15,377 research outputs found

    Statistical Learning by Imitation of Competing Constraints in Joint Space and Task Space

    Get PDF
    We present a probabilistic architecture for solving generically the problem of extracting the task constraints through a Programming by Demonstration (PbD) framework and for generalizing the acquired knowledge to various situations. In previous work, we proposed an approach based on Gaussian Mixture Regression (GMR) to find a controller for the robot reproducing the statistical characteristics of a movement in joint space and in task space through Lagrange optimization. In this paper, we develop an alternative procedure to handle simultaneously constraints in joint space and in task space by combining directly the probabilistic representation of the task constraints with a solution to Jacobian-based inverse kinematics. The method is validated in manipulation tasks with two 5 DOFs Katana robotic arms displacing a set of objects

    Learning to Sequence Multiple Tasks with Competing Constraints

    Get PDF
    Imitation learning offers a general framework where robots can efficiently acquire novel motor skills from demonstrations of a human teacher. While many promising achievements have been shown, the majority of them are only focused on single-stroke movements, without taking into account the problem of multi-tasks sequencing. Conceivably, sequencing different atomic tasks can further augment the robot's capabilities as well as avoid repetitive demonstrations. In this paper, we propose to address the issue of multi-tasks sequencing with emphasis on handling the so-called competing constraints, which emerge due to the existence of the concurrent constraints from Cartesian and joint trajectories. Specifically, we explore the null space of the robot from an information-theoretic perspective in order to maintain imitation fidelity during transition between consecutive tasks. The effectiveness of the proposed method is validated through simulated and real experiments on the iCub humanoid robot

    Towards Minimal Intervention Control with Competing Constraints

    Get PDF
    As many imitation learning algorithms focus on pure trajectory generation in either Cartesian space or joint space, the problem of considering competing trajectory constraints from both spaces still presents several challenges. In particular, when perturbations are applied to the robot, the underlying controller should take into account the importance of each space for the task execution, and compute the control effort accordingly. However, no such controller formulation exists. In this paper, we provide a minimal intervention control strategy that simultaneously addresses the problems of optimal control and competing constraints between Cartesian and joint spaces. In light of the inconsistency between Cartesian and joint constraints, we exploit the robot null space from an information-theory perspective so as to reduce the corresponding conflict. An optimal solution to the aforementioned controller is derived and furthermore a connection to the classical finite horizon linear quadratic regulator (LQR) is provided. Finally, a writing task in a simulated robot verifies the effectiveness of our approach

    Hybrid Probabilistic Trajectory Optimization Using Null-Space Exploration

    Get PDF
    In the context of learning from demonstration, human examples are usually imitated in either Cartesian or joint space. However, this treatment might result in undesired movement trajectories in either space. This is particularly important for motion skills such as striking, which typically imposes motion constraints in both spaces. In order to address this issue, we consider a probabilistic formulation of dynamic movement primitives, and apply it to adapt trajectories in Cartesian and joint spaces simultaneously. The probabilistic treatment allows the robot to capture the variability of multiple demonstrations and facilitates the mixture of trajectory constraints from both spaces. In addition to this proposed hybrid space learning, the robot often needs to consider additional constraints such as motion smoothness and joint limits. On the basis of Jacobian-based inverse kinematics, we propose to exploit robot null-space so as to unify trajectory constraints from Cartesian and joint spaces while satisfying additional constraints. Evaluations of hand-shaking and striking tasks carried out with a humanoid robot demonstrate the applicability of our approach

    Learning to Avoid Obstacles With Minimal Intervention Control

    Get PDF
    Programming by demonstration has received much attention as it offers a general framework which allows robots to efficiently acquire novel motor skills from a human teacher. While traditional imitation learning that only focuses on either Cartesian or joint space might become inappropriate in situations where both spaces are equally important (e.g., writing or striking task), hybrid imitation learning of skills in both Cartesian and joint spaces simultaneously has been studied recently. However, an important issue which often arises in dynamical or unstructured environments is overlooked, namely how can a robot avoid obstacles? In this paper, we aim to address the problem of avoiding obstacles in the context of hybrid imitation learning. Specifically, we propose to tackle three subproblems: (i) designing a proper potential field so as to bypass obstacles, (ii) guaranteeing joint limits are respected when adjusting trajectories in the process of avoiding obstacles, and (iii) determining proper control commands for robots such that potential human-robot interaction is safe. By solving the aforementioned subproblems, the robot is capable of generalizing observed skills to new situations featuring obstacles in a feasible and safe manner. The effectiveness of the proposed method is validated through a toy example as well as a real transportation experiment on the iCub humanoid robot

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Autistic traits affect interpersonal motor coordination by modulating strategic use of role-based behavior

    Get PDF
    Background: Despite the fact that deficits in social communication and interaction are at the core of Autism Spectrum Conditions (ASC), no study has yet tested individuals on a continuum from neurotypical development to autism in an on-line, cooperative, joint action task. In our study, we aimed to assess whether the degree of autistic traits affects participants' ability to modulate their motor behavior while interacting in a Joint Grasping task and according to their given role. Methods: Sixteen pairs of adult participants played a cooperative social interactive game in which they had to synchronize their reach-to-grasp movements. Pairs were comprised of one ASC and one neurotypical with no cognitive disability. In alternate experimental blocks, one participant knew what action to perform (instructed role) while the other had to infer it from his/her partner’s action (adaptive role). When in the adaptive condition, participants were told to respond with an action that was either opposite or similar to their partner. Participants also played a non-social control game in which they had to synchronize with a non-biological stimulus. Results: In the social interactive task, higher degree of autistic trait s predicted less ability to mod ulate joint action according to one’s interactive role. In the non-social task, autistic traits did not predict differences in movement preparation and planning, thus ruling out the possibility that social interact ive task results were due to basic motor or executive function difficulties. Furthermore, when participants played the non-social game, the higher their autistic traits, the more they were interfered by the non-biological stimulus. Conclusions: Our study shows for the first time that high autistic traits predict a stereotypical interaction style when individuals are required to modulate their movements in order to coordinate with their partner according to their role in a joint action task. Specifically, the infrequent emergence of role-based motor behavior modulation during on-line motor cooperation in participants with high autistic traits sheds light on the numerous difficulties ASC have in nonverbal social interaction
    • …
    corecore