4,806 research outputs found

    Automatic Emotion Recognition from Mandarin Speech

    Get PDF

    A combined cepstral distance method for emotional speech recognition

    Get PDF
    Affective computing is not only the direction of reform in artificial intelligence but also exemplification of the advanced intelligent machines. Emotion is the biggest difference between human and machine. If the machine behaves with emotion, then the machine will be accepted by more people. Voice is the most natural and can be easily understood and accepted manner in daily communication. The recognition of emotional voice is an important field of artificial intelligence. However, in recognition of emotions, there often exists the phenomenon that two emotions are particularly vulnerable to confusion. This article presents a combined cepstral distance method in two-group multi-class emotion classification for emotional speech recognition. Cepstral distance combined with speech energy is well used as speech signal endpoint detection in speech recognition. In this work, the use of cepstral distance aims to measure the similarity between frames in emotional signals and in neutral signals. These features are input for directed acyclic graph support vector machine classification. Finally, a two-group classification strategy is adopted to solve confusion in multi-emotion recognition. In the experiments, Chinese mandarin emotion database is used and a large training set (1134 + 378 utterances) ensures a powerful modelling capability for predicting emotion. The experimental results show that cepstral distance increases the recognition rate of emotion sad and can balance the recognition results with eliminating the over fitting. And for the German corpus Berlin emotional speech database, the recognition rate between sad and boring, which are very difficult to distinguish, is up to 95.45%

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Class-Level Spectral Features for Emotion Recognition

    Get PDF
    The most common approaches to automatic emotion recognition rely on utterance-level prosodic features. Recent studies have shown that utterance-level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed over three phoneme type classes of interest – stressed vowels, unstressed vowels and consonants in the utterance. We investigate performance of our features in the task of speaker-independent emotion recognition using two publicly available datasets. Our experimental results clearly indicate that indeed both the richer set of spectral features and the differentiation between phoneme type classes are beneficial for the task. Classification accuracies are consistently higher for our features compared to prosodic or utterance-level spectral features. Combination of our phoneme class features with prosodic features leads to even further improvement. Given the large number of class-level spectral features, we expected feature selection will improve results even further, but none of several selection methods led to clear gains. Further analyses reveal that spectral features computed from consonant regions of the utterance contain more information about emotion than either stressed or unstressed vowel features. We also explore how emotion recognition accuracy depends on utterance length. We show that, while there is no significant dependence for utterance-level prosodic features, accuracy of emotion recognition using class-level spectral features increases with the utterance length

    Construction and Evaluation of Mandarin Multimodal Emotional Speech Database

    Full text link
    A multi-modal emotional speech Mandarin database including articulatory kinematics, acoustics, glottal and facial micro-expressions is designed and established, which is described in detail from the aspects of corpus design, subject selection, recording details and data processing. Where signals are labeled with discrete emotion labels (neutral, happy, pleasant, indifferent, angry, sad, grief) and dimensional emotion labels (pleasure, arousal, dominance). In this paper, the validity of dimension annotation is verified by statistical analysis of dimension annotation data. The SCL-90 scale data of annotators are verified and combined with PAD annotation data for analysis, so as to explore the internal relationship between the outlier phenomenon in annotation and the psychological state of annotators. In order to verify the speech quality and emotion discrimination of the database, this paper uses 3 basic models of SVM, CNN and DNN to calculate the recognition rate of these seven emotions. The results show that the average recognition rate of seven emotions is about 82% when using acoustic data alone. When using glottal data alone, the average recognition rate is about 72%. Using kinematics data alone, the average recognition rate also reaches 55.7%. Therefore, the database is of high quality and can be used as an important source for speech analysis research, especially for the task of multimodal emotional speech analysis

    Gender dependent word-level emotion detection using global spectral speech features

    Get PDF
    In this study, global spectral features extracted from word and sentence levels are studied for speech emotion recognition. MFCC (Mel Frequency Cepstral Coefficient) were used as spectral information for recognition purpose. Global spectral features representing gross statistics such as mean of MFCC are used. This study also examine words at different positions (initial, middle and end) separately in a sentence. Word-level feature extraction is used to analyze emotion recognition performance of words at different positions. Word boundaries are manually identified. Gender dependent and independent models are also studied to analyze the gender impact on emotion recognition performance. Berlin’s Emo-DB (Emotional Database) was used for emotional speech dataset. Performance of different classifiers also been studied. NN (Neural Network), KNN (K-Nearest Neighbor) and LDA (Linear Discriminant Analysis) are included in the classifiers. Anger and neutral emotions were also studied. Results showed that, using all 13 MFCC coefficients provide better classification results than other combinations of MFCC coefficients for the mentioned emotions. Words at initial and ending positions provide more emotion, specific information than words at middle position. Gender dependent models are more efficient than gender independent models. Moreover, female are more efficient than male model and female exhibit emotions better than the male. General, NN performs the worst compared to KNN and LDA in classifying anger and neutral. LDA performs better than KNN almost 15% for gender independent model and almost 25% for gender dependent
    corecore