16,625 research outputs found

    Statistical Machine Learning in Brain State Classification using EEG Data

    Get PDF
    In this article, we discuss how to use a variety of machine learning methods, e.g. tree bagging, random forest, boost, support vector machine, and Gaussian mixture model, for building classifiers for electroencephalogram (EEG) data, which is collected from different brain states on different subjects. Also, we discuss how training data size influences misclassification rate. Moreover, the number of subjects that contributes to the training data affects misclassification rate. Furthermore, we discuss how sample entropy contributes to building a classifier. Our results show that classification based on sample entropy give the smallest misclassification rate. Moreover, two data sets were collected from one channel and seven channels respectively. The classification results of each data set show that the more channels we use, the less misclassification we have. Our results show that it is promising to build a self-adaptive classification system by using EEG data to distinguish idle from active state

    Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset

    Get PDF
    Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain neurons\u27 abnormal activities and has affected approximately 50 million people worldwide. Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of epilepsy is highly effective in avoiding seizures by intervening in treatment. The electroencephalogram (EEG) signal, which contains valuable information of electrical activity in the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, the result varies with different neurophysiologists for an identical reading. Thus, automatically classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement and has long been investigated. This PhD thesis contributes to the epileptic seizure detection problem using Machine Learning (ML) techniques. Machine learning algorithms have been implemented to automatically classifying epilepsy from EEG data. Imbalance class distribution problems and effective feature extraction from the EEG signals are the two major concerns towards effectively and efficiently applying machine learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the majority class when classes are imbalanced, while effective feature extraction can improve classification performance. In this thesis, we presented three different novel frameworks to effectively classify epileptic states while addressing the above issues. Firstly, a deep neural network-based framework exploring different sampling techniques was proposed where both traditional and state-of-the-art sampling techniques were experimented with and evaluated for their capability of improving the imbalance ratio and classification performance. Secondly, a novel integrated machine learning-based framework was proposed to effectively learn from EEG imbalanced data leveraging the Principal Component Analysis method to extract high- and low-variant principal components, which are empirically customized for the imbalanced data classification. This study showed that principal components associated with low variances can capture implicit patterns of the minority class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging summary statistics analysis of window-based features of EEG signals. The framework first denoised the signals using power spectrum density analysis and replaced outliers with k-NN imputer. Next, window level features were extracted from statistical, temporal, and spectral domains. Basic summary statistics are then computed from the extracted features to feed into different machine learning classifiers. An optimal set of features are selected leveraging variance thresholding and dropping correlated features before feeding the features for classification. Finally, we applied traditional machine learning classifiers such as Support Vector Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through rigorous experimental settings and displayed the effectiveness of the proposed frameworks in terms of accuracy, precision, recall, and F-beta score

    Epilogue: Summary and Outlook

    Get PDF
    Open Journal of Big Data (OJBD) is an open access journal addressing aspects of Big Data, including new methodologies, processes, case studies, poofs-of-concept, scientific demonstrations, industrial applications and adoption. This editorial presents three articles in the second issue. The first paper is on Big Data in the Cloud. The second paper is on Statistical Machine Learning in Brain State Classification using EEG Data. The third article is on Data Transfers in Hadoop. OJBD has a rising reputation thanks to the support of research communities, which has helped us set up the First International Conference on Internet of Things and Big Data (IoTBD 2016), in Rome, Italy, between 23 and 25 April 2016. OJBD is published by RonPub (www.ronpub.com), which is an academic publisher of online, open access, peer-reviewed journals

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG
    • …
    corecore