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National Statistical Agencies routinely disseminate large amounts of data. Prior to dissemination
these data have to be protected to avoid releasing confidential information. Controlled tabular ad-
justment (CTA) is one of the available methods for this purpose. CTA formulates an optimization
problem that looks for the safe table which is closest to the original one. The standard CTA approach
results in a mixed integer linear optimization (MILO) problem, which is very challenging for current
technology. In this work we present a much less costly variant of CTA that formulates a multiobjective
linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continu-
ous problem is solved by lexicographic optimization. Extensive computational results are reported
using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex
or interior-point methods, on a set of real instances. Most instances were successfully solved with
the LO-CTA variant in less than one hour, while many of them are computationally very expensive
with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular
application.
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1. Introduction

National Statistical Agencies (NSAs) release two different types of data: raw data, usually
named microdata, and tabular data obtained by crossing two or more categorical vari-
ables of the microdata. NSAs face the tradeoff between publishing as much as possible
information and at the same time to avoid that confidential information can be derived
from data released. The field of statistical disclosure control comprises the set of available
methods to reduce the disclosure risk. More details about this field can be found in the
recent survey [6] and the monographs [20, 21].
Although tabular data report aggregated information—so individuals could be consid-

ered anonymized—there is a risk of disclosing confidential information. Tables of Figures
1 and 2 illustrate this situation with a simple case from [6]. Figure 1 shows a frequency
table (i.e., a table providing the number of individuals within each cell) obtained by
crossing variables “profession” and “municipality” of some microdata file. Figure 2 shows
a magnitude table, i.e., one providing information about a third variable, overall salary
(in 1000e) in this particular case. If cell (M2, P3) of Figure 1 was 1, then any person
(including those who do not appear in the microdata file) would know the salary of this
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P1 P2 P3 P4 P5 TOTAL
M1 20 15 30 20 10 95
M2 72 20 1 or 2 30 10 133
M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Figure 1.: Two-dimensional frequency table showing number of persons for each profes-
sion and municipality.

P1 P2 P3 P4 P5 TOTAL
M1 360 450 720 400 360 2290
M2 1440 540 22 570 320 2892
M3 722 1178 375 800 363 3438

TOTAL 2522 2168 1117 1770 1043 8620

Figure 2.: Two-dimensional magnitude table showing overall salary (in 1000e) for each
profession and municipality.

individual is 22000e. This is named an external attacker scenario. If the value of this cell
was 2, any of these two individuals could compute the salary of the other, becoming in-
ternal attackers. Even if the value of this cell was larger, e.g. 4, if one of them had a salary
of, e.g., 18000e, there would be a disclosure risk, since the contribution of the largest
respondent could exceed some predefined percentage of the cell total; this cell would be
reported as sensitive by the so-called dominance rule. Indeed, the set of sensitive cells is a
priori obtained by applying some sensitivity rules. Actually, the two more used rules are
the (n, k) dominance rule (n individuals of a cell cannot contribute to more than a k%
to the cell value) and the p% rule (the cell is considered sensitive if some individual can
compute an estimate of the value of another individual within a p% precision). A detailed
explanation of these rules is out of the scope of this work; additional details about them
can be found in [20, 21].
If a table contains sensitive cells, NSAs have to apply some tabular data protection

method prior to publication. In short, those methods, basically either suppress or perturb
the table cell values. Formally, a tabular data protection method can be seen as a map
F such that F (T ) = T ′, i.e., table T is transformed to another table T ′. The two main
requirements for F are: (1) T ′ should be “safe”, and (2) the quality of T ′ should be
high (or equivalently, the information loss should be small), i.e., analysis made with T ′
and T should be similar. The disclosure risk can be analyzed through the inverse map
T = F−1(T ′): if not available or difficult to compute by any data attacker, then we may
guarantee that F is safe [7].
As far as we know, the first publication describing a protection method for tabular data

was [1]. Today, the most used method is likely cell suppression [5, 26], a non-perturbative
method, where some cell values are removed from the table. Among the perturbative
approaches we find controlled tabular adjustment (CTA) [4, 12], which is the focus of this
work.
The goal of CTA—which will be formulated in Section 2—is, given a table with any

structure, to find the closest safe table to the original one, according to some distance.
This is achieved by adding to the original table a vector of deviations (or perturbations)
of minimum norm that makes the released table safe. Safety is guaranteed by imposing
that sensitive cells in the perturbed table are far enough from the original value. This
means the cell value is either above or below some certain values, which requires a binary
variable for the disjunctive constraint of each sensitive cell. The minimum amount of
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above or below perturbations imposed to each sensitive cell are named, respectively,
upper protection and lower protection levels. Changes in sensitive cells induce changes
in the remaining ones to satisfy the value of marginal or total cells. This standard CTA
method results in a difficult mixed integer linear optimization (MILO) problem.
CTA is one of the protection methods included and discussed in the recent monographs

[20, 21]. Among the recent literature on CTA variants we find [9, 18]. Although CTA
is not as widely used as cell suppression, it has been applied as one of the steps of
other wider protection schemes, such as the pre-tabular protection method of [16]. In
addition, some National Statistical Agencies are questioning current non-perturbative
protection methods because “the task of balancing confidentiality and usability [...] is
nearly impossible” [27]. Therefore there is a need for new methods, and this justifies
the research on CTA and other approaches. Indeed, there is no actually any protection
method that fits the needs of all NSAs in the world.
For real and large tables the MILO formulation of CTA results in a difficult optimization

problem. It is worth noting that even the linear optimization (LO) problems obtained from
large CTA instances by fixing the binary variables are very difficult for today state-of-the-
art solvers. Indeed, some of these instances have been included in standard LO repositories
[24]. Some heuristic approaches have been developed to compute feasible, good suboptimal
solutions to the MILO-CTA problem with few computational resources. For instance
a block coordinate-descent approach was developed in [17]. In [3] this approach was
combined with a fix-and-relax heuristic. It should be stressed that “in practice, tabular
data protection is the last stage of the “data cycle,” and, in an attempt to meet publication
deadlines, NSAs require methods that find fast solutions to protect large tables” [11]. For
instance, recent online table generation services require real-time (i.e., a few seconds)
protection procedures. Since optimization based procedures can not satisfy these low
computational times for large tables (where large could mean millions of cells), some NSAs
have devised specific methods relying on fast statistical procedures (in short, some noise
is added to microdata, and tables are generated from these perturbed microdata)[25].
However those microdata-perturbing approaches ignore the linear constraints of the table,
thus protected tables may present inconsistencies.
This work describes a new CTA variant, where the binary variables for lower or upper

protection of each sensitive cell are a priori fixed. Rules for fixing the binary decisions
will be presented in Section 5. The resulting continuous problem thus only focuses on
minimizing the norm of the cell deviations vector. To guarantee the quality of the pro-
tected table, cell deviations are constrained to a tight percentage of the cell value, which,
together with the fixed values of the binary variables, may lead to an infeasible solution.
To guarantee feasibility we may change the right-hand-side of table relations, the bounds
on deviations, or the protection levels. These three criteria, plus the minimization of the
norm of the vector of deviations, lead to four different and opposite objectives, resulting
in a four-objective optimization problem. This problem will be solved by lexicographic
optimization. This is justified by two arguments. First, finding all the efficient solutions
by a weighted sum scalarization may involve the solution of a large number of LO-CTA
problems, which are known to be very challenging. For example, one of the two instances
from the standard LO repository [24] that the recently released Google Glop LO solver
could not solve [2] is actually a LO-CTA instance. Second, in this particular application
there is a natural hierarchy on the importance of objectives, which justifies the use of
lexicographic optimization. This multiobjective approach has been recently implemented
within the FP7-INFRA-2010-262608 project funded by the European Union, with the
participation, among others, of the NSAs of Germany, Netherlands, Finland, Sweden and
Slovenia. The multiobjective LO-CTA software has been included in the τ -Argus pack-
age since version 4.1.0 [13, 19] (http://neon.vb.cbs.nl/casc/tau.htm), used by many
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European national statistical institutes for the protection of tabular data.
The quality of the solution provided by the LO-CTA approach will in general be worse

than that of the MILO-CTA formulation. However, it will give end users a chance to
solve very large instances in moderate time. Other variants have been devised for the
same purpose. For instance the CTA variant of [18] solves a sequence of LO problems
by randomly assigning a value to some sensitive cells within its protection interval, and
trying to adjust the rest of cells with minimum changes. Our multiobjective approach
exhibits many differences with that one: (i) it solves only up to four LO problems; (ii)
it allows changes in the bounds and constraints (not only on bounds); (iii) and most
important, the values of sensitive cells usually guarantee the protection levels when this
is the first criteria in the lexicographic order (this will be the case in all the computational
experiments performed, since loose constraints were imposed for the other three criteria).
If protection levels are not the first criteria in the lexicographic order, small variations
in the protections may appear; but this can be acceptable, since protection intervals are
anyway heuristically adjusted by data protectors. Alternative approaches, such as the
one of [18], do not even pay attention to this fact, and just replace the sensitive cell by a
value which is always within the protection interval, thus not safe.
The paper is organized as follows. Section 2 outlines the MILO-CTA model and it

presents the LO-CTA problem without binary variables. Sections 3 and 4 introduce the
multiobjective LO-CTA model, and how it was solved by lexicographic optimization.
Section 5 describes the different procedures used to a priori fix the binary variables.
Finally Section 6 provides extensive computational results in the solution of real-world
tables using commercial and open source LO solvers; a comparison between LO-CTA and
MILO-CTA is also reported, in terms of CPU time and quality of solutions.

2. Formulation of MILO-CTA and LO-CTA by fixing the binaries

Any CTA instance can be represented by the following parameters: (i) A set of cell values
ai, i ∈ N = {1, . . . , n}, that satisfyM = {1, . . . ,m} linear relations Aa = b, a being the
vector of ai’s, A ∈ Rm×n and b ∈ Rm. (From now on, we will indistinctly refer to ai as
either “cell i” or “cell value i”.) The particular structure of the table is defined by equations
Aa = b. Each tabular constraint imposes that the inner cells have to be equal to the total
or marginal cell, i.e.,

(∑
i∈Ij ai

)
− atj = 0, where Ij is the set of inner cells of relation

j ∈M, and tj is the index of the total cell of relation j. Any type of table can be modeled
by these equations. (ii) A lower and upper bound for each cell i ∈ N , respectively lai

and uai
, which are considered to be known by any attacker. If no previous knowledge

is assumed for cell i, lai
= 0 (lai

= −∞ if a ≥ 0 is not required) and uai
= +∞ can

be used. The quality of the protected table can be forced by imposing tight cell bounds,
although this may result in infeasibility issues. (iii) A set S = {i1, i2, . . . , is} ⊆ N of
indices of confidential cells. (iv) Nonnegative lower and upper protection levels for each
confidential cell i ∈ S, respectively lpli and upli, such that the released values satisfy
either xi ≥ ai + upli or xi ≤ ai − lpli. (v) Nonnegative cell weights wi, i ∈ N , used in
the definition of the objective function. These weights penalize perturbations from the
original cell values in the released table.
CTA attempts to find the values xi, i ∈ N , which are closest to ai according to some

distance `, that make the released table safe. The problem can be formulated in terms of
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cell deviations by defining z = x− a, thus obtaining:

min
z
||z||`

s. to Az = 0
la − a ≤ z ≤ ua − a
zi ≤ −lpli or zi ≥ upli i ∈ S,

(1)

z ∈ Rn being the vector of deviations.
Defining z = z+ − z−, z+ ∈ Rn and z− ∈ Rn being the vector of positive and negative

deviations in absolute value, and introducing a vector of binary variables y ∈ Rs to
model the disjunctive constraints (either “upper protection” zi ≥ upli when yi = 1 or
“lower protection” zi ≤ −lpli when yi = 0), (1) can be written for the `1 distance as the
following MILO problem:

min
z+,z−,y

∑
i∈N

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
upli yi ≤ z+i ≤ (uai

− ai) yi i ∈ S
lpli(1− yi) ≤ z−i ≤ (ai − lai

)(1− yi) i ∈ S
0 ≤ z+ ≤ ua − a
0 ≤ z− ≤ a− la
yi ∈ {0, 1} i ∈ S.

(2)

When yi = 1 the constraints mean upli ≤ z+i ≤ (uai
−ai) and z−i = 0, thus the protection

direction is “upper”; when yi = 0 we get z+i = 0 and lpli ≤ z−i ≤ (ai− lai
), thus protection

direction is “lower”. Model (2) is a difficult MILO problem for medium-large instances.
For large tables the MILO-CTA model is impractical if a quick solution is required.

In those situations, an efficient alternative would be to a priori fix the binary variables,
thus obtaining a continuous LO-CTA formulation. Possible infeasibilities in the resulting
problem could be dealt with the approaches exposed in [10], some of them already used
in the context of CTA [8]. Fixing in (2) the binary variables, the continuous `1-CTA
approach can be formulated as the following LO problem:

min
z+,z−

∑
i∈N

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
l+ ≤ z+ ≤ u+
l− ≤ z− ≤ u−,

(3)
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where l+, l−, u+, u− ∈ Rn are defined as

l+i =

{
upli if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+i =

{
0 if i ∈ S and yi = 0
uai
− ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =

{
lpli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−i =

{
0 if i ∈ S and yi = 1
ai − lai

if (i ∈ N \ S) or (i ∈ S and yi = 0).

(4)

3. Guaranteeing a good solution: multiobjective optimization problem

Fixing binary variables y ∈ {0, 1}s in (2) the resulting continuous problem (3) may
be infeasible. Infeasibilities can be avoided by modifying the feasible region of (3), i.e.,
changing the right hand side coefficients and/or the bounds of the variables. We can
achieve feasibility by three means:

• Allowing changes in the table relations. Constraints Az = 0 are transformed to

Az + α+ − α− = 0, α+ ∈ Rm, α− ∈ Rm, (α+, α−) ≥ 0. (5)

• Decreasing la and increasing ua, whenever possible. Thus, instead of la ≤ a ≤ ua we
will consider

la − βl ≤ a ≤ ua + βu, βl ∈ Rn, βu ∈ Rn, (βl, βu) ≥ 0. (6)

• Reducing upli and lpli, i ∈ S. Thus, the new lower protection levels will be

lpl := lpl − γl, upl := upl − γu, γl ∈ Rs, γu ∈ Rs, (γl, γu) ≥ 0. (7)

Therefore, instead of the possibly infeasible (3), we can consider the always feasible prob-
lem

min
ω

(f1(z
+, z−), f2(α

+, α−), f3(βl, βu), f4(γl, γu))

s. to A(z+ − z−) + α+ − α− = 0
l+(γu) ≤ z+ ≤ u+(βu)
l−(γl) ≤ z− ≤ u−(βl)
(α+, α−, βl, βu, γl, γu) ≥ 0,

(8)

where

f1(z
+, z−) =

∑
i∈N

wi(z
+
i + z−i )

f2(α
+, α−) = e>(α+ + α−)

f3(βl, βu) = e>(βl + βu)
f4(γl, γu) = e>(γl + γu),

(9)
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e is a vector of ones of appropriate length, ω = (z+, z−, α+, α−, βl, βu, γl, γu) denotes the
full set of variables of the optimization problem, and

l+i (γui
) =

{
upli − γui

if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+i (βui
) =

{
0 if i ∈ S and yi = 0
uai

+ βui
− ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i (γli) =

{
lpli − γli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−i (βli) =

{
0 if i ∈ S and yi = 1
ai − (lai

− βli) if (i ∈ N \ S) or (i ∈ S and yi = 0).

(10)

Abusing of notation, from now on we will use indistinctly f1(z+, z−) and f1(ω), and
similarly for f2, f3 and f4. The feasible region of (8) will be written in compact form
below as ω ∈ Ω.
Problem (8) is a multiobjective optimization problem. Its purpose is to obtain a pro-

tected table that minimizes f1, but at the same time is feasible for the original constraints,
i.e., it minimizes f2, f3 and f4. Note that (f1, f2, f3, f4) are conflicting objectives: increas-
ing one we can reduce the others. For instance, in the limit, increasing enough γl and γu
(i.e., γl = lpl and γu = upl, thus removing the protection levels) makes z = βl = βu = 0
and α+ = α− = 0. We also note that upper bounds for γli and γui

are not needed,
although this could result in negative protection levels upli and lpli. Indeed this would
only happen if z+i and z−i were negative, which would unnecessarily increase the objective
function; therefore, in an optimal solution such situation is not possible.

4. Solving the multiobjective optimization problem

In general, in a multiobjective optimization problem there is no solution ω∗ that mini-
mizes all the objective functions fi, i = 1, . . . , p simultaneously (p being the number of
objectives, p = 4 in our problem). The goal is thus to obtain a Pareto optimal solution
(also named efficient or nondominated solution). A feasible point ω∗ is named Pareto op-
timal or efficient solution if there is no point that dominates it, where, in a minimization
problem with p objectives, it is said that ω1 dominates ω2 if fi(ω1) ≤ fi(ω2), i = 1, . . . , p,
and, for some j ∈ {1, . . . , p}, fj(ω1) < fj(ω

2). Therefore, Pareto optimal or efficient solu-
tions cannot improve any of the objectives without deteriorating some of the other ones.
Two related concepts are those of weakly efficient and strictly efficient solutions:

• A feasible point ω∗ is named weakly Pareto optimal or weakly efficient if there is no
point ω ∈ Ω such that fi(ω) < fi(ω

∗) for i = 1, . . . , p.
• A feasible point ω∗ is named strictly Pareto optimal or strictly efficient if there is no

point ω ∈ Ω such that fi(ω) ≤ fi(ω∗) for i = 1, . . . , p.

From the above definitions, it is clear that strict efficiency implies efficiency, and efficiency
implies weak efficiency.
There is a fourth type of solution, named properly efficient solution. These solutions

are generated by the first solution approach (namely, scalarization) of the two outlined
in Subsection 4.1. Although we will not use this approach, but the second one (namely,
lexicographic optimization), we briefly overview properly efficiency for two reasons: (i) in
case scalarization is considered in the future to solve the multiobjective CTA problem; (ii)

7



to show that in the multiobjective LO-CTA problem efficient solutions are also properly
efficient.
Properly efficient solutions guarantee that trade-offs between objectives are bounded.

Formally, a feasible point ω∗ ∈ Ω is properly efficient in Geoffrion sense [15] if it is efficient
and there is a real number M > 0 such that for all i = 1, . . . , p, and ω ∈ Ω satisfying
fi(ω) < fi(ω

∗) there exists an index j with fj(ω∗) < fj(ω) such that

fi(ω
∗)− fi(ω)

fj(ω)− fj(ω∗)
≤M. (11)

An alternative definition of properly efficiency was provided by Kuhn and Tucker [22].
Formulating the multiobjective optimization problem as

min f(ω)
s. to ω ∈ Ω = {ω : g(ω) ≤ 0} (12)

where f : Rn′ → Rp and g : Rn′ → Rm′ , a feasible point ω∗ ∈ Ω is properly efficient in
Kuhn and Tucker sense if it is efficient and there is no d satisfying:

∇fj(ω∗)>d ≤ 0 ∀ j = 1, . . . , p
∇fi(ω∗)>d < 0 for some i ∈ {1, . . . , p}
∇gk(ω∗)>d ≤ 0 ∀k ∈ A(ω∗) = {k ∈ {1, . . . ,m} : gk(ω

∗) = 0}.
(13)

Conditions (13) mean that there is not a direction d from ω∗ such that no objective locally
increases, at least one strictly locally decreases, and all the points along this direction
remain locally feasible. It is known that if f and g in (12) are convex and continuously
differentiable, then if ω∗ is properly efficient in Kuhn and Tucker sense, it is properly
efficient in Geoffrion sense. We can now show that in the multiobjective LO-CTA problem
all efficient solutions are properly efficient:

Proposition 1 All the efficient solutions of the multiobjective LO-CTA problem (8) are
properly efficient (in Kuhn and Tucker sense, and then in Geoffrion sense).

Proof. Problem (8) can be transformed to the form (12) (equalities Az + α+ − α− = 0
can be written as Az + α+ − α− ≤ 0 and −Az − α+ + α− ≤ 0), the feasible set Ω
being a polyhedron. By (9), the four objectives fi, i = 1, . . . , 4, are linear and bounded
below by 0 in the feasible region (since they are `1 norms). Since it is a linear problem,
any direction d satisfying conditions (13) would be an unboundness direction for some
objective i ∈ {1, . . . , 4}, which is a contradiction. �

4.1 Solution approaches

We outline two of the most used approaches for multiobjective optimization, scalariza-
tion and lexicographic optimization:

• In the scalarization approach the vectorial or multiobjective function (f1, . . . , fp) can
be transformed to a scalar function f by using a linear convex combination of the
components, i.e:

f =

p∑
i=1

λifi λi ≥ 0 i = 1, . . . , p,

p∑
i=1

λi = 1. (15)
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1. Let π(j) be the preference order of fj , j = 1, . . . , p.
2. for j = 1 . . . p do
3. Solve

f∗π(j) = min
ω

fπ(j)(ω)

s. to fπ(l)(ω) ≤ f∗π(l) l = 1, . . . , j − 1

ω ∈ Ω.

(14)

4. end for
5. return(ω∗, solution of last optimization problem solved)

Figure 3.: The lexicographic optimization approach for (8)

The particular weights λi, i = 1, . . . , 4 should be provided by the user. Let ω∗ be a
solution to

min f(ω) s.to ω ∈ Ω, (16)

and λ = (λ1, . . . , λp). It is known that (i) if λ > 0 then ω∗ is a properly efficient
solution; (ii) if λ ≥ 0 then ω∗ is a weakly efficient solution; (iii) if λ ≥ 0 and ω∗

is the unique solution of (16) then ω∗ is a strictly efficient solution (note this would
hold in the multiobjective `2-CTA problem, since the objective function of (16) would
be strictly convex). In addition, all the properly and weakly efficient solutions can be
obtained from some suitable λ.
In this approach is important to scale the functions fi to guarantee that their different

units can be added to a single f . We could use as scaling factor for fi the value
f̄i = max{|f∗i |, 1}, where f∗i is the optimal value for this function (i.e., as if we solved the
multiobjective problem considering λi = 1 and λj = 0, j 6= i). However, in practice, f∗i
is unknown (unless we solve the optimization problem using fi as the single objective),
and then some other value f0i = fi(ω

0) at some (initial) feasible point ω0 may be used.
Therefore the objective function to be used in practice could be

f =

p∑
i=1

λi
fi
f̄i

λi ≥ 0 i = 1, . . . , p,

p∑
i=1

λi = 1. (17)

• Lexicographic optimization or lexmin optimization considers a preference order for the
different objectives, given by the permutation π : {1, . . . , p} → {1, . . . , p}, π(1) and π(p)
being respectively the objectives with highest and lowest preference. The algorithm
is shown in Figure 3. This is the approach adopted in this work, since problem (8)
exhibits a natural ordering of the objectives. In particular, preference should be given
to feasible solutions (i.e., solutions where α+, α−, βl, βu, γl, and γu are zero), and
therefore in general π(4) = 1 (i.e., f1(z) = ||z||` has the lowest preference). Of the
remaining three objectives in (9), f4 should in general have the highest preference,
since it controls the sensitive cells protection levels, so π(1) = 4. In this case, if no tight
bounds are considered for α+, α−, βl and βu—as it was the case in all the computational
tests performed—γl and γu will be 0, thus the first optimization problem is trivially
solved, and protection levels are never perturbed. This will be clearly observed in the
computational results section. The preference order for f2, f3 (that is, to give more
priority to bounds or right-hand-side changes) should be decided by the user; different
preferences will result in different solutions. Any solution to this lexmin problem is
a Pareto or efficient solution. Given a particular preference order π, the algorithm of
Figure 3 will provide a Pareto or efficient solution to (8).
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Figure 4.: The graph obtained by the network approach for instance “table7”.

Given the natural ordering of the objectives, in this work we have considered lexi-
cographic optimization. However this approach requires the solution of up to four LO
problems, the last one being a challenging one, while scalarization would only involve one
LO problem.

5. Fixing the binary variables

A good assignment of the binary variables is instrumental both for the feasibility and
the quality of the solution provided by the lexmin approach. However, there is no direct
method for an a priori good and feasible assignment for any CTA instance. Hopefully,
any approximate approach should provide a good solution or, at least, to avoid solutions
with severe infeasibilities in the resulting LO models.
The simplest approach is random assignment. Sensitive cells are oriented either to

positive or negative directions with equal probabilities. Although randomness is fairly
good at dividing the sensitive cells between both directions, this method cannot take into
account any specific feature of the table.
The SAT heuristic (which was developed in [17] for the solution of the MILO-CTA

problem by a block coordinate descent heuristic) can be useful to obtain a wiser proposal.
Directions of sensitive cells are computed by solving a satisfiability (SAT ) problem on
rules derived from the table constraints (see [17] for details). Nevertheless, some cells
could be undetermined if no rule is indicating a given direction, and these cells should be
assigned at random. The SAT approach (as the below network and both SAT-network
approaches) cannot guarantee a feasible solution of (2). However they help in reducing
the level of infeasibility, compared to the previously discussed random assignment, such
that components f2, f3 and f4 of (8) will have a lower value in the optimal solution.
As for the SAT approach, the next new alternative developed in this work is based also

in the constraints structure of the problem, and neither guarantees a feasible solution.
This method is called network because a graph is constructed from the set of constraints of
the CTA problem. An example of such a graph can be seen in Figure 4, obtained from the
real instance “table7”, one of the test cases from Table 1 to be used in the computational
results of Section 6. In this graph the vertices represent cells and the edges constraints.
Specifically, the graph is built in two steps:

(1) First, we create a vertex for every sensitive cell, and an edge between every pair of
vertices such that there is a constraint containing both cells.

(2) Second, we add a vertex for every non-sensitive cell appearing at least in two con-
straints together with a sensitive cell.
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In Figure 4, sensitive and non-sensitive cells have been represented by yellow and white
boxes, with labels started by “S” and “N”, respectively. In both cases, the number in the
label corresponds to the cell number for this particular instance.
Each vertex may have a direction +1 or −1, and we start with a graph where all the

vertices are undefined (say, 0). The goal is to assign a direction to each vertex so that the
number of mismatches is the minimum. In a broad sense, we call mismatch a situation
where both nodes of some edge are contributing to the constraint imbalance in the same
direction. For better understanding, consider the structure of general constraints of a
table:

Az = 0⇔ ai,j1zj1 + ai,j2zj2 + · · ·+ ai,jkzjk = 0 i ∈M.

Usually, only a few cells are involved in the i-th constraint (say, k cells), such that k − 1
coefficients are 1 and just one is −1, meaning that the sum of deviations z must be equal
to the marginal deviation. So, two cells linked by an edge are matched when:

• both point upwards and one of them has a negative coefficient;
• both point downwards and one of them has a negative coefficient;
• they point to different directions and have positive coefficients.

The main algorithm of the network method attempts to find the most suitable orienta-
tion to each sensitive cell, trying to match as many edges as possible. So, starting from a
given vertex, it traverses the graph in an order defined from its topology (depending on
the first vertex, the order may be different, so the assignment would differ as well).
Since a cell may appear in several constraints, conflicting situations appear often, as

long as any assignment to the current vertex would cause a mismatch in some of the
incident edges. In such situations the heuristic implemented chooses the direction that
minimizes the number of mismatches, or a random choice in case of a tie.
Finally, the heuristic repeats the main algorithm from many starting points, computing

a global index of mismatch for the assignment. The procedure returns the assignment with
the least index.
A hybrid between the SAT and network methods is also possible: the suggested direc-

tions given by the SAT output are fixed and not assigned within the network process.
This fourth approach will be named both SAT-network.
The above four approaches (random, SAT, network and both SAT-network) to fix the

protection directions of sensitive cells are evaluated in Section 6.4.

6. Computational results

The lexicographic approach based on LO-CTA has been implemented within the FP7-
INFRA-2010-262608 “Data without Boundaries” European Union project. This code has
been included in the τ -Argus package since version 4.1.0 [13, 19] (which can be freely
obtained from http://neon.vb.cbs.nl/casc/tau.htm), used by European (and some
non-European) statistical agencies. The code may use up to five different solvers, both
commercial and open source. In this work we will only provide results with the commercial
solvers CPLEX and XPRESS, and the open source solver Clp [14] from the COIN-OR
project. All the runs were carried out on a Fujitsu Primergy RX300 server with two
3.33 GHz Intel Xeon X5680 CPUs (each CPU with 12 cores) and 144 GB of RAM,
under a GNU/Linux operating system (Suse 11.4), without exploitation of multithreading
capabilities.
We have considered a set of 38 standard instances in the literature on statistical dis-

closure control on tabular data [4, 6, 18]. Most of them are publicly available real tables

11

http://neon.vb.cbs.nl/casc/tau.htm


instance n s m n. coef
australia_ABS 24420 918 274 13224
bts4 36570 2260 36310 136912
cbs 11163 2467 244 22326
dale 16514 4923 405 33028
destatis 5940 621 1464 18180
five20b 34552 3662 52983 208335
five20c 34501 4022 58825 231345
hier13 2020 112 3313 11929
hier13x13x13a 2197 108 3549 11661
hier13x13x13b 2197 108 3549 11661
hier13x13x13c 2197 108 3549 11661
hier13x13x13d 2197 108 3549 11661
hier13x13x13e 2197 112 3549 11661
hier13x13x7d 1183 75 1443 5369
hier13x7x7d 637 50 525 2401
hier16 3564 224 5484 19996
hier16x16x16a 4096 224 5376 21504
hier16x16x16b 4096 224 5376 21504
hier16x16x16c 4096 224 5376 21504
hier16x16x16d 4096 224 5376 21504
hier16x16x16e 4096 224 5376 21504
nine12 10399 1178 11362 52624
nine5d 10733 1661 17295 58135
ninenew 6546 858 7340 32920
osorio 10201 7 202 20402
sbs2008_C 4212 1135 2580 13806
sbs2008_D_b 28288 7131 13360 87022
sbs2008_E 1430 382 991 4680
table1 1584 146 510 4752
table3 4992 517 2464 19968
table4 4992 517 2464 19968
table5 4992 517 2464 19968
table6 1584 146 510 4752
table7 624 17 230 1872
table8 1271 3 72 2542
targus 162 13 63 360
toy3dsarah 2890 376 1649 9690
two5in6 5681 720 9629 34310

Table 1. Dimensions of instances.

generated by NSAs, and only a few of them are confidential tables generated by Eurostat
(instances “sbs*”)—the statistical agency of the European Commission, and Destatis (in-
stance “destatis”)—the German NSA. Table 1 reports the main characteristics of these
instances: number of cells (column n), number of sensitive cells (column s), number of
constraints (column m), and number of nonzero coefficients in the constraints matrix A
defining the table relations.
To avoid errors due to numerical tolerances, in the implementation developed con-

straints fπ(l)(ω) ≤ f∗π(l) of (14) were replaced by fπ(l)(ω) ≤ f∗π(l)(1 + εf ), εf being a small
value (e.g., 10−4). Using a value εf = 0 resulted in larger solution times, and, very often,
in infeasibility issues.
The first four following subsections report the results obtained in the evaluation of

priority orders, solvers, percentages of deviations in cell values, and procedures for fixing
the protection directions of sensitive cells with LO-CTA. The fifth subsection provides a
comparison between LO-CTA and MILO-CTA in terms of solution time and quality of
the solution.

6.1 Evaluation of priority orders

Table 2 shows the results for the evaluation of priority orders π = (4, 3, 2, 1) and π =
(4, 2, 3, 1) (where π = (π(1), . . . , π(4)). For each instance the table reports the CPU time
of the lexmin optimization, and the optimal value of each objective function (columns
fi, i = 1, . . . , 4). The fastest run is marked in boldface. These executions were performed
with the standard (i.e., the infeasible primal-dual path-following) barrier algorithm of
CPLEX, randomly fixing the protection directions of sensitive cells (but using the same
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Figure 5.: Plot of Sum= log
(
f
(4,3,2,1)
2 + f

(4,3,2,1)
3

)
+ log

(
f
(4,2,3,1)
2 + f

(4,2,3,1)
3

)
vs Differ-

ence= log
(
f
(4,3,2,1)
2 + f

(4,3,2,1)
3

)
− log

(
f
(4,2,3,1)
2 + f

(4,2,3,1)
3

)
, for every instance.

random directions for the two priority orders), and allowing a 2% of deviations in the cells
values. This 2% maximum deviation in cell values is a practical requirement of NSAs (in
particular it was told to us by Destatis, the German NSA), in a attempt to maximize the
utility of the resulting table, making the optimization problem significantly more difficult.
The time limit of 3600 was reached for two instances, whose value for f1 is marked with
“—” (the other problems could be solved within the time limit).
Objective f4 is not shown since it was 0 in all instances for both orders (as it was

discussed in Subsection 4.1). This means (quite obviously) that we do not need to change
the protection levels if bounds and constraints can be modified. For order π = (4, 3, 2, 1)
in all the instances, but four, bounds were not modified (that is, f3 = 0), which forced
significant changes in constraints (that is, f2 is large). For order π = (4, 2, 3, 1) both
f2 and f3 were positive, but the changes in constraints were not so large. If we focus
on the norm of the cell deviations, f1 was much less for π = (4, 3, 2, 1), and this also
happened for the CPU time (only in two instances the order π = (4, 2, 3, 1) provided
a fastest execution). At a first glance, it seems there is no clear winner: on the one
hand, according to f1 and the CPU time, it could be concluded that π = (4, 3, 2, 1) is
preferable; on the other hand, this order involves larger modifications in constraints due
to f2. Both orders provide efficient or Pareto solutions, and depending on their different
properties, NSAs may prefer one order or the other. Figure 5 gives us more insight into
the behaviour of both orders. The horizontal axis of that figure is related to the sum
log
(
f
(4,3,2,1)
2 + f

(4,3,2,1)
3

)
+ log

(
f
(4,2,3,1)
2 + f

(4,2,3,1)
3

)
, while the vertical axis is associated

with the difference log
(
f
(4,3,2,1)
2 + f

(4,3,2,1)
3

)
− log

(
f
(4,2,3,1)
2 + f

(4,2,3,1)
3

)
; each instance is

represented by a point in the figure. Note that it makes sense to consider f2 + f3, since
f2 represents changes in constraints (that is, deviations from the value of the marginal
cell, since nonzero values in matrix A are only +1 or −1), and f3 changes in cell bounds.
From the figure, we see that the differences are around zero for most instances, that is, the
amount of constraints and bounds changes f2 + f3 was similar for both orders. The only
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exceptions were “australia_ABS” (in which order π = (4, 3, 2, 1) provided a larger f2+f3),
and “destatis”, “toy3dsarah”, “table3”, “table4”, “table5” and “table7” (order π = (4, 2, 3, 1)
provided the larger changes in those cases). Therefore, from Figure 5 it cannot be stated
that the less CPU time and value of f1 provided by π = (4, 3, 2, 1) are due to this order
providing larger changes. According to this, order π = (4, 3, 2, 1) could be considered a
better choice.
For the computational results of the following Subsections 6.2–6.4 we will consider the

order π = (4, 2, 3, 1): being more time consuming, it can be considered the worst case,
thus the preferred option for a fair evaluation of LO-CTA. Both priority orders will be
again considered in Subsection 6.5, in which LO-CTA is compared to MILO-CTA.

6.2 Evaluation of solvers

Table 3 shows the CPU time with the interior-point (columns “barrier”) and simplex
algorithms of the commercial solvers CPLEX and XPRESS, and the open source Clp
solver from the COIN-OR project. These executions were performed with priority order
π = (4, 2, 3, 1), allowing a 2% of deviations in cell values, and the random heuristic to
fix the protection direction of sensitive cells. The CPU time of the fastest algorithm
(interior-point or simplex) for each solver is marked in italics; in addition, the fastest run
among all the solvers is in boldface. Problems marked with “—” for Clp were reported as
infeasible (though it is feasible). The time limit of 3600 seconds was reached for several
instances, thus no efficient solution was computed in those situations.
The immediate conclusion from the results of Table 3 is that interior-point algorithms

are more efficient than simplex in this kind of application, mainly for the two commercial
solvers (it is known than the interior-point of Clp is not competitive against commercial
implementations, unlike its simplex code which is highly efficient). This is consistent with
previous works on CTA [4, 6, 18]. This is specially relevant in some of the largest instances,
e.g., “nine5d”, where the barrier was much faster than simplex. We also see there are
significant differences between solvers; for example, instance “table4” took 150.91 seconds
with the simplex of CPLEX, only 6.85 with that of XPRESS, and 627 with Clp; but we
got opposite results for instance “nine12”. Another conclusion is that, for these LO-CTA
problems, the barrier of XPRESS, which is based on the BPMPD solver [23], seems to
be a very efficient option.
It was also observed that problems (14) within the lexmin optimization became more

difficult for the barrier algorithm as new constraints fπ(l)(ω) ≤ f∗π(l) were added. This is
illustrated in Table 4, which reports for the subset of largest instances the CPU time and
number of iterations (in brackets) of the interior-point and simplex algorithms of XPRESS
for the four subproblems solved (using the order π = (4, 2, 3, 1)). The interior-point
CPU time does not include the crossover (that is, the procedure for obtaining a vertex
solution from the (possibly non-vertex) primal-dual solution computed by the interior-
point algorithm); this explains why the sum of the four times does not equal the values in
Table 3. Indeed, it can be seen that instances “five20b” and “five20c” exhausted the time
limit because of the crossover. (Crossover can be deactivated in the application developed,
but in general it provides sparser solutions—since they are basic solutions, unlike the
interior-point ones—which are preferred.) It is clearly seen that as new constraints of the
type fπ(l)(ω) ≤ f∗π(l) are added the number of interior-point iterations (and its CPU time)
increases significantly. However this fact is not observed for the simplex method. Although
we did not analyze in detail this different behaviour, a possible explanation would be
that the feasible region is significantly reduced as we are adding new constraints (we
limit the feasible region of the new problem to be the optimal face of the previous one).
The central-path of the new problem, which the path-following methods implemented in
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CPLEX XPRESS Clp

instance barrier simplex barrier simplex barrier simplex

australia_ABS.csp 3.01 1.05 2.28 1.52 2.25 2.24
bts4.csp 3429.09 > 3600 > 3600 > 3600 1273.29 —
cbs.csp 0.37 0.65 0.6 0.48 0.52 0.5
dale.csp 1.3 10.13 1.63 1.84 1.89 1.8
destatis.csp 2.66 30.43 3.43 5.35 13 9.08
five20b.csp > 3600 > 3600 > 3600 > 3600 > 3600 > 3600
five20c.csp > 3600 > 3600 > 3600 > 3600 > 3600 > 3600
hier13.csp 8.48 39.91 11.64 27.76 47.56 —
hier13x13x13a.csp 25.55 53.61 7.11 21.48 276.51 49.23
hier13x13x13b.csp 21.04 29.37 11.25 23.08 271.31 48.61
hier13x13x13c.csp 20.8 67.58 6.58 22.92 306.3 48.61
hier13x13x13d.csp 14.81 72.88 12.43 28.65 75.55 —
hier13x13x13e.csp 15.63 45.46 9.8 24.73 59.5 —
hier13x13x7d.csp 1.83 3.24 1.14 2.81 2.06 1.69
hier13x7x7d.csp 0.34 0.26 0.32 0.29 0.24 0.22
hier16.csp 822.08 1150.16 112.79 287.47 > 3600 —
hier16x16x16a.csp 114.35 240.82 33.11 196.05 374.96 —
hier16x16x16b.csp 112.43 223 31.92 120.15 429 —
hier16x16x16c.csp 68.24 285.45 37.91 127.1 385.2 —
hier16x16x16d.csp 95.7 179.76 32.07 106.36 464.43 —
hier16x16x16e.csp 61.83 291.04 32.31 99.05 344 —
nine12.csp 784.24 1618.35 > 3600 2740.72 928.18 713.59
nine5d.csp 68 2049.09 130.46 1363.12 > 3600 412.81
ninenew.csp 60.89 171.7 62.41 195.86 159.05 116.14
osorio.csp 1.88 0.57 1.92 2.84 1.8 1.75
sbs2008_C.csp 0.5 0.88 0.57 0.26 2.12 1.17
sbs2008_D_b.csp 5.41 12.03 4.31 1.73 27.34 25.14
sbs2008_E.csp 0.12 0.08 0.19 0.15 0.13 0.1
table1.csp 0.24 0.51 0.34 0.51 0.58 0.41
table3.csp 6.5 52.71 4.86 6.6 170.97 944.8
table4.csp 3.77 150.91 4.8 6.85 167.31 627.86
table5.csp 3.25 49.15 4.93 6.63 165.09 510.19
table6.csp 0.19 0.55 0.36 0.52 0.39 0.5
table7.csp 0.16 0.11 0.21 0.16 0.14 0.1
table8.csp 0.07 0.07 0.18 0.18 0.03 0.04
targus.csp 0.01 0.01 0.09 0.09 0.01 0.02
toy3dsarah.csp 0.34 1.52 0.47 0.22 6.63 0.84
two5in6.csp 145.82 237.9 47.01 185.44 210.82 103.86
— problem reported as infeasible (though it is feasible)

Table 3. CPU time with interior-point and simplex algorithms of solvers CPLEX, XPRESS and Clp, using order
π = (4, 2, 3, 1), allowing a 2% of deviations in cell values, and the random heuristic to fix the protection direction
of sensitive cells. In italics the fastest run between interior-point and simplex for each solver; in italic and boldface,
the fastest run for all the solvers.

barrier simplex

instance f4 f2 f3 f1 f4 f2 f3 f1
bts4 0 (0) 11 (23) 23 (51) 31 (85) 0(0) 145 (255K) 1167 (542K) —
five20b 0 (0) 316 (24) — — 0(0) — — —
five20b 0 (0) 475 (30) — — 0(0) — — —
hier16 0 (0) 8 (20) 23 (37) 30 (70) 0(0) 38 (85K) 145 (116K) 104 (70K)
nine5d 0 (0) 19 (26) 17 (38) 57 (84) 0(0) 107 (222K) 728 (310K) 635 (147K)
nine12 0 (0) 36 (29) 56 (49) 106 (101) 0(0) 277 (280K) 1982 (577K) 481 (129K)
two5in6 0 (0) 13 (36) 10 (48) 21 (76) 0(0) 36 (126K) 59 (49K) 90 (53K)
— time limit reached

Table 4. CPU time and number of iterations (within brackets, in thousands for simplex) of XPRESS with
interior-point and simplex algorithms for the solution of each particular objective in the largest instances. Barrier
time does not include crossover (this explains why the time limit of 3600 seconds is not reached in instances bts4
and nine12, unlike in Table 3).

CPLEX, XPRESS and Clp attempt to “follow”, is thus confined to a much smaller region,
such that large directions can not be taken by the interior-point algorithm. This would
explain the unexpectedly large number of interior-point iterations of the last subproblem
with f1. On the other hand, this reduction in the size of the feasible region may not
negatively affect to simplex; indeed, reducing the number of feasible vertices may even
be a benefit, as shown in some instances of Table 4.
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instance CPU time f2

perc.: 2% 5% 10% 100% 2% 5% 10% 100%

australia_ABS 2.25 1.97 2.21 † 16.31 16.31 16.31 †

bts4 >3600 1628 1052 821 1582 1582 1582 1582
cbs 0.6 0.6 0.6 0.53 15.96 15.96 15.96 15.96
dale 1.63 1.54 1.5 1.35 0 0 0 0
destatis 3.43 3.16 3.88 4.19 528 528 528 528
five20b >3600 >3600 >3600 >3600 0 0 0 0
five20c >3600 >3600 >3600 >3600 0 0 0 0
hier13 11.6 9.83 10.03 6.58 362 362 362 362
hier13x13x13a 7.12 6.1 4.45 5.09 340 340 340 340
hier13x13x13b 11.3 5.14 3.48 4.6 340 340 340 340
hier13x13x13c 6.58 6.28 4.06 4.34 340 340 340 340
hier13x13x13d 12.4 7.27 6.4 3.88 511 511 511 511
hier13x13x13e 9.8 14.44 6.41 4.79 562 562 562 562
hier13x13x7d 1.15 1.72 0.81 0.77 146 146 146 146
hier13x7x7d 0.32 0.28 0.27 0.27 60.58 60.58 60.58 60.58
hier16 113 49.51 26.99 35.88 300 300 300 300
hier16x16x16a 33.08 28.97 20.54 20.88 490 490 490 490
hier16x16x16b 31.85 36.4 20.38 20.85 490 490 490 490
hier16x16x16c 37.94 29.69 21.08 22.41 490 490 490 490
hier16x16x16d 32.04 24.95 25.94 23.13 735 735 735 735
hier16x16x16e 32.16 20.34 21.64 20.11 735 735 735 735
nine12 >3600 187 207 178 684 684 684 684
nine5d 131 99.33 116 74.59 3650 3650 3650 3650
ninenew 62.31 76.02 54.6 68.61 662 662 662 662
osorio 1.91 1.92 1.93 1.38 0 0 0 0
sbs2008_C 0.57 0.57 0.57 † 28152 28152 28152 †

sbs2008_D_b 4.32 4.06 4.56 † 77515 77515 77515 †

sbs2008_E 0.18 0.21 0.21 † 9985 9985 9985 †

table1 0.36 0.28 0.31 0.35 289 289 289 289
table3 4.86 3.87 4.06 2.53 570 570 570 570
table4 4.83 3.49 5.61 2.4 570 570 570 570
table5 4.92 3.38 4.2 2.49 570 570 570 570
table6 0.37 0.34 0.3 0.59 279 279 279 279
table7 0.21 0.21 0.19 0.18 4.575 4.575 4.575 4.575
table8 0.21 0.19 0.22 0.15 0 0 0 0
targus 0.1 0.08 0.1 0.1 0.1148 0.1148 0.1148 0.1148
toy3dsarah 0.48 0.49 0.48 0.55 657301 657301 657301 657301
two5in6 47.01 47.16 56.11 50.63 1591 1591 1591 1591
† problem reported as infeasible

Table 5. CPU time and value of f2 for different maximum percentages of deviation in cell values, using the
interior-point of XPRESS as solver, order π = (4, 2, 3, 1), and the random heuristic to fix the protection direction
of sensitive cells. In boldface, the fastest run.

6.3 Evaluation of allowed percentage of deviations in cell values

Tables 5 and 6 report the CPU time of the lexmin optimization, and the optimal value of
objective functions f1, f2 and f3, allowing different percentage of deviations in cells values
(2%, 5%, 10% and 100%). Objective f4 is not reported since it was 0 in all the executions
(as discussed above). The order π = (4, 2, 3, 1) and the interior-point of XPRESS were
used in these runs. The fastest execution is marked in boldface. A time limit of 3600
seconds was also used; when the time limit is reached tables 5 and 6 report the best
objective function found so far. Notice that f2 reached the same value, independently of
the percentage, for every instance. As expected, the problems become generally easier
when the percentage of allowed deviations increases, and most of the fastest executions
are obtained with 10% and 100%. However, and unexpectedly, the real problems by
Eurostat “sbs2008_C”, “sbs2008_D_b” and “sbs2008_E”, and “australia_ABS” instance,
were reported as infesible with 100%, while they could be easily solved with 2%, 5% and
10%. As for the objective functions, there are not significant differences, since they report
aggregated information for all the cells. However, in practice, using a tight percentage of
2% (which is the default value considered) provides protected tables where all the cells
are consistently close to those of the original table.

17



in
st
an

ce
f
3

f
1

p
er
c.
:

2%
5%

10
%

10
0%

2%
5%

10
%

10
0%

au
st
ra
li
a_

A
B
S

39
8

23
2

10
0

†
52

31
4

46
36

5
44

02
8

†

bt
s4

29
0

68
.5
9

27
.2
7

7.
39

5
0

4.
37

6e
+
09

3.
89

e+
09

3.
54

9e
+
09

cb
s

19
.8
2

12
.5
1

6.
63

3
0

2.
7e
+
06

1.
93

e+
06

1.
07

3e
+
06

39
31

87
da

le
0

0
0

0
49

4
49

4
49

3
46

0
de

st
at
is

34
40

29
82

28
51

22
09

1.
33

e+
09

6.
61

8e
+
08

5.
35

7e
+
08

2.
91

2e
+
08

fi
ve
20

b
—

—
—

—
—

—
—

—
fi
ve
20

c
—

—
—

—
—

—
—

—
hi
er
13

34
.4
4

7.
21

3
2.
14

5
0

6.
24

2e
+
08

5.
37

2e
+
08

5.
27

3e
+
08

5.
21

1e
+
08

hi
er
13

x1
3x

13
a

40
.5
8

4.
58

6
0

0
7.
85

e+
08

7.
06

6e
+
08

6.
66

e+
08

6.
53

7e
+
08

hi
er
13

x1
3x

13
b

40
.5
8

4.
58

6
0

0
56

85
3

56
06

0
54

72
3

54
05

6
hi
er
13

x1
3x

13
c

40
.5
8

4.
58

6
0

0
48

21
36

47
71

66
46

35
34

45
71

94
hi
er
13

x1
3x

13
d

14
1

45
7.
17

8
0

84
89

12
80

57
97

79
27

52
76

19
33

hi
er
13

x1
3x

13
e

14
2

45
.6
9

12
.1
9

0
1.
06

1e
+
07

9.
65

1e
+
06

9.
64

1e
+
06

9.
43

6e
+
06

hi
er
13

x1
3x

7d
9.
50

1
0.
49

85
0

0
2.
05

8e
+
06

1.
95

2e
+
06

1.
89

7e
+
06

1.
84

6e
+
06

hi
er
13

x7
x7

d
1.
45

4
0

0
0

83
21

49
76

04
81

76
01

07
76

01
07

hi
er
16

22
.1
2

1.
25

4
0

0
1.
05

6e
+
09

8.
17

3e
+
08

7.
71

5e
+
08

7.
59

5e
+
08

hi
er
16

x1
6x

16
a

29
.4
6

2.
55

6
0

0
1.
17

8e
+
09

9.
50

4e
+
08

8.
78

3e
+
08

8.
49

1e
+
08

hi
er
16

x1
6x

16
b

29
.4
6

2.
55

6
0

0
10

03
91

96
35

1
94

68
5

94
62

2
hi
er
16

x1
6x

16
c

29
.4
6

2.
55

6
0

0
84

76
19

80
29

68
78

54
41

78
41

20
hi
er
16

x1
6x

16
d

10
1

18
.0
4

1.
17

4
0

2.
40

8e
+
09

1.
56

4e
+
09

1.
42

e+
09

1.
31

3e
+
09

hi
er
16

x1
6x

16
e

10
1

18
.0
4

1.
17

4
0

1.
65

3e
+
07

1.
47

4e
+
07

1.
44

9e
+
07

1.
42

6e
+
07

ni
ne

12
32

5
71

.6
7

31
.3
4

3.
84

0
1.
67

7e
+
09

1.
51

3e
+
09

1.
37

3e
+
09

ni
ne

5d
26

0
78

.5
9

42
.8
7

0
1.
69

3e
+
09

1.
25

1e
+
09

1.
18

7e
+
09

1.
12

3e
+
09

ni
ne

ne
w

43
5

12
9

51
.0
7

6.
27

3
1.
98

e+
09

1.
27

5e
+
09

1.
09

5e
+
09

9.
62

e+
08

os
or
io

0
0

0
0

15
15

15
15

sb
s2
00

8_
C

82
11

73
09

64
30

†
58

15
21

58
23

20
58

26
43

†

sb
s2
00

8_
D
_
b

16
66

4
13

10
7

10
42

2
†

1.
57

e+
06

1.
77

e+
06

1.
58

7e
+
06

†

sb
s2
00

8_
E

49
16

39
82

33
69

†
30

21
76

30
20

85
30

19
56

†

ta
bl
e1

18
0

0
0

0
9.
24

4e
+
13

6.
11

8e
+
13

4.
65

2e
+
13

3.
37

1e
+
13

ta
bl
e3

58
66

53
29

49
87

34
95

3.
68

e+
13

3.
04

e+
13

2.
59

2e
+
13

1.
17

4e
+
13

ta
bl
e4

58
66

53
29

49
87

34
95

3.
10

1e
+
11

2.
56

2e
+
11

2.
18

4e
+
11

9.
89

e+
10

ta
bl
e5

58
66

53
29

49
87

34
95

3.
09

6e
+
08

2.
55

7e
+
08

2.
17

8e
+
08

9.
83

1e
+
07

ta
bl
e6

18
0

0
0

0
9.
07

2e
+
10

6.
00

3e
+
10

4.
56

5e
+
10

3.
30

8e
+
10

ta
bl
e7

82
8

77
8

70
5

53
8

1.
44

8e
+
11

9.
89

2e
+
10

8.
11

2e
+
10

1.
11

9e
+
11

ta
bl
e8

0
0

0
0

72
5

64
2

58
6

48
4

ta
rg
us

0.
19

73
0.
18

07
0.
16

4
0.
14

46
1.
97

9e
+
06

1.
16

7e
+
06

1.
13

5e
+
06

1.
07

7e
+
06

to
y3

ds
ar
ah

1.
24

1e
+
06

1.
15

9e
+
06

1.
06

9e
+
06

73
80

90
6.
82

5e
+
14

6.
73

7e
+
14

6.
60

5e
+
14

5.
73

9e
+
14

tw
o5

in
6

11
7

31
.9
4

20
.3
9

9.
74

4
9.
85

7e
+
08

8.
20

4e
+
08

7.
79

8e
+
08

7.
47

8e
+
08

†
pr
ob

le
m

re
p
or
te
d
as

in
fe
as
ib
le

—
ob

je
ct
iv
e
va
lu
e
no

t
co
m
pu

te
d
by

ti
m
e
li
m
it

re
ac
he

d

T
ab

le
6.

V
al
ue
s
of
f
3
an

d
f
1
fo
r
di
ffe

re
nt

m
ax

im
um

pe
rc
en
ta
ge
s
of

de
vi
at
io
n
in

ce
ll
va
lu
es
,
us
in
g
th
e
in
te
ri
or
-p
oi
nt

of
X
P
R
E
SS

as
so
lv
er
,
or
de
r
π

=
(4
,2
,3
,1

),
an

d
th
e
ra
nd

om
he
ur
is
ti
c
to

fix
th
e
pr
ot
ec
ti
on

di
re
ct
io
n
of

se
ns
it
iv
e
ce
lls
.

18



instance CPU time f2

method: random SAT network both random SAT network both

australia_ABS 2.66 3.23 ∗ 12.88 3.805 0 — 0
bts4 > 3600 3188 3309 3157 1582 42.02 534 41.47
cbs 0.44 2.73 ∗ 2176 15.96 0 — 0
dale 1.33 5.6 ∗ ∗ 0 0 — —
destatis 4.32 1.87 6.75 4.1 528 0 743 0
five20b > 3600 > 3600 > 3600 > 3600 5742 26.78 2994 0
five20c > 3600 > 3600 > 3600 > 3600 7074 24.73 3880 21.43
hier13 12.17 8.64 22.23 10.24 362 64.73 85.03 45.25
hier13x13x13a 9.47 1.91 9.66 2.18 340 0 242 0
hier13x13x13b 9.68 1.85 9.67 2.03 340 0 242 0
hier13x13x13c 10.82 1.92 8.49 2.04 340 0 242 0
hier13x13x13d 11.39 1.92 11.53 2.04 511 0 362 0
hier13x13x13e 18.42 1.9 12.28 1.95 562 0 367 0
hier13x13x7d 1.34 0.38 1.3 0.36 146 0 174 0
hier13x7x7d 0.26 0.11 0.37 0.12 60.58 0 88.72 0
hier16 58.66 64.82 102 32.45 300 77.43 206 39.7
hier16x16x16a 68.59 6.7 85.49 7.26 490 0 565 0
hier16x16x16b 40.84 6.29 49.96 6.93 490 0 565 0
hier16x16x16c 38.92 6.58 45.1 7.03 490 0 565 0
hier16x16x16d 48.59 7.14 57.84 7.28 735 0 850 0
hier16x16x16e 47.05 6.6 60.58 7.14 735 0 850 0
nine12 210 802 734 33.02 684 27.73 448 0
nine5d 477 73.61 703 17.51 3650 13.88 1782 0
ninenew 195 141 181 19.32 662 54.43 434 0
osorio 1.74 1.74 1.78 1.77 0 0 0 0
sbs2008_C 0.53 0.68 2.77 1.23 28156 1115 27808 1115
sbs2008_D_b 6.26 7.79 200 38.17 77899 7039 66104 7075
sbs2008_E 0.13 0.13 0.3 0.17 9990 135 11108 135
table1 0.34 0.2 0.43 0.24 289 0 834 0
table3 5.11 3.23 11.58 3.05 570 9.848 561 9.848
table4 5.05 2.75 5.74 3.14 570 9.848 561 9.848
table5 4.69 2.96 7.21 2.72 570 9.848 561 9.848
table6 0.27 0.18 0.38 0.21 279 0 814 0
table7 0.15 0.08 0.14 0.08 4.575 0 0.6003 0
table8 0.09 0.08 0.08 0.09 0 0 0 0
targus 0.03 0.03 0.03 0.03 0.1148 0 0 0
toy3dsarah 0.49 0.27 0.85 0.32 657301 0 455360 0
two5in6 66.01 7.51 175 7.91 1591 0 847 0
∗ heuristic failed
— objective value not computed, either by time limit reached or by heuristic failure

Table 7. CPU time and value of f2 with the four heuristics for fixing the protection direction of sensitive cells,
using the interior-point of CPLEX as solver, order π = (4, 2, 3, 1), and allowing a 2% of deviations in cell values.
In boldface, the run with the best quality solution.

6.4 Evaluation of procedures to fix protection directions of sensitive cells

Tables 7 and 8 report the CPU time of the lexmin optimization and the optimal value of
each objective function (excluding f4, which is not reported since it was 0 in all the runs),
for the four different heuristics described in Section 5 to fix the protection directions of
sensitive cells. The CPLEX homogeneous self-dual interior-point algorithm was used in
these runs, instead of the standard infeasible path-following variant of Subsections 6.1
and Subsections 6.2; this explains the differences in CPU times of Tables 2–3 vs. Table 7
for CPLEX barrier and the random heuristic. As it will be shown in below Subsection 6.5,
although the standard barrier algorithm is usually considered the fastest option, it was
outperformed in some of the difficult instances by the slower—but numerically more stable
when the problem is near-infeasible—homogeneous self-dual variant. The best solution
is marked in boldface, according to the lexicographic order π = (4, 2, 3, 1) considered
in those runs. A time limit of 3600 seconds was considered, which was reached in some
executions. The network heuristic failed in some runs, clearly marked in the table.
From Tables 7 and 8 we see that, according to the first objective value f2, the best

solutions were obtained with the “both” variant (SAT and network), followed by the “SAT”
one. We also observe that the fastest executions, in general, were also obtained with “SAT”,
followed by “both”, whereas the other two approaches provided, for some instances, much
more difficult LO problems (e.g., for table nine5d, “random” and “network” required 477
and 703 seconds, respectively, while “SAT” and “both” only needed 73.6 and 17.5).
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MILO-CTA LO-CTA with CPLEX barrier

with CPLEX Standard HSD HSD no-crossover

instance CPU %gap (4,3,2,1) (4,2,3,1) (4,3,2,1) (4,2,3,1) (4,3,2,1) (4,2,3,1)

australia_ABS 1.25 0.00 2.99 3.01 0.6 2.66 0.56 2.49
bts4 > 3600 70.31 731.89 3429.09 34.2 > 3600 30.43 194.04
cbs 2.27 0.00 0.25 0.37 0.28 0.44 0.23 0.34
dale 33.08 0.00 0.52 1.3 0.58 1.33 0.46 1.3
destatis 2908.42 0.10 0.94 2.66 1.12 4.32 1.05 4.44
five20b > 3600 100.00 > 3600 > 3600 767.54 > 3600 689.44 2973.61
five20c > 3600 99.99 > 3600 > 3600 2427.46 > 3600 2203.29 > 3600
hier13 225 0.07 3.07 8.48 3.84 12.17 3.64 11.41
hier13x13x13a 191.59 0.06 2.79 25.55 3.37 9.47 3.12 8.1
hier13x13x13b 346.24 0.06 4.09 21.04 3.21 9.68 3.09 8.38
hier13x13x13c 462.99 0.01 5.06 20.8 3.44 10.82 3.12 9.5
hier13x13x13d 80.16 0.00 4.71 14.81 3.64 11.39 3.4 10.34
hier13x13x13e 67.37 0.00 3.67 15.63 3.26 18.42 3 11.76
hier13x13x7d 145.69 0.09 0.94 1.83 0.46 1.34 0.44 1.24
hier13x7x7d 13.98 0.06 0.22 0.34 0.13 0.26 0.12 0.24
hier16 > 3600 43.25 31.27 822.08 19.36 58.66 18.05 64.58
hier16x16x16a > 3600 42.85 10.2 114.35 14.48 68.59 13.4 37.13
hier16x16x16b > 3600 27.34 14.68 112.43 13.67 40.84 13.21 38.05
hier16x16x16c > 3600 31.66 18.45 68.24 15.14 38.92 13.6 39.83
hier16x16x16d > 3600 48.35 11.4 95.7 13.67 48.59 14.05 38.78
hier16x16x16e > 3600 36.47 19.07 61.83 15.17 47.05 14.76 39.59
nine12 > 3600 99.94 29.33 784.24 46.16 209.8 42.6 197.39
nine5d > 3600 99.99 239.13 68 31.06 476.65 27.28 113.72
ninenew > 3600 65.67 21.54 60.89 27.42 194.9 26.74 73.65
osorio 0.77 0.00 0.3 1.88 0.33 1.74 0.27 0.42
sbs2008_C 103.54 0.10 0.31 0.5 0.2 0.53 0.16 0.51
sbs2008_D_b > 3600 5.76 2.31 5.41 1.55 6.26 1.39 6.34
sbs2008_E 4.64 0.00 0.08 0.12 0.06 0.13 0.06 0.12
table1 16.55 0.10 0.1 0.24 0.12 0.34 0.1 0.33
table3 > 3600 9.27 1.04 6.5 1.15 5.11 1.09 5.07
table4 > 3600 8.46 1.03 3.77 1.17 5.05 1.11 5.12
table5 > 3600 0.32 1.04 3.25 1.17 4.69 1.1 4.71
table6 3.96 0.10 0.08 0.19 0.09 0.27 0.08 0.25
table7 0.06 0.00 0.03 0.16 0.04 0.15 0.03 0.13
table8 0.06 0.00 0.04 0.07 0.03 0.09 0.03 0.08
targus 0.02 0.00 0.02 0.01 0.02 0.03 0.01 0.02
toy3dsarah 11.96 0.01 0.15 0.34 0.16 0.49 0.15 0.45
two5in6 > 3600 50.14 13.82 145.82 17.34 66.01 16.21 61.9

Table 9. Comparison of runtimes between MILO-CTA and LO-CTA. The CPU time and the optimality gap
achieved within the 3600 seconds time limit are given for MILO-CTA. For LO-CTA, CPU times are reported for
the two orders (π = (4, 3, 2, 1) and π = (4, 2, 3, 1)) and three different CPLEX barrier variants (standard barrier,
homogeneous self-dual barrier, and homogeneous self-dual without crossover). The fastest execution is marked in
boldface.

6.5 Comparing LO-CTA to MILO-CTA

As it was stated in the Introduction, the purpose of LO-CTA is to provide protected tables
of similar quality as those obtained with MILO-CTA, with less computational effort. In
the comparison between MILO-CTA and LO-CTA we thus focus on these two criteria:
efficiency and quality of the solutions.
Table 9 shows the CPU times obtained with CPLEX for MILO-CTA and LO-CTA. For

LO-CTA three barrier variants were used: the standard barrier algorithm, corresponding
to columns “Standard” in the table; the homogeneous self-dual interior-point (columns
“HSD”); and the homogeneous self-dual without crossover (columns “HSD no-crossover”).
Each barrier variant was applied to the two orders π = (4, 3, 2, 1) and π = (4, 2, 3, 1). For
MILO-CTA the table also reports the optimality gap achieved; large gaps correspond to
feasible sub-optimal solutions for instances that exhausted the 3600 seconds time limit.
The fastest execution is marked in boldface.
Although MILO-CTA never provided the fastest run, it was very competitive in some

instances (such as “australia_ABS”, “cbs”, “osorio”, “table6”, “table7” and “table8”). How-
ever, in some other cases MILO-CTA required very long executions (it even exhausted
the 3600 seconds time limit) whereas LO-CTA computed a solution in one second (e.g.,
“destatis”, “sbs2008_D_b”, “table3”, “table4” and “table5”). It is clearly observed that, of
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Ratio MILO-CTA/LO-CTA
instance (4,3,2,1) (4,2,3,1)
australia_ABS 0.99 0.83
bts4 1.25 1.05
cbs 0.73 0.69
dale 0.79 0.79
destatis 0.73 0.63
five20b 147.6 103.3
five20c 153.6 101.3
hier13 1.23 0.89
hier13x13x13a 1.08 0.78
hier13x13x13b 1.09 0.78
hier13x13x13c 1.09 0.78
hier13x13x13d 0.89 0.51
hier13x13x13e 0.99 0.47
hier13x13x7d 0.95 0.87
hier13x7x7d 0.85 0.80
hier16 0.95 0.80
hier16x16x16a 0.96 0.75
hier16x16x16b 0.91 0.73
hier16x16x16c 0.91 0.74
hier16x16x16d 0.94 0.63
hier16x16x16e 0.83 0.57
nine12 151.9 119.6
nine5d 251.7 210.3
ninenew 1.06 0.80
osorio 1.00 1.00
sbs2008_C 2.90 2.11
sbs2008_D_b 2.11 1.60
sbs2008_E 1.43 0.89
table1 0.62 0.58
table3 1.07 0.54
table4 1.04 0.52
table5 1.15 0.58
table6 0.61 0.56
table7 1.29 0.18
table8 1.16 1.16
targus 1.00 1.00
toy3dsarah 1.84 1.32
two5in6 1.13 0.94

Table 10. Ratio of distances between original and protected tables, where the numerator is the distance obtained
with MILO-CTA and the denominator comes from LO-CTA. A value greater than one means that the table
protected with LO-CTA was closer to the original table (thus better) than the table generated by MILO-CTA.

the six LO-CTA combinations tested, the most efficient was the homogeneous self-dual
barrier without crossover and with order π = (4, 3, 2, 1) (it was the fastest option in 27
out of 38 instances). It is also worth noting that the two homogeneous self-dual columns
(with and without crossover) for order π = (4, 3, 2, 1) were the only variants able to solve
all the instances within the time limit. Indeed, and surprisingly, the homogenous self-
dual algorithm outperformed the standard barrier—which is considered the most efficient
interior-point algorithm—in most cases. A possible explanation can be found in the extra
constraints added to the lexicographic optimization problem (14): they make the problem
near-infeasible, and in those situations the homogeneous self-dual method is known to
be numerically more stable. It is also seen that in some cases the crossover significantly
increased the solution time: for example, for instance “bts4” and order π = (4, 2, 3, 1), we
reduced from more than 3600 to only 194.04 seconds when the crossover was deactivated.
All in all, in general, it can be concluded that LO-CTA outperformed MILO-CTA in
terms of running times.
Unlike for the CPU times, there is not a clear and well defined criterion to compare the

quality of solutions provided by different protection methods in the field of statistical dis-
closure control. We thus considered the difference in absolute value, between the original
and the protected table, that is,

∑
i∈N |xi − ai|, which is related to f1. We proceeded as

follows. Firstly, this measure was obtained for both MILO-CTA and LO-CTA with orders
π = (4, 3, 2, 1) and π = (4, 2, 3, 1) (using either standard barrier, homogeneous self-dual
or homogeneous self-dual without crossover, since they provided the same or very similar
solutions). Secondly, the ratio of these measures between MILO-CTA and LO-CTA was
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Figure 6.: Plot of ratios of
∑

i∈N |xi − ai| between MILO-CTA and LO-CTA with the
orders π = (4, 3, 2, 1) (horizontal axis) and π = (4, 2, 3, 1) (vertical axis). Ratios greater
than one mean LO-CTA behaved better than MILO-CTA. Each instance is associated
with a circle, whose area is proportional to the number of sensitive cells of the instance.

computed. These ratios are shown in Table 10. Ratios greater than one mean that LO-
CTA provided a solution of higher quality than MILO-CTA (i.e., the protected table was
closer to the original one). It is seen that LO-CTA clearly ourperformed MILO-CTA in
some instances (among them some of the largest ones: “five20b”, “five20c”, “nine12” and
“nine5d”). It could be argued that this is due to the changes in constraints and bounds
done by LO-CTA. However this is not the case for two reasons: (1) First, the relative
changes made by LO-CTA in constraints and bounds were very small; for example, for
“five20b”—one of the largest and most difficult instances—the average relative change in
constraints was 0.016, with only four out of 52983 constraints (associated with marginal
cell values) with a relative change greater than 1 (the maximum being 2.46). (2) And
second, the MILO-CTA approach also reported as optimal some tables that were infea-
sible (some cells were unprotected, that is, their protection levels were violated); this
is due to the big-M constraints of (2) and the coexistence of very small and very large
cells in the same table. For example, the number of unprotected cells was 139, 60 and 49
for, respectively, “bts4”, “table5” and “sbs2008_D_b” (up to 14—infeasible—tables with
unprotected cells were reported as optimal by MILO-CTA).
Figure 6 shows graphically the information in Table 10, in which each circle is associated

with an instance, the coordinates of the center of the circle being the two ratios shown in
the table. The areas of the circles are proportional to the number of sensitive cells of the
table (in theory, the larger the number of sensitive cells, the more difficult should be the
MILO-CTA problem). The line x = y of Figure 6 would correspond to instances where
the behaviour of LO-CTA is the same for orders π = (4, 3, 2, 1) and π = (4, 2, 3, 1). The
half-plane x > y is associated with instances where the order π = (4, 3, 2, 1) provided
better solutions than π = (4, 2, 3, 1): it is seen that this is the case for all the executions.
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This means that π = (4, 3, 2, 1) not only provides the fastest executions, but it also gives
better solutions than π = (4, 2, 3, 1). We also see that a significant number of instances
is located in the half-plane x > 1, that is, LO-CTA with π = (4, 3, 2, 1) outperformed
MILO-CTA, and by a large margin in the extreme instances. On the other hand, when
MILO-CTA was better (instances in half-plane x < 1) the x-coordinates of the points
were always in the interval [0.7, 1].

7. Conclusions

The formulation and solution of the new multiobjective LO-CTA data protection prob-
lems opens challenges and opportunities. Compared to the original MILO-CTA formu-
lation, it allows to compute a publishable table of similar quality by just solving up to
four LO problems. In addition, for different preference orders it is possible to generate
different Pareto solutions, each of them with some particular feature. On the other hand,
depending on the table it may be needed to tune not only the preference order, but also
the algorithm, solver, and allowed percentage of deviations. The resulting problems are
challenging for today LO solvers, and they become harder as additional constraints are
added during the lexicographic method. Since much larger tables can be easily generated
from the current volume of data stored by NSAs, this field of application is a source of
huge instances for LO solvers.
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