={P1, P2 · · ·Pn}, Li, ci, si, Tr; ∀i ∈ Γ ∪ {v}
output: πi; a partition scheme of π while the sum of numbers in πi approximates x∗i ;
begin

Set µ to a small real number, e.g., 1;
Let n∗ =

∑n
i=1

Pi
µ ;

Find optimal task assignment, x∗ // Equation 5.4
Sort(x∗, descending);
π′←π;
for i = 1 · · · k + 1 do

`0 ← 〈0〉
for j = 1 · · · |π′| do

Let `j = Merge(`j−1, `j−1 + Pj) `j ← Trim(`j ,
ε

2|π′|) // Algorithm 4

Remove elements from `j for which the size is greater than
x∗i

1− ε
2|π′|

end
Let π∗i be the nearest value to x∗i in `j ;
πi← set of numbers whose sum equals to π∗i ;
π′←π′ - πi;

end
Rearrange // Algorithm 5

end

in [228], if a good user or system estimator does not include, any improvement in

scheduling algorithm could not work nicely (in other words, seems to be wasting

of effort). In a comprehensive study leaded by a group of researchers in Hebrew

University [228], authors analyzed workload logs collected from parallel machines

in production use, and showed that user runtime estimates are highly inaccurate

even for a single machine. The situation becomes worse when several geograph-

ically distributed computers with unknown characteristics are used as the user

have no real information on application behavior on such systems. A metric called

“user run time estimate accuracy” of each job can be defined as the ratio of the

real runtime to the estimate value,
(
pj/p

′
j

)
. In the case that there exist some

automatic tools that can generate a runtime prediction of the submitted job, we

can similarly define “system prediction accuracy” as the ratio of the real runtime

to the system generated prediction
(
pj/p

′′
j

)
.

There exist several models that a user can apply for job running time esti-

mation. Feitelson [84] suggested that user can simply assume a job’s running time

is distributed uniformly within the range of [R,R(1 + f)], where R is an initial

guess about running time and f > 0 is a factor of uncertainly. The main problem

of this model is that estimation is correlated with the real value of running time,
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which gives the scheduler too amount of valuable information. The assumption of

existing this information is not true in practical situation, however. An improved

version of this model can be constructed by attempting to model the observation

of histograms obtained from real environment. Analyzing such histograms implies

that pj/p
′
j = u where u is a random variable distributed uniformly within [0, 1].

So, one can find the artificial estimated value by changing the sides of mentioned

equality (also called φ-model [229]).

The problem of φ-model is that there exists a hidden connection between

longer runnig times and increased accuracy indeed. It means that the distribu-

tion of jobs in the accuracy histogram is not uniform. Hence, another model

was proposed by Cirne and Berman [230], which took the opposite direction to

the φ-model. In their model, they use gamma distribution for modeling accura-

cies, while estimates were modeled using a log-uniform distribution. However the

model suffers from the same problem as φ-model, because accuracy and actual

runtime are still independent. The work in [228] tries to improve previous models

by estimating modality. By considering the estimates distribution as a sequence

of modes, they could deliberately investigate main characteristics of user estima-

tions. Their model is available to download from the parallel workload archive

[231]. The outcome of using above-mentioned models are unrealistically better

than those obtained with real estimates, however. In [232, 233], authors argued

that the correct approach for workload modeling is user- and session-based mod-

eling, instead of analyzing jobs directly. They also provide some techniques to

identify the useful user and session features by using a method based on k-means

clustering. In [234], Tsafrir et al. showed that how historical data can improve

estimates because users tend to execute same program several times. Their simple

runtime predictor calculates the average of runtimes of last two jobs submitted by

the same user. Quiet interestingly, they showed that using most recent data can

be more effective than mining the whole history. Work in [124] used the history

of system generated prediction models and incorporated them into different job

allocation policies in order to improve the overall grid performance. It seems that

all currently available models for generating user estimates are lacking in some

respect. While the current scheduling policies are mainly based on the the run-

time estimates and assume that users are able to provide accurate estimates of job

runtimes, which is not the true case often, the grid or cloud resource assignment

may suffer severely from inadequate accuracy of estimation tools.
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5.5.2 Task Length Estimator

The information on task length in our experiments is obtained by running ISOMAP

with various settings in our private system. Although there are several techniques—

such as Monte Carlo sampling methods (e.g., [217])—to estimate the task length,

our preference was to use the actual task length values to avoid any unknown or

severe side effects that an estimation might have on evaluating of our system.

5.5.3 Scheduler

The actual scheduler has been developed using Python. The key functionalities are:

(1) it launches either binary executables or shell scripts automatically in a remote

machine. Tasks can be executed independently from one another. Depending

on the number of cores, tasks are executed in parallel in each machine (using

package multiprocessing); (2) it triggers events for starting tasks, such as API for

monitoring and acquisition of Amazon EC2 resources (using package boto [235]).

Such an event initiates the execution of the next available task awaiting in a shared

task queue; (3) it allows the user to configure job parameters. Task parameter

control is carried out by command line or by a built-in graphical user interface. An

XML-based configuration scheme for job management is also developed; and, (4)

some built-in log facility collects performance metrics, generates some file reports,

and plots charts.

There is an option to run different scheduling strategies, such as Listn algo-

rithm for performance comparisons. The SSH protocol has been used for commu-

nication and remote execution.

5.6 Running Time of the Rearranging Algorithm

In this section, we prove that Algorithm 5 runs in a reasonable amount of time

with the following lemma.

Lemma 5.1. In Algorithm 5, if a resource has been selected for task rearrange-

ment, it does not need to be considered in the future rounds. Hence, we add it to

the exclusion set S.

Proof. Let Rn be some round in the refinement process of Algorithm 5. In round

Rn, some tasks are added to resource j from resource i. In a later round Rm
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(Rm > Rn), tasks in resource j are moved to resource j′. Because, in both situ-

ations, values of objective function must be decreased by the maximum amount,

moving tasks from resource i to resource j′ should decrease the value of objective

function more than moving tasks from resource i to resource j in round Rn, which

contradicts the assumption of maximum reduction in objective function value.

With the above lemma, it is concluded that once a resource is selected as a

candidate for task rearrangement (addition or removal), it must be excluded from

the refinement process in other rounds. This fact is checked in Algorithm 5 with

set S. This exclusion ensures the number of rounds in the while loop is not greater

than the number of different resources rented from the public cloud, i.e., |Γ|. In

each iteration of the while loop, all possible combinations of number δxi—sum of

them is equal to either lj or uj—must be checked to find the minimum value of

objective function, shown by z(x±∆x) in the if statement. Let |Γ| = k, then the

running time to check all of different combination is less than

(
lj + k − 2

k − 2

)
+

(
uj + k − 2

k − 2

)
< 2

(
sj
P + k − 2)k−2

(k − 2)!
. (5.5)

, so the running time of Algorithm 5 is bounded by O((
sj
P )k−2). For a typical

configuration of current public cloud environment, values of these parameters (
sj
P

and k) can be estimated to be less than 10 and 5, respectively, resulting in the

running time of the algorithm being almost thousands statements which is quite

acceptable. The algorithm finishes when no resource can be found to reduce the

value of objective function, i.e., the global minimum point is found.

5.7 Complexity of the Scheduling Algorithm

In this section, we analyze the complexity of Algorithm 6 with respect to problem

size (n) and approximation factor (ε).

Theorem 5.2. Algorithm 6 is a fully polynomial-time approximation scheme for

the task assignment problem in case of varying length tasks.

Proof. To show that Algorithm 6 is an FPTAS approximation scheme for the task

assignment problem of varying-length tasks we need to show that return value of

the algorithm, z∗, satisfies the following condition: z∗ ≤ zOPT (1 + ε), where zOPT

denotes the optimal solution to Equation 5.1. We must also show that the running

time of this algorithm is polynomial in terms both 1/ε and the size of the input.
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Based on a similar approach proposed in [236], one can show that the outer

for loop yields a value of π∗i which satisfies π∗i ≤ x∗i (1 + ε). Let ζ =
∑
f(yi) be

the associated value of the objective function to the vector input y according to

Equation 5.3, which f(yi) = ωidγiyie for some known coefficient of ωi and γi. So,

the following inequality must hold for any input of increasing function f :

π∗i ≤ x∗i (1 + ε)⇒ f(π∗i ) ≤ f(x∗i (1 + ε))

≤ ωidγix∗i (1 + ε)e ≤ (1 + ε)ωidγix∗i e ≤ (1 + ε)f(x∗i )⇒

ζ(π∗) < (1 + ε)ζOPT

(5.6)

we use a version of Hermite’s identity in the above proof which implies that

if real number x is large enough, the following approximately equality is true:

dx(1 + ε)e ' (1 + ε)dxe,∀ε > 0

On the other hand, the following inequality holds true:

x∗iP

si
< Tr ⇒

π∗i P

si
<
x∗i (1 + ε)P

si
< Tr(1 + ε) (5.7)

Let z∗ and z(π∗) show the value of Equation 5.1 for the optimum solution (x∗)

and π∗, respectively. From (5.6) and (5.7) we can conclude that:

z(π∗) = θ
∑

ζ(π∗) + (1− θ) maxT (π∗) ≤

(1 + ε)
(
θ
∑

ζ(x∗) + (1− θ) maxT (x∗)
)
≤ (1 + ε)z∗

To show that Algorithm 6 is an FPTAS, we derive a bound on the running

time of the algorithm with the size of input. It has already been shown that the

inner for loop runtime is θ(nε ) [236]. Thus, the running time of Algorithm 6 is

bounded by O(kn/ε), which completes our proof.

5.8 Experiments

In this section, we give details of our experimental setup and evaluation metrics.
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5.8.1 Experimental Setup

The multi-cloud environment in our experiments was modeled as described in

Section 5.3 with the use of our 4x10-core cluster and Amazon EC2. Experimen-

tal settings are summarized in Table 5.1. The communication overhead can be

considered zero as the size of task is small and tasks are CPU-intensive.

In Table 5.1, the processing capacity is defined as how much work a resource

performs in a given amount of time, e.g., an hour, comparing to a reference resource

(m1.small). To determine this parameter, we constructed a simple and fast-running

benchmark to measure how fast a resource solves the ISOMAP algorithm with

specific data sets. This benchmark comprised of four data sets with sizes of 1,000

and 5,000 points taken from either Swiss-roll or S-curve manifold. A set of fixed

cardinality values of reduced dimension k ∈ {5, 20, 100} and reduced dimension

d = 2 were chosen for this benchmark. We used the resource limit of 20 regardless

of resource type.

BoT jobs used in our experiments are based on ISOMAP. We populated

5,000 different combinations of tasks using ISOMAP with two data sets, namely,

Swiss-roll and Swiss-roll manifold. The task lengths lay between range of tens

of seconds to several hours. Both time and cost overheads of data transfer are

negligible.

5.8.2 Costs in Private Clouds

Total Cost of Ownership1 of private cloud is a financial estimate for the costs of

private cloud usage over its lifetime. For effective usage, TCO must account for the

real costs of all items, such as cost of resource purchasing, the cost of maintenance,

cost of physical space within a data-center or site, the cost of consumed power and

cooling, and the cost of hardware and software used for management and training

1TCO

Table 5.1: Multi-cloud settings

Cloud Res. Type Proc. Capacity Cost

m1.small 1 $0.080
Amazon EC2 c1.medium 5 $0.165
US East (VA) m1.large 4 $0.320

c1.xlarge 20 $0.660

Private 4x10 Xeon Processors 10 $0.320
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purpose, and so on. Each of these items associates with an overhead cost should

not be overlooked.

To estimate the meaningful cost of ownership of the private cloud, researchers

have proposed several methods for calculating the amortized cost [237–240]. Nor-

mally, those models take into account the amortized cost as the sum of infras-

tructure costs, total equipment energy consumption, cooling system, real estate,

administration and maintenance cost, and so on. In each model, user must specify

several parameters’ values, such as energy price per KWh, scalability factor, op-

erational life span, expected server utilization, rate of interest, etc. As calculating

the exact amount of amortized cost is not in our scope, we provide an estimation

of this amount for a typical private cloud. Different estimated prices per core have

been reported ranging from $0.08/h [239] to $0.11/h [240] (we used the exchange

rate of $1.3 for one EURO). We adopt the value of $0.32/h for the cost of a node

in this work (equals to the hourly rate of m1.large instance).

5.8.3 Evaluation Metrics

In this section, we describe three widely used performance metrics adopted for

evaluating the quality of scheduling in terms particularly of cost efficiency.

Speedup is defined as speedup(p) = time(1)/time(p) (p is the number of ma-

chine used). Although one can introduce costup(p) = cost(p)/cost(1)—analogous

to speedup, we prefer to determine the cost efficiency of scheduling by combining

the cost and speedup (performance), and define the speedup per cost as:

perfcost(p) = speedup(p)/cost(p) (5.8)

Then, the cost efficiency of a schedule with multiple resources is determined

by perfcost, i.e., the higher the better compared with that of single resource

(perfcost(p) > perfcost(1)).

A schedule is considered more cost efficient if its speedup(p) > costup(p).

We define another metric to compare the desirability of different scheduling

strategies, FarnessA, that measures how far the solution of algorithm A is from

a corresponding Pareto point. More formally,

FA =
TimeA − TimeOpt

TimeOpt
+

CostA − CostOpt
CostOpt

(5.9)
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The closer the value of FA to 0, the more effective algorithm A. Scheduling

overhead (Section 5.9.3) is also used for evaluating our scheduling algorithm.

5.8.4 Extended List Scheduling Heuristic

The idea behind List scheduling, one of the widely used policies in distributed

systems, is creating an ordered (with some types of priorities) list of available tasks,

and continuously running the following actions: (1) select the highest prioritized

task, and (2) select a free machine to run this task. The priorities procedure can

be decided in various ways such as longest running time or random. In fact, the

standard version of List can not be fairly compared with our algorithm, as it only

takes the speed of resources into account (and not their costs). To overcome, we

extend it by a simple rule. Assume that there are m machines available and are

sorted into their cost-effectiveness decreasingly. We define Listη to represent a

List schedule which uses only the first η most efficient ( speedcost ) machines (η ≤ m).

5.9 Results

Our evaluation study was conducted primarily with comparisons between our

scheduling algorithm and an extended version of List scheduling heuristic. The

extended List heuristic, called Listη, considers not only the processing capacity of

resource, but also the cost of resource.

5.9.1 Impact of Resource Limit

We have conducted experiments with a BoT application of its size (completion

time) being 10Ms (million seconds) to show the effect of resource rental limit on

the scheduling performance. Whenever ε value is not mentioned explicitly, we set

it to 0.1 to conduct the experiment in a reasonable time and quality.

Figure 5.3 compares the achieved performance of PANDA with both extended

List algorithm, Listη, and the optimal values. As can be clearly seen while Listη

fails to produce an acceptable solution, PANDA can reach closely to the optimal

value.
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Fig. 5.3: Pareto frontier reached by three different approaches. Li =
5, ε = 0.1, and |B| = 10Ms (on m1.small).

5.9.2 Impact of Application Characteristics

An application may consist of tasks with different lengths. The mean and the vari-

ance of task lengths can heavily affect the performance of any scheduling strategy.

This section presents a set of experimental results designed to show the impact of

BoT application size, |B|, and task lengths.

In Table 5.2, the achieved total cost and makespan of different algorithms

for various BoT application sizes are summarized. The solution quality of Listη

heuristic is comparable to ours for small BoT applications; however, the discrep-

ancy increases when the BoT size grows (total 30% difference with our algorithm

when |B| = 17M.s.)

Another important factor affecting the performance is task granularity (length

characteristics). We distinguish three different BoT application based on their task

length characteristics: short tasks (an application consists solely of tasks with short

computational requirements), long tasks, and mixture of both short and long tasks.

We define BoT mixture ratio, r, as the percentage of long tasks in a given ap-

plication, i.e., r = |long tasks|
|B| . This ratio can be interpreted as the BoT granularity.

For a given application, r=1 indicates it consists of long tasks whereas r=0 shows

it is composed of short tasks. The higher value of r an application has, the more

performance (speedup or Speedup Efficiency defined as speedup(p)
p ) our algorithm

can reach. Table 5.3 depicts the achieved Speedup Efficiency of PANDA and Listη

heuristic. Speedup efficiency which is a value between zero and one, represents how

well utilized the resources in a given solution. The general inference is that when

the variance of task lengths grows, the Listη algorithm exhibits poor performance.
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Figure 5.4 depicts the average speedup and perfcost of two algorithms with

respect to different numbers of leased resources in three different BoT application

types. We recall that the optimal value is not achievable by any algorithm, as

it has been calculated if the application is considered either as a fully parallel

application or possessing the ability of preemption.

Figure 5.4(a) depicts the speedup and the perfcost for BoT application with

small tasks. The size of BoT application is equal to |B| = 106 sec. (on m1.small),

and each task length is in a range of [10, 500] seconds. There is the maximum

perfcost value at 10 machines which shows hiring more than 10 resources is not cost

efficient. The Listη heuristic fails to reach a good solution when the mixture ratio

grows (As shown in Figures 5.4(b) and 5.4(c) with r = 0.7 and r = 1, respectively).

Here, size of BoT application is equal to |B| = 107 sec. (on m1.small), and task

lengths are in a range of [500 sec., 5 hours].

Table 5.2: Average values of makespan and total cost with respect to
different sizes of BoT applications. The reference is m1.small, Li = 20

and ε = 0.1.

|B| Listη PANDA Optimal
ms(h) cost ms(h) cost ms(h) cost

1M.s. 2.2 66.0 1.8 58.5 1.5 58.5
5M.s. 4.2 118.4 3.6 117.2 3.3 117.2
10M.s. 5.5 153.5 4.9 146.0 4.5 146.0
17M.s. 9.7 241.7 8.2 215.6 7.9 192.8

Table 5.3: Speedup Efficiency of PANDA and Listη with respect to differ-
ent values of BoT mixture ratio parameter (r) from 0 to 1 with a step
of 0.2 and different numbers of machines (m =

∑
Li). |B| = 17M.s.,

and ε = 0.1.

r m PANDA Listη r m PANDA Listη

3*1.0 10 .74 .60 3*0.8 10 .67 .55
40 .72 .50 40 .60 .43
80 .70 .32 80 .58 .25

3*0.6 10 .59 .53 3*0.4 10 .55 .51
40 .55 .38 40 .51 .35
80 .50 .19 80 .44 .17

3*0.2 10 .52 .47 3*0.0 10 .50 .45
40 .50 .30 40 .25 .24
80 .32 .15 80 .13 .12
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While PANDA can achieve the appropriate workload for each value of Tr

(by using the subset sum procedure), the Listη heuristic takes as many tasks as

possible while the pre-determined workload of each of η resources is not exceeded.

This selection may either leave a large empty workload on some resources, or result

in overwhelming other resources with extra workload. It can be seen that perfcost

value of PANDA is maximized when 70 resources are leased, and the value is more

than two times larger than that of the Listη heuristic. Note that perfcost is a

descending function after 70 resources.

Table 5.4 shows comparisons between PANDA and Listη heuristic in terms

of Farness (FA), for BoT applications of different characteristics (task lengths).

The results show that the performance of Listη heuristic degrades significantly as

the BoT mixture ratio increases.

5.9.3 Scheduling Overhead

In Section 5.7, we showed that the running time of PANDA is polynomial in terms

of size of BoT application, n, as well as 1/ε. Clearly, approximation ratio (ε)

trades accuracy for running time; and thus, ε can be used as a design parameter

for scheduling algorithm.

Table 5.5 shows the actual running times of our algorithm on a desktop ma-

chine with a 3.0GHz Intel Core2 Quad Processor with 4GB of RAM for different

settings and different values of ε. It also shows both the achieved farness and

scheduling overhead (H) of PANDA. The scheduling overhead of algorithm A is

defined as H(A) = (runtime(A) + Hnet)/runtime(BoT). Here, runtime(A) is

the running time of algorithm A, Hnet is the additional overhead, such as boot-up

time or the time required to send the data/application to the remote machine, and

runtime(BoT) shows the actual processing time needed to execute the BoT appli-

cation. One can conclude that the upper bound inequality of zPANDA < zopt(1+ε)

holds true for all different settings, and consequently it reaches to the pragmatic

optimal solution very effectively with reasonable computational overhead (less than

5% on average).

5.9.4 Robustness and Applicability

Optimization solutions are often affected by uncertainty in input parameters;

hence, they can show notable sensitivity to even small perturbations in the prob-

lem parameters. Two main sources of perturbations are estimation errors on task
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Table 5.4: Farness of two approaches. |B|=17 M.s., Li = 20 and ε = 0.1.
BoT applications are differentiated by their task lengths.

BoT type Listη PANDA

Short 11% 10%
Mixture 33% 12%
Long 41% 13%

Table 5.5: Running time (RT), Farness, and scheduling overhead (H)
of PANDA for different ε and task lengths. r = 0.7 in the mixture
case. Sizes of BoT applications, |B|, in three different types of short,
mixture, and long tasks are 8.2M.s., 11M.s., and 11M.s., respectively.

Short Mixture Long

ε RT (h) FA H RT (s) FA H RT (s) FA H

0.1 1.8 7 47 30 8 ≤ 1 15 8 ≤ 1
0.2 1.7 9 42 10 12 ≤ 1 7 12 ≤ 1
0.3 1.6 10 40 7 14 ≤ 1 4 14 ≤ 1
0.4 1.0 12 30 7 14 ≤ 1 4 16 ≤ 1
0.5 0.9 14 25 6 17 ≤ 1 4 18 ≤ 1
0.6 0.6 17 20 5 20 ≤ 1 4 22 ≤ 1
0.7 0.5 20 15 5 23 ≤ 1 3 24 ≤ 1
0.8 0.4 25 12 4 25 ≤ 1 3 28 ≤ 1
0.9 0.3 30 10 4 29 ≤ 1 3 30 ≤ 1

length (EstErr) and resource performance (speed) variations (PrfDeg). PANDA is

capable of dealing with these issues using gap factor, ϕ, and approximation factor,

ε.

As discussed in Section 5.3.1, Pareto-optimal points have integer completion

times, e.g., 3 hours. However, to overcome two aforementioned issues of EstErr

and PrfDeg, we use a gap factor, ϕ, which is a small positive number, such as 5

minutes, to keep the resources empty during that interval. Thus, if the resource

performance degraded unpredictably, the gap factor would allow us to meet the

assigned Pareto-optimal point. For example, if ϕ=5 min, then we would assign

the resource workload to be run toward 2 hours and 55 minutes instead of full

3 hours. Selecting a proper ϕ value depends on intensity of both EstErr and

PrfDeg values. Apparently, if the scheduling system is working on resources with

frequent performance degradations, the ϕ value must be considered higher. The

same argument is true in the case of low accuracy of estimation tool.
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Approximation factor, ε, provides additional controlling parameter to en-

counter with the mentioned issues. The trimming procedure, Algorithm 4, uses a

trimming factor, δ, which is related to ε, to keep only one of the adjacent numbers.

For example, assume that all numbers within the interval I = (x/(1−δ), x/(1+δ))

are trimmed by x value. So, for any number z ∈ I, if the estimation method cal-

culated another number of z′ ∈ I instead of z, the output performance of our

algorithm does not change. The reason for this is simply both z and z′ have been

trimmed by the same value of x. Therefore, by selecting a suitable value for ap-

proximation factor, the system tuner can reduce the negative effects of EstErr. To

measure the quantitative sensitivity of PANDA in regards to the variability in both

EstErr and PrfDeg, more experiments were conducted. To resemble the behavior

of a real BoT application, we take advantage of BoT application characteristic

patterns reported by [241] and [225] derived from the analysis of several real BoT

applications. The task lengths in this model are expressed by 2b (in minutes),

which b follows either a (1) uniform or (2) normal distribution with attributes

given in Table 5.6. The task length is defined as how much CPU time is required

to run on a single core machine (m1.small).

Figure 5.5 presents a comparison of the Farness achieved by PANDA with

different values of ε and ϕ with respect to the different values of EstErr. We only

show experimental results for BoT application with long task lengths as the same

pattern was observed in two other types. In the curves related to the smaller

values of ε (≤10%) and/or ϕ (<10 min), the Farness values grow gradually at

the beginning, e.g., error is less than 20%. After this, there is a sharp increase

in Farness which shows a poor performance. Conversely, for larger values of ε

(>10%) and ϕ (≥10 min), the Farness values are higher than before at the start,

and then increases slowly at the end. It concludes the larger values of ε and ϕ can

cope better with bigger error values of EstErr, while reach poor performance at

less-erroneous environment. In other words, to achieve a better performance in an

erroneousness condition, values of ε and ϕ must be carefully chosen higher than

normal.

To study the impact of PrfDeg, we first introduce the average aberration

parameter. Suppose that the performance level (speed) of resource i degrades

to ŝi from the predetermined value of si, during the execution of application.

An assigned task with length Pj would take Pj/ŝi time units to finish, instead

of presumed time of Pj/si. Average aberration (in percentage) over all available

resources is defined as: (k′ = |Γ ∪ {v}|)
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Table 5.6: BoT task length characteristic. n=100,000.

BoT type Task length

=2x(minute)

Short x ∼U(0,3)

Long x ∼N(3.5,3)

Mixture x ∼N(1.8,3)

ν̄ = (
∑

i∈Γ∪{v}

|ŝi − si|/si)/k′ (5.10)

Table 5.7 presents the achieved Farness of PANDA for different values of ν̄

when tasks of BoT application are all long. To create a working condition with

a target degraded performance in a resource, we ran a configurable process to

consume CPU clocks deliberately.

Our results show that two parameters of ε and ϕ can effectively cope with

application or resource performance uncertainties. When ν̄ value is small (< 10%),

small chosen values for ε and ϕ can effectively lead to an acceptable performance.

A large value for two parameters need to be chosen in an environment with higher

level of ν̄.

Table 5.7: Sensitivity of PANDA Farness to the aberration percent-
age (ν̄).

ν̄(%) ε(%) ϕ(min) F (%) ν̄(%) ε(%) ϕ(min) F (%)

3*5 5 5 12 3*10 5 5 16

10 10 15 10 10 19

20 10 19 20 10 22

3*15 5 5 23 3*20 5 5 30

10 10 23 10 10 30

20 10 22 20 10 26
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5.10 Summary

The massively and horizontally scalable nature of large-scale BoT applications in

many science, engineering and business analytic applications often requires com-

puting capacity beyond the capacity of a single computer system. Expanding the

system is not a practically viable solution due to both capital and operating costs.

Here, cloud computing comes into picture with elasticity and pay-as-you-go utility

model. In this Chapter, we have presented PANDA framework for cloud burst-

ing, and developed an FPTAS (for scheduling) as the essential component of the

framework. We have shown that cloud bursting can be greatly leveraged by op-

timizing the performance to cost ratio. Our scheduling algorithm guarantees the

deviation of such cost efficiency from the optimum to be bounded by a tunable

parameter (approximation factor, ε). The identification of Pareto-frontier plays a

crucial role in capturing tradeoff between performance and cost. Our framework

with its scheduling algorithm has been thoroughly evaluated with extensive exper-

iments using ISOMAP in real cloud settings. Experimental results prove that our

solution can effectively leverage cost efficiency in clouds. We believe that with the

increasing adoption of cloud computing, cost efficiency solutions like PANDA for

cloud bursting have great practical importance.
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(a)

(b)

(c)

Fig. 5.4: Scheduling performance in terms of Speedup and perfCost
metrics with respect to different BoT applications comprising of tasks

with (a) Short, (b) Mixture, and (c) Long lengths
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Fig. 5.5: Farness vs. EstErr for different ϕ (min.) and ε(%). Task
lengths are long, i.e., r = 1. n = 100, 000, and m=100.



Chapter 6

Non-clairvoyant

Pareto-Efficient BoT

Scheduling

“Success in life is the result of good judgment. Good judgment is usually the result of

experience. Experience is usually the result of bad judgment which people called failure.”

–Anthony Robbins

6.1 Introduction

Research on resource management in such an hybrid environment often relies heav-

ily on having complete and accurate information regarding relevant parameters,

e.g., tasks, resources, etc. In practice, however, these pieces of information are not

readily available. Three main issues of resource management in hybrid clouds are

described as follows.

Coping with Parameter Uncertainty: Characteristics of tasks, such as

the running time, are not given a priori, and therefore need to be estimated using

other sources, such as historical data, profiling and analysis tools, [242–246], and

[247]. Despite these developments, achieving the optimal resource allocation under

uncertainty remains a challenging problem.

Satisfying Conflicting Objectives: Different interpretations of optimality

from the user’s perspective add more complexity to task scheduling in the cloud.

On one side, the user has two conflicting objectives (makespan and total cost), sub-

ject to certain deadline or budget constraints. Such a conflict often makes finding

93



Chapter 6. Non-clairvoyant Pareto-Efficient BoT Scheduling 94

a solution that simultaneously optimizes both objectives impossible resulting in

heuristic approaches (e.g., [248, 249]). On the other side, a compromise between

these two conflicting objects is often not available to the user in advance. Al-

though it is normally assumed that the user has a utility function, U(time, cost),

to represent numerically his/her preference on the time and cost, deriving such

a utility function is often a tedious and complex process for a normal user, and

therefore not always possible.

Achieving Allocation and Scheduling Optimality: For a large scale

application, allocating hybrid cloud resources respecting a predefined service level

agreement is a complex, costly and time consuming matter. As estimated in

[250] and [251], more than 70% of the workload in parallel systems and 96% of

that in grid systems are comprised of BoT applications. Such applications are

composed of a vast number of very loosely-coupled tasks and thus demonstrate

massive parallelism. As the number of resources in a given in-house system is

often limited, it is imaginable that the performance of task execution can be greatly

enhanced by dynamically renting resources from the virtually unlimited capacity

of public cloud providers.

To address these three issues, in this section we develop and evaluate a dy-

namic task scheduling and resource allocation algorithm for Bag-of-Task (BoT)

applications running on a hybrid cloud by providing the following novel contribu-

tions.

1. A hybrid approach for running time estimation, accompanying a feed-

back control system, that is designed to cope with the uncertainty in the

estimating of running time via an analysis of multiple estimation tools.

2. An a posteriori possible-schedule technique that presents to the user

possible Pareto-optimal schedules and allows the user to make an informed

decision about his/her preferred assignment by selecting among them.

3. A resource allocation process that utilizes our hybrid running time es-

timation process and dynamically rents public cloud resources in order to

approximate the user’s chosen Pareto-optimal solution.

Experiments conducted on a testbed hybrid cloud (using Amazon EC2 as

a public cloud) show that the final scheduling output delivered by our resource

allocation process achieves a solution with 2% of the user’s chosen Pareto-optimal

point. Moreover, our approach outperforms an extended List scheduling approach

by reducing both makespan and total cost by around 20% and 5%, respectively.
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The rest of this section is organized as follows. We introduce the model used

in this chapter as well as a formal definition of the resource allocation problem in

Sections 6.2 and 6.3, correspondingly. Our resource allocation solution algorithm is

presented in Section 6.4. Finally, experimental results are presented and discussed

in Section 6.5.

6.2 Models

The benefit of resource allocation under uncertainty is widely recognized within

the literature. Exact information about the characteristics of applications or re-

sources is rarely available, and thus much effort is required to properly address

this problem. The models for public cloud, private cloud, and Bag of Task appli-

cation follow the model presented in Section 3.4. In this work, we assume that the

user has a budget, B, and a deadline to finish the application, D. Both of these

parameters are known in advance. Since we deal with an application comprised of

CPU-intensive tasks, network latency between the scheduler (or private machines)

and the public cloud instances is assumed to be negligible compared to the actual

running time of the application. For example, when running ISOMAP during our

experiments, transferring data between instances in our hybrid cloud took only 5

minutes, while the total running time of the application is almost 20 hours. Table

6.1 summarizes a list of notations and abbreviations that used in this section. In

the following we describe the model for estimation tools.

6.2.1 Estimation Tools Model

Numerous studies have addressed the topic of task running time estimation in a

given application. The tools presented in these studies mainly use either analyt-

ical benchmarking or code profiling techniques which analyze the source code of

the given tasks to obtain the behavior of tasks in terms of a set of parameters.

There are also several methods based on statistical and probabilistic techniques to

estimate the execution time of tasks [252]. We assume that our system has access

to a set of different estimation tools, denoted by I = {I1, I2, · · · , Iτ}, and the

estimated execution time of task j by using a tool of type t will be denoted by p̂j,t.
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Table 6.1: Frequently used symbols and notations

Γu (Γv ) Set of resources in public (private) cloud

k (k′) Number of resource types in public (private) cloud

ci Related cost of resource type i, (in one ATU)

si Related speed of resource type i

Li Resource limit of type i, i.e., #resources

D, B, U User’s Deadline, Budget, Utility function

n, m, τ Numbers of tasks, resources, estimation tools

pj Actual running time of task j

It Estimation tool of type t

Tr (E) rth (set of all) Pareto-point submitted to user

bm,t,j Est. time of mth estimation point by tool t for task j

b∗m,t,j Actual time of mth estimation point by tool t for task j

H Number of scheduling intervals

ψht Accuracy weight of estimation tool t at time interval h

p̂hi Estimated running time of task i at time interval h

f Number of most cost efficient resources

whi Assigned workload to machine i at interval h

6.3 Problem Formulation

In the context of cloud bursting, the user faces two objectives: minimizing total

costs (c) and maximizing performance (or minimizing makespan). Normally, there

is no unique solution that simultaneously reaches the optimum value of both con-

flicting criteria, and so the user must sacrifice the quality of at least one of those

two criteria. In such a situation, the concept of Pareto optimality becomes helpful.

Selection of one scheduling point in a Pareto frontier is subjective to a user’s

particular interest. An accurate preference function for a user is normally difficult

to obtain, however. Furthermore, an arbitrarily complex utility function can make

the scheduling problem intractable. In this paper, we propose a more convenient

and practical way to deal with the issue, as discussed below.

Our system provides a list of all possible Pareto-optimal points and lets the

user choose a desirable resource allocation based on his/her desired utility func-

tion. To align our idea with reality, we argue that Pareto-optimal points with an

integer completion time are a good candidate set to deliver to the user. Such a

statement is true when the effect of an ATU-based pricing scheme exists. Figure
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5.2 shows several scheduling points when a real ISOMAP application runs in a

hybrid cloud (using Amazon EC2 as public cloud). Each of these points yields

different makespans and total costs, and it can be observed there are no Pareto

points within some subranges, such as the interval (21,21.5), as all of the schedul-

ing options are dominated by the Pareto point annotated by T2. This fact helps us

identify a good candidate set of Pareto schedules to deliver to the user, i.e., points

with integer completion times.

Let E denote the set of Pareto-optimal points that should be delivered to the

user, and let Tlower and Tupper represent the best and worst makespan achievable

for the execution of a given BoT application. We define T0 = Tlower, T|E| = Tupper

and Tr = bTlowerc+ r∆T − ε, for 0 < r < |E|. Here, r and ∆T are positive integer

numbers (to keep the time step) and ε is a small positive number used to maintain

a gap, e.g., ε = 0.05. Tr points are the end-segments of each subrange when the

interval [Tlower,Tupper] is divided to |E| subranges (see Figure 5.2). Therefore, we

strive to find the set of Tr points and deliver them to the user as the best possible

Pareto-frontier scheduling. In Section 6.4.2, we discuss in detail how to calculate

Tlower, Tupper, and the other Tr points based on the available information.

6.4 Resource Allocation and Task Assignment Strat-

egy

In this section, we will construct and present our proposed solution. Our resource

allocation process begins with the estimation of each task’s execution time, and

thus facilitates the location of possible Pareto points. The estimation of task

running time is made by employing estimation tools. To improve the measurement

of each estimation tool, we devise a method that adds several breakpoints to

each task. Following this, we can monitor and compare the actual running time

of breaking points with the estimation values given by the profiler, and use the

breakpoints to assign an accurate weight to each tool. To increase the weight

accuracy of each profiler, we divide the whole time horizon into equal intervals.

At the beginning of each interval, a monitoring phase happens, during which the

actual revealed running time and the estimated running time are compared to

evaluate the accuracy of each estimation tool. To assign a weight to each profiler

tool, we bring in a simple yet effective equation which will be discussed in detail

in Section 6.4.1.
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The next step of the proposed algorithm is to allocate the available resources.

In this phase, a schema of Pareto-efficient resource allocation is generated. Then,

the workload of each machine is calculated based on the previously generated

information, followed by generating the possible Pareto scheduling points. Jobs

are then assigned to resources by engaging a technique inspired by the First Fit

Decreasing (FFD) technique. Section 6.4.2 provides the details of this process.

6.4.1 Running Time Estimation

One of the riskiest aspects of any provisioning system lies in the estimation phase.

This is due not only to the inaccuracy of many estimators, but also to the increasing

complexity of software applications over time. To make it more challenging, input

parameters that form the running time estimation tools are not unique for all

type of applications, making them more difficult to calculate for new ones. To

cope with this growing challenge, we propose a hybrid approach that uses existing

estimation techniques in an iterative fashion. At the heart of this technique lies

previous analytical-based procedures that endeavor to estimate the running time

of each task, based on the observed data and available prior experience (such as

ATOM [253], Pin [254], and Valgrind [255]).

While sophisticated methods can be applied in a more complex system, we

introduce a simple technique to describe our hybrid method for the scope of this

paper: we assume that each tool inserts extra code, called an estimation point

(or instrumentation point), into the target task to observe its behavior and collect

some information about its running time. For each tool of type t, we define a set

of points bm,t,i to represent the running time of task i up to the m-th estimation

point estimated by this tool. Let b∗m,t,i denote the actual running time of task i at

this point. Here, b∗m,t,i is set to zero at system startup, and the concrete values of

b∗m,t,i are observed and collected throughout the task running phase.

We use bm,t,i, b
∗
m,t,i and their difference values to evaluate the accuracy of

tool t when estimating the running time of task i. To do this, the time horizon

is divided into H intervals of equal duration. At the beginning of each interval h,

0 ≤ h ≤ H, we assign a weight value, 0 ≤ ψht ≤ 1, to each tool t that measures

the accuracy of this tool relative to the others. A larger weight indicates a tool

that has estimation closer to the actual value, while a smaller weight refers to a

tool that has estimation far from the actual value. In addition, the values of ψht

are updated based on the values of bm,t,i and b∗m,t,i, according to the following

equation:
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ψht =

∑
b∗>0

b∗m,t,i
|b∗m,t,i−bm,t,i|∑

t′=1,··· ,τ

∑
b∗>0

b∗
m,t
′
,i

|b∗
m,t
′
,i
−b

m,t
′
,i
|

(6.1)

The values of ψht are set initially to ψ0
t = 1

τ . Based on the calculated ψht , the

following weighted sum model is used to estimate the execution time of each task

i at the beginning of each interval h, 0 ≤ h ≤ H:

p̂hi =
∑

t=1,··· ,τ
ψht × p̂i,t (6.2)

Here, p̂i,t denotes the estimated value of running time of task i by using tool

of type t.

As modern well-known estimation tools heavily rely on quick-enough tech-

niques based on some kind of pattern detection, historical data analysis, and source

code profiling, we assume that the required time to estimate the running time,

which happens once at system startup, is negligible compare to the running time

of the application. For example, in our experiments, a group of estimation tools,

including ATOM [253], was employed in the estimation phase of an ISOMAP ap-

plication comprised of 100k tasks. The overhead of this phase was between 8∼20

minutes, compared to the total application running time of 20 hours.

6.4.2 Pareto-Efficient Point Generation

In this section, we describe how to generate Pareto-efficient resource allocation

points based on the data generated during the estimation phase in Section 6.4.1.

As we have discussed in Section 6.3, finding both Tupper and Tlower are the first

steps towards generating the set of all Pareto-optimal points. It can be proven that

if there is no limitation on either user’s budget or deadline, the Tupper solution can

be achieved when all tasks run only in resources of the most cost effective type, i.e.,

the resource type that has the highest value of si
ci

. Furthermore, such a solution

normally results in a least-total-cost schedule.

Let f denote the number of the most cost effective available resources in the

hybrid cloud. Tupper can then be calculated as follows:

Tupper =

∑
j=1,...,n pj∑
i′=1,...,f si′
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However, the exact running time pj is not known a priori. Instead we use the

following formula to calculate the workload of machines at the beginning of each

interval h:

whi (σupper) = si min(D,
∑

j=1...,n p̂
h
j∑

i′=1,...,f si′
)

where D represents the user’s deadline, if given.

In a similar fashion, when a load balanced solution among all available re-

sources is employed, Tlower is achievable; that is, each resource type i receives a load

proportional to the value of si/
∑

κ∈Γu∪Γv
Lκsκ. This schedule normally yields the

lowest makespan with the largest total cost. In other words, the following formula

can be seen as a good lower bound of Tlower:

Tlower ≥
∑

j=1,...,n pj∑
κ∈Γu∪Γv

sκ

6.4.3 Resource Allocation

With the values of Tlower and Tupper defined in the preceding section, we can

calculate each Tr, 0 < r < |E|, using the method addressed in Section 6.3. As

discussed in that section, these Tr points are the possible Pareto scheduling points

based on our estimation and the aim of this paper is to find a schedule, σr, which

closely approximates a user chosen Tr from those submitted. To determine σr,

which optimally has time not exceeding Tr while achieving the minimum total cost,

we calculate the maximum allotted workload of each resource i in such a schedule,

using the following formula. This calculation is performed at the beginning of each

interval h:

whi = Tr × si
n∑
j=1

p̂hj −
i−1∑
i′=1

Trsi′ ≥ Trsi
n∑
j=1

p̂hj −
i−1∑
i′=1

Trsi′ (6.3)

We assume that resources are sorted as a list, 〈M1,M2, · · · ,Mm〉, by their

cost efficiency (si/ci) in descending order.

The next step of resource allocation is to find a subset of tasks that add up as

close as possible to the value of whi defined by Equation 6.3. This can be considered

as a general case of either bin packing, knapsack, subset sum, or partition problem,

which are all shown to be NP-complete (see e.g., [256]).
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While there are many good approximation algorithms to solve these funda-

mental problems, these algorithms are typically coupled with high complexity and

computational overhead. Therefore, we will instead use a simple approach which

is fast, easy to implement, and generates fairly good results in many cases. This

approach, inspired by the well known First Fit Decreasing technique [257] is sum-

marized formally in Algorithm 7.

Algorithm 1 aims to decrease the amount of wasted processing capacity by

those machines which are already allocated. At the beginning of each interval,

the algorithm detects those machines which have already run some tasks. The

variable ρi keeps track of the current amount of workload for each resource i.

The algorithm then assigns each task j to the first available resource which has

sufficient residual capacity workload according to Equation 6.3. To improve the

efficiency of our algorithm, we first begin by assigning larger tasks to the most

cost efficient resources. One can show that this algorithm is a Constant Factor

Approximation algorithm close to 11/9 [257], which carries a reasonable efficiency

for the purpose of this work.

Our proposed schema for resource allocation of a hybrid cloud environment is

formally presented in Algorithm 8. Here, we first find an estimation for the running

time of all tasks using results available via an analysis of each estimation tool.

Based on these estimation results, the algorithm generates a set of possible Pareto

points accounting for both the user’s deadline and budget. After the user chooses

a desirable Pareto point, the algorithm tries to approximate this point as closely

as possible. To do so, the time horizon is divided into several equal intervals. At

the beginning of each interval, the algorithm assigns a weight to every estimation

tool, based on the correctness of each tool’s estimation values. Afterwards, the

amount of workload for each resource is recalculated. Additionally, at the start of

each interval, tasks are assigned to the proper resources using Algorithm 7.

It can be shown that running time of Algorithm 7 is bounded by O(n2) in

the worst case scenario. Hence, the running time of Algorithm 8 is O(n2h), which

is very fast (a fraction of minute) compared to the running time of an actual BoT

application (several hundred hours).

6.5 Evaluation

In this section, we provide the performance evaluation report of our approach

using a BoT application on a testbed infrastructure composed of real, mixed cloud
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Algorithm 7: Resource allocation algorithm

input : h, n,m, p̂hj ,Γu,Γv, Tr, w
h
i

output: xi,j ∈ {0, 1}; ∀1 ≤ i ≤ m, 1 ≤ j ≤ n
// xi, j indicates the tasks j is assigned to be run on resource of i.

begin
sort not yet run tasks by p̂hj in descending order
//(obtained sequence: 〈J1,J2, · · · , Jj′〉)
sort resources by efficiency in descending order
//(obtained list: 〈M1,M2, · · · ,Mm〉)
ρi: current workload on resource i
for j ∈ {1, ..., j′} do

for i ∈ {1, ...,m} do
if ρi + p̂hj ≤ whi then

run task Jj on resource i
ρi ←− ρi + p̂hj
set xi,j ←− 1
break;

end

end

end

end

infrastructure, following the hybrid cloud model described previously in Section

3.4.

6.5.1 Experimental Setup

The private cloud used in our experiments consists of a 40-core (80 logical cores)

cluster composed of four 2.40GHz Intel(R) Xeon(R) E7-8870 processors, with a

total of 256GB of RAM. The communication overhead between these processors

can be considered zero in our experiments. Amazon EC2 is used as the public

cloud. The instance types rented, and the characteristics of these instances, are

summarized in Table 6.2. In this table, the processing capacity of a resource (third

column) is defined as how much work a resource performs in a given amount of

time, e.g., an hour, relative to a reference machine (m1.small). To determine this

parameter, we constructed a small and fast benchmark that measures how fast a

resource completes a given algorithm on specific sets of data.

We create several different sets of BoT workloads to run on our hybrid cloud.

To mimic the behavior of real BoT applications, we use different sets of BoT

characteristic patterns as reported by Iosup et al. [258] and Tran [259], which

was derived from the analysis of seven real BoT applications. Table 6.3 details
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Algorithm 8: Proposed algorithm

input : n,m,Γu,Γv
output: scheduling schema
begin

user submitted BoT, D, B (if any)
for each estimation tool t ∈ {1, ..., τ} do

ψ0
t = 1/τ

for each task j ∈ {1, ..., n} do
calculate p̂j,t
calculate bm,t,j points

end

end
calculate Tr’s and submit to the user
Tr∗ : user’s selection
divide interval [0, Tr∗ ] to H equal parts
for each h ∈ {0, · · · , H} do

record b∗m,t,j
for each tool t ∈ {1, ..., τ} do

update ψht from Equation 6.1
end
for each task j ∈ {1, ..., n} do

update p̂hj from Equation 6.2

end
run Algorithm 7
if a task is completed on resource i
then

if xi,j = 1 then
dispatch largest estimated task j

end

end

end

end

a summary of this model. For example, the number of tasks in a BoT can be

expressed by ab, where a is often equal to 2 and b follows a Weibull distribution

with parameters given in the table. Likewise, the running time of tasks is ab

minutes, where a is similarly equal to 2 and b follows either an uniform or a normal

distribution with average and standard deviation given in Table 6.3. The running

time of each task is defined in terms of how much CPU time is required for its

execution on a single core machine in a small instance (as a reference). Depending

on the number of tasks (Small, Medium, Large), and task length characteristics

(Short, Long, Mixture), we can define nine classes of application: SS, MS, LS, and

so on. However, BoT workloads must contain a large number of tasks with order
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of thousands up to hundred of thousands tasks for a realistic and representative

evaluation result. So, we focus more on examining results in a large-sized BoT

environment, i.e., LS, LL and LM from Table 6.3.

6.5.2 Scheduling Policies

We compare our proposed algorithm with an extended version of List scheduling.

List scheduling is one of the most common scheduling policies currently used in

parallel systems. It is based on the idea of making an (ordered) list of ready tasks

(that may have assigned priorities), and then repeatedly executing the following

two steps: (1) choose the (highest prioritized) available task from the list, (2)

choose a free machine to accommodate and run this task. The priorities can be

determined in different ways. Two of the most widely used are Longest running

time and Random (or without priorities), both of which were applied in this study.

The basic version of List scheduling is not truly comparable with our algo-

rithm, as it only produces one point in the time-cost plane while ours produces

several Pareto points. To overcome this issue, we simply extend the List policy

as follows. Assume that there are m available machines for service in the hybrid

cloud. We define Listη to represent a schedule based on the List policy that uses

Table 6.2: Hybrid cloud settings with different cost to performance
ratios (Relative costs are calculated based on the cost of m1.small).

Cloud Res. Type Proc. Capacity Hourly Cost

m1.small 1 $0.080

Amazon EC2 c1.medium 5 $0.165

US East (VA) m1.large 4 $0.320

c1.xlarge 20 $0.660

Private 4x10-core Xeon 10 $0.320

Table 6.3: BoT Workload characteristic used in this study.

Type No. Tasks Task Length

(BoT size, Task Running Time) =10k × 2x =2x(minitue)

LS (Large, Short) x ∼Wbl(1.7,2) x ∼U(0,3)

LL (Large, Long) x ∼Wbl(1.7,2) x ∼N(3.5,3)

LM (Large, Mixture) x ∼Wbl(1.7,2) x ∼N(1.8,3)
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Fig. 6.1: Performance of our proposed algorithm vs. that of Listη
scheduling with a large-size BoT job (n = 100,000). Scenarios corre-
sponding to tasks with (a) short running time (LS), (b) a mixture of
both short and long running time (LM), and (c) long running time
(LL) are included. For all experiments, τ = 2 and the maximum error
of each estimation tools is equal to %10. The number of machines

taken from each instance type is set to 20 (100 total machines).

only the η most efficient machines for resource allocation (η ≤ m). This extended

version of Listm is clearly similar to traditional List scheduling.

6.5.3 Results

In this section, we present a comparative performance evaluation of both our

method and extended List scheduling, in terms of both total cost and makespan.

As previously mentioned, this comparison is performed for a large-size BoT with

several hundred thousands tasks, each of them having either short or long running

time. Figure 6.1 shows a comparison of the makespan and cost of both scheduling



Chapter 6. Non-clairvoyant Pareto-Efficient BoT Scheduling 106

algorithms. The Pareto points found by our proposed algorithm (red circle points)

dominate all those found by extended List scheduling (green points). For example,

in scenario LL20, our algorithm recommends and finds a schedule with cost and

speed equal to 154.3 hours and $3812, respectively. This schedule uses all available

machines (equal to 20 machines here) in a load-balanced manner. Listm, however,

finds a comparable scheduling point with cost of $4003 and makespan of 163.2

hours. i.e., a decrease of 5%∼6% in both time and cost. In another extreme,

our scheduling algorithm finds a strategy with total cost equal to $3642.8 and

makespan equal to 158.7 hours, while the List algorithms can achieve at best

a schedule with cost of $3834 and makespan of 216.2 hours. In this case, both

algorithms try to use only the most efficient machines, but our algorithm shows

36% and 5% improvement in make-span and cost, respectively.

Table 6.4: Achieved makespan, total cost, their differences (Diff.) and
percentage differences (Diff.%) of the proposed algorithm versus Listη
for the extreme Pareto-point of Tlower. Subscripts denote number of
machines. For all experiments, n = 100, 000, τ = 2, and the maximum

tool’s error percentage is 10%.

Scenario Tlower: Best Makespan Scheduling

Our(Hr/$) Listη(Hr/$) Diff.(Hr/$) Diff.(%/%)

LS20 7.7/196.1 8.2/206.6 0.5/10.5 6.5/5.4

LS60 3.8/196.8 4.1/205.9 0.3/9.1 7.9/4.6

LM20 79.2/1967.8 84.2/2037.6 5.0/69.8 6.3/3.5

LM60 39.7/1968.0 42.4/2067.5 2.7/99.5 6.8/5.1

LL20 154.3/3811.9 163.2/4003.2 8.9/191.3 5.8/5.0

LL60 77.2/3834.8 82.2/4024.8 5.0/190 6.5/5.0

The difference between the cost and makespan of List schedules and those

found by our algorithm are calculated and summarized in Tables 6.4 and 6.5. The

subscript in this table indicates the number of machines (rented from each instance

group) used to run the scenario. Results verify that our approach can successfully

reduce both the time and cost of using hybrid cloud resources as a whole. The

average reduction of makespan and cost usage in cloud machines is approximately

17% and 6%, respectively. The performance of the two scheduling policies is only

close if the user asks for the best-makespan point (although our approach performs

better by up to 11%). It is a predictable situation as one needs to balance the

whole workload among all resources, which both algorithms can do well.
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Table 6.5: Achieved makespan, total cost, their differences (Diff.) and
percentage differences (Diff.%) of the proposed algorithm versus Listη
for an extreme Pareto-point of Tupper. Subscripts denote number of
machines. For all experiments, n = 100, 000, τ = 2, and the maximum

tool’s error percentage is 10%.

Scenario Tupper: Best Cost Scheduling

Our(Hr/$) Listη(Hr/$) Diff.(Hr/$) Diff.(%/%)

LS20 7.9/184.9 9.4/197.2 1.5/12.3 19.0/6.7

LS60 4.0/186.6 4.2/201.7 0.2/15.2 5.0/8.1

LM20 81.4/1879.5 110.9/1975.5 29.5/96.0 36.2/5.1

LM60 40.7/1881.2 53.3/1997.6 12.6/116.4 31.0/6.2

LL20 158.7/3642.8 216.2/3833.9 57.5/191.1 36.2/5.2

LL60 79.4/3667.4 110.0/3862.0 30.6/194.6 38.5/5.3

Alternatively, any scheduling algorithm which seeks to reach other Pareto

points with less cost must calculate and keep track of both the current and future

assigned workload of each resources. Because the List algorithms do not possess

such a mechanism, they are often unable to achieve such Pareto points (see Figure

6.1 and Tables 6.4 and 6.5). For instance, if the best-cost schedule is desired, our

approach achieves 27% lower makespan and 6% lower cost.

Another notable observation is that the performance of List algorithms de-

grades when the ratio of long tasks increase within the workload. Let us define

workload mixture ratio r as the percentage of long-size tasks in a given BoT, i.e.,

r = |Longtasks|
|totaltasks| . This ratio can be considered as the granularity of a BoT applica-

tion. For a given BoT application, r = 1 indicates that it solely consists of long

tasks whereas r = 0 indicates that it is composed solely of short tasks. In cases

where the ratio is close to zero (LS scenario), the List algorithms perform satis-

factorily (a percentage difference of around 9% in makespan and 5% in total cost),

while in cases where this ratio is close to one (scenarios LM and LL), the List

algorithms fail to reach a good solution (with degradation of more than 5% in total

cost and 22% in makespan). The reason for this phenomena can be explained as

follows. Our proposed algorithm calculates the proper workload of each resource

for each value of Tr, and tries to assign tasks to each resource in a way that does

not put more extra load than the pre-calculated value. On the other hand, the

List algorithms blindly take as many tasks as possible, often leaving an empty

workload on some resources and crushing other resources with extra workload.
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6.5.4 Evaluating the Achievement of Service Levels

As discussed earlier, the service level agreement with the user must indicate both

the maximum time and the total cost of accomplishing the entire application. To

evaluate whether the objectives of this agreement have been met, we run scenarios

LM20 and LL20 using two estimation tools, each of them with two error modes

(10% and 30%), and calculate the differences between the total time and cost

spent to accomplish the user’s request. Table 6.6 shows the concrete values of

such an experiment. The aberration from the initial commitment is less than

approximately 2%. Considering the fact that in a normal application of BoT

there is neither a hard deadline for the time or the budget, we believe that this

imperfection in quite acceptable from the user’s perspective.

6.6 Summary

In this chapter, we have presented a novel scheduling algorithm under uncertainty

for the purpose of cloud bursting a large-scale BoT application. We have discussed

how the identification of a Pareto frontier plays a crucial role in capturing the

tradeoff between performance (makespan) and cost from the user’s perspective.

In our approach, we allow the user to choose a desired resource allocation from a

delivered list of all possible Pareto-optimal points without expressing his/her utility

function to the system. Our algorithm then tries to achieve the user’s selection as

closely as possible. Our approach has been thoroughly evaluated through extensive

experiments running realistic BoT applications in real hybrid cloud settings. For

future work, we plan to extend our algorithm to cover the arrival pattern of BoT,

as well as to consider network latency between the scheduler (or private network)

and the public cloud network. We have also left the development of data-intensive

workloads for future work. We believe that with the increasing adoption of cloud

computing, cost-efficiency solutions like those presented in this work have great

practical importance.
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Table 6.6: Quality of achievement of the user’s Service Level Agree-
ment illustrating, for specific Ti, the percentage difference (Diff. %)
between the makespan and cost of the initially proposed Pareto-point,
and that finally delivered. Here n = 100, 000, m = 20 and τ = 2. Er

denotes the maximum error percentage of each estimation tool.

T0 Pareto-point

Scenario T0

Proposed Delivered Diff.

(Hr/$) (Hr/$) (%/%)

LM20,Er=10% 78.9/1957 79.2/1967.8 0.4/0.6

LM20,Er=30% 78.9/1958 79.9/1967.8 1.3/0.5

LL20,Er=10% 153.9/3802 154.3/3811.9 0.3/0.3

LL20,Er=30% 153.9/3803 155.8/3812.7 1.2/0.3

T2 Pareto-point

Scenario T2

Proposed Delivered Diff.

(Hr/$) (Hr/$) (%/%)

LM20,Er=10% 80.9/1880 81.1/1890.7 0.2/0.6

LM20,Er=30% 80.9/1881 81.1/1890.9 0.2/0.5

LL20,Er=10% 157.9/3726 158.3/3737.9 0.3/0.3

LL20,Er=30% 157.9/3727 159.2/3738.5 0.8/0.3

T|E| Pareto-point

Scenario T|E|

Proposed Delivered Diff.

(Hr/$) (Hr/$) (%/%)

LM20,Er=10% 81.2/1868 81.4/1879.5 0.3/0.6

LM20,Er=30% 81.2/1869 81.4/1879.5 0.3/0.6

LL20,Er=10% 157.9/3630 158.7/3642.8 0.5/0.4

LL20,Er=30% 157.9/3632 159.2/3665.7 0.8/0.9



Chapter 7

Conclusion and Future Work

7.1 Summary of Thesis

Infrastructure-as-a-Service (IaaS) cloud is typically referred to a type of virtual

machine that bundles a certain amount of computing, memory, and I/O bandwidth

capacity with an unchanging price schema throughout its lifetime. This new model

of computing, such as Amazon EC2, allows anyone worldwide to access almost

unlimited source of computing power by having an internet access and a credit

card in a pay-as-you-go manner. Before cloud computing, users have to either

purchase their own servers (which its useful lifetime was around three years), or

rent a remote hosting server on a long-term basis (e.g. monthly). Advent of EC2

instances in 2006 changed dramatically the server renting time framework into one

hour. This new model brought a lot of advantages for both service provider as

well as clients via better time-sharing of the hardware, shutting down unneeded

instances, reducing total cost of ownership or executing a particular application,

and having a greener computing system. This new trend of renting server for one

hour time frames has been recognized as such a huge successful business schema

that forecaster researches predict a two hundred billion dollar market for cloud

computing by 2020 [260].

As the short rental durations and diversity in available instances types offered

by today’s cloud providers, clients need to automate the process of deploying their

applications into cloud for reaching an economic yet effective solution. To reach

a satisfactory solution from client’s point of view, however, client utility function

is also required to be exposed to the scheduling agent. But, this exposure is not

something that users are willing to do. They may not have any information about

110
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their preference between time and cost, or they may afraid that exposure of their

utility function can have a negative impact on their chance for particular type

of bargains in future. Secondly, in most practical situations users do not have

advanced accurate information about the required execution time of submitted

tasks, which is assumed to be known in many existing scheduling solutions, make

their ability thwarted.

In this thesis, we have presented several algorithms to execute large-scale

BoT scheduling in hybrid cloud environment cost-effectively. Our solutions try

to satisfy conflicting users’ objectives (makespan and total cost) with or without

prior knowledge about the processing time of tasks. Precisely, in Chapter 4 we

discussed how an optimum solution can be achieved if user’s utility function follows

a specific form of Lebesgue p-Norm. Our solution works perfectly for both cases

of known and unknown tasks’ running times. The methodology we used for the

known running time case was to reformulate the scheduling problem as a binary

nonlinear programming problem, and apply Lagrange multipliers method to find

an optimal solution for the relaxed version of the original problem. The solution

for the relaxed version actually shows the amount of workload for each cloud

resource in the optimal case. For the non-clairvoyant case, we presented an FPRAS

algorithm which consists of estimation and task assignment steps. The estimation

procedure uses a well known Monte Carlo sampling method called AA algorithm

to produce an estimated total workload needed for executing the whole submitted

BoT application. In the task assignment phase, we take advantage of a fast yet

efficient approach based on First Fit Decreasing (FFD) algorithm. The quality of

proposed scheduling algorithms has been evaluated by running several experiments

using the in-house cluster plus the Amazon EC2 instances.

Chapters 5 and 6 deals with the scheduling problem when users personal

preferences might not be available for some reasons. We argued that users nor-

mally have two conflicting objectives of minimizing the total monetary cost and

maximizing the performance. We presented some algorithms that approximates

the Pareto-curve of both objectives in both clairvoyant and non-clairvoyant cases

(regarding tasks’ running time). The framework determines the achievable Pareto-

points (based on the available or estimated information) and provide user with a

list of these points to choose one regarding his/her preferences, budget, or dead-

line. By converting the original scheduling problem into an integer programing,

our framework found out the amount of workloads must be assigned to each re-

sources (public or private) in the optimal solution for the Pareto-point selected
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by the user. Reaching effectively to the determined workload is also an NP -hard

problem (resource allocation problem). We convert this challenge into a special

case of well-known subset-sum problem and use a FPTAS (or FPRAS ) algorithm

to reach an approximate solution (in non-clairvoyant case). Extensive experiments

conducted on a testbed hybrid cloud infrastructure (a mixture of using Amazon

EC2 and our in-house private cloud) confirm that the final scheduling output deliv-

ered by our framework achieves a solution very close to the user’s chosen Pareto-

optimal point, and outperforms enhanced List scheduling approach by reducing

both makespan and total cost significantly.

7.2 Future Work

In addition to the research achievements summarized in previous chapters, the

results of our study have opened windows for several interesting and important

issues as future research work listed below.

One exciting future work for PANDA framework includes devising true mech-

anisms to cope with unreliability of underlying resources in both public and pri-

vate cloud. Several studies have already showed that the performance of resources

in cloud is not a fixed value during the life-time of an application (as what we

suggested in this study). Distributing right mechanisms for handling resource per-

formance variability in the dynamic scheduling layer or large errors in prediction

of task execution time is another topic for research. It means that “system ro-

bustness” is the third objective that can be further investigated as as a future

plan. Our work presented in 6 can nicely handle predication errors less than twice

the actual value. So, an unanswered question is to devise dynamic solutions to

find optimal strategy effectively for dealing with situations that the percentage of

errors is tenfold (or even more) than the actual values. A good initial clue for

conducting this research can be found in [261].

Another exciting direction for future work includes coping with some work-

load features missed in this study. Building scheduling frameworks that are de-

signed by taking into account performance impacts of specific workload features

such as temporal locality, burst behavior, workload periodicity (like daily cycles),

or self-similar characteristics is still rare in the literature, especially for hybrid-

cloud system. It can be imagined that renting resources in public cloud to handle

burst, periodic, or long tail workloads is a promising solution. Applying ideas

contributed in this thesis, such as finding a tradeoff solution, however, has not yet
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been thoroughly studied. By adding more complex characteristics of application

workload such as periodicity, temporal burst, or self-similar patterns, one can fur-

ther explore the efficiency of PANDA, and adjust its scheduling algorithm to reach

an optimized solution based on these workload features.

Integration of more complex data-intensive applications with PANDA frame-

work can provide software solutions to large-scale data analysis applications (such

as Map-Reduce framework) in hybrid cloud infrastructure. Currently, our pro-

posed system copes with large-scale application which contains CPU-intensive in-

dependent tasks. However, data-intensive applications are becoming the dominant

workload of cluster systems suddenly, referred to big-data challenge, too. In these

new type of large-scale applications, a huge volume of data are distributed with

fixed locations worldwide. In these cases, a new important scheduling goal would

be to reduce the rate of data transfer as mush as possible. So, developing a more

complex cost model to incorporate the data transfer cost into the current optimiza-

tion goals and constraints to reach better data placement and resource allocation

strategies can be further studied.
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