126 research outputs found

    Effect of Pseudo Random Noise (PRN) Spreading Sequence Generation of 3GPP Users’ Codes on GPS Operation in Mobile Handset

    Get PDF
    In this paper, the effects of intersystem cross correlation of 3GPP user’ codes to GPS satellites’ codes will be demonstrated. The investigation and analysis are in the form of cross correlation between 3GPP users’ codes and GPS satellites Pseudo Random Noise (PRN) sequences. The investigation and analysis will involve the similarities in generation and system architecture of both the 3GPP user’ codes and GPS satellites’ codes. The extent of intersystem interference will be displayed in the form of results for cross correlation, correlation coefficient, and signal to noise ratio. Recommendations will be made based on the results

    Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    Get PDF
    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    A common European Spectrum policy

    Get PDF
    This briefing note considers the European Commission\u2019s proposals for a common European spectrum policy through reviewing adopted legislation as well as recent communications and other initiatives. The report was produced against the background of the review of the regulatory framework for electronic communications and the recent World Radiocommunication Conference

    Position location in wireless MIMO communication systems

    Get PDF
    Motivation and objectives -- Contributions -- Organization of the thesis -- Wireless communication channels -- Overview of wireless position location systems -- Fundamentals of array signal processing -- Mimo and space-time processing -- Bidirectional mimo channel model -- The system model -- The bidirectional beamforming MIMO channel -- Joint estimation of multipath parameters for Mimo systenms -- The proposed maximum likelihood multipath parameter estimation algorithms -- The proposed subspace-based multipath parameter estimation algorithm -- The cramer-rao lower bound -- Position location of mobile terminal in mimo systems -- The proposed hybrid TDOA/AOA/AOD location method for Mimo systems -- Analysis of the proposed location method for MIMO systems
    corecore