7,167 research outputs found

    A linear optimization based method for data privacy in statistical tabular data

    Get PDF
    National Statistical Agencies routinely disseminate large amounts of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application.Peer ReviewedPreprin

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore