2,289 research outputs found

    Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.

    Get PDF
    BackgroundKnowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts.MethodsWe employed a customized diffusion tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence.ResultsThe SNR of non-diffusion-weighted images was >100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96 ± 11.03° vs. 0.84 ± 1.47°, p = 0.61, and inclination angle range: 111.0 ± 10.7° vs. 112.5 ± 6.8°, p = 0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (r = 0.36) and the inverse of wall thickness (r = 0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts.ConclusionsThe application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts

    Diffusion tensor magnetic resonance imaging-derived myocardial fiber disarray in hypertensive left ventricular hypertrophy: visualization, quantification and the effect on mechanical function

    Get PDF
    Left ventricular hypertrophy induced by systemic hypertension is generally regarded a morphological precursor of unfortunate cardiovascular events. Myocardial fiber disarray has been long recognized as a prevalent hallmark of this pathology. In this chapter, ex vivo diffusion tensor magnetic resonance imaging is employed to delineate the regional loss of myocardial organization that is present in the excised heart of a spontaneously hypertensive rat, as opposed to a control. Fiber tracking results are provided that illustrate in great detail the alterations in the integrity of cardiac muscle microstructure due to the disease. A quantitative analysis is also performed. Another contribution of this chapter is the model-based assessment of the role of the myofiber disarray in modulating the mechanical properties of the myocardium. The results of this study improve our understanding of the structural remodeling mechanisms that are associated with hypetensive left ventricular hypertrophy and their role

    High-Resolution Diffusion Tensor MR Imaging for Evaluating Myocardial Anisotropy and Fiber Tracking at 3T: the Effect of the Number of Diffusion-Sensitizing Gradient Directions

    Get PDF
    Objective: We wanted to evaluate the effect of the number of diffusion-sensitizing gradient directions on the image quality for evaluating myocardial anisotropy and fiber tracking by using in vitro diffusion tensor MR imaging (DT-MRI). Materials and Methods: The DT-MR images, using a SENSE-based echo-planar imaging technique, were acquired from ten excised porcine hearts by using a 3T MR scanner. With a b-value of 800 S/mm(2), the diffusion tensor images were obtained for 6,15 and 32 diffusion-sensitizing gradient directions at the mid-ventricular level. The number of tracked fibers, the fractional anisotropy (FA), and the length of the tracked fibers were measured for the quantitative analysis. Two radiologists assessed the image quality of the fiber tractography for the qualitative analysis. Results: By increasing the number of diffusion-sensitizing gradient directions from 6 to 15, and then to 32, the FA and standard deviation were significantly reduced (p < 0.01), and the number of tracked fibers and the length of the tracked fibers were significantly increased (p < 0.01). The image quality of the fiber tractography was significantly increased with the increased number of diffusion-sensitizing gradient directions (p < 0.01). Conclusion: The image quality of in vitro DT-MRI is significantly improved as the number of diffusion-sensitizing gradient directions is increased.Jiang Y, 2007, AM J PHYSIOL-HEART C, V293, pH2377, DOI 10.1152/ajpheart.00337.2007Wu EX, 2007, MAGN RESON MED, V58, P687, DOI 10.1002/mrm.21350Wu EX, 2007, MAGN RESON IMAGING, V25, P1048, DOI 10.1016/j.mri.2006.12.008Wu MT, 2006, CIRCULATION, V114, P1036, DOI 10.1161/CIRCULATIONHAHA.105.545863Lee JW, 2006, INVEST RADIOL, V41, P553Okada T, 2006, RADIOLOGY, V238, P668, DOI 10.1148/radiol.2382042192CHANG YM, 2005, J KOREAN RADIOL SOC, V52, P87Tanenbaum LN, 2004, AM J NEURORADIOL, V25, P1626Nagae-Poetscher LM, 2004, AM J NEURORADIOL, V25, P1325Jones DK, 2004, MAGNET RESON MED, V51, P807, DOI 10.1002/mrm.20033Jaermann T, 2004, MAGNET RESON MED, V51, P230, DOI 10.1002/mrm.10707Naganawa S, 2004, EUR RADIOL, V14, P234, DOI 10.1007/s00330-003-2163-6Zhai GH, 2003, RADIOLOGY, V229, P673, DOI 10.1148/radiol.2293021462Cercignani M, 2003, AM J NEURORADIOL, V24, P1254Tseng WYI, 2003, J MAGN RESON IMAGING, V17, P31, DOI 10.1002/jmri.10223Jeong AK, 2001, KOREAN J RADIOL, V2, P21Holmes AA, 2000, MAGNET RESON MED, V44, P157Choi SI, 2000, RADIOLOGY, V215, P863Spotnitz HM, 2000, J THORAC CARDIOV SUR, V119, P1053Pruessmann KP, 1999, MAGNET RESON MED, V42, P952Tseng WI, 1999, MAGNET RESON MED, V42, P393Scollan DF, 1998, AM J PHYSIOL-HEART C, V275, pH2308Pierpaoli C, 1996, MAGNET RESON MED, V36, P893Taber LA, 1996, J BIOMECH, V29, P745REESE TG, 1995, MAGNET RESON MED, V34, P786EDELMAN RR, 1994, MAGNET RESON MED, V32, P423RADEMAKERS FE, 1994, CIRCULATION, V89, P1174STREETER DD, 1969, CIRC RES, V24, P339

    Effect of myofibre architecture on ventricular pump function by using a neonatal porcine heart model: from DT-MRI to rule-based methods

    Get PDF
    Myofibre architecture is one of the essential components when constructing personalized cardiac models. In this study, we develop a neonatal porcine bi-ventricle model with three different myofibre architectures for the left ventricle (LV). The most realistic one is derived from ex vivo diffusion tensor magnetic resonance imaging, and other two simplifications are based on rule-based methods (RBM): one is regionally dependent by dividing the LV into 17 segments, each with different myofibre angles, and the other is more simplified by assigning a set of myofibre angles across the whole ventricle. Results from different myofibre architectures are compared in terms of cardiac pump function. We show that the model with the most realistic myofibre architecture can produce larger cardiac output, higher ejection fraction and larger apical twist compared with those of the rule-based models under the same pre/after-loads. Our results also reveal that when the cross-fibre contraction is included, the active stress seems to play a dual role: its sheet-normal component enhances the ventricular contraction while its sheet component does the opposite. We further show that by including non-symmetric fibre dispersion using a general structural tensor, even the most simplified rule-based myofibre model can achieve similar pump function as the most realistic one, and cross-fibre contraction components can be determined from this non-symmetric dispersion approach. Thus, our study highlights the importance of including myofibre dispersion in cardiac modelling if RBM are used, especially in personalized models

    Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method

    Get PDF
    Detailed models of the biomechanics of the heart are important both for developing improved interventions for patients with heart disease and also for patient risk stratification and treatment planning. For instance, stress distributions in the heart affect cardiac remodelling, but such distributions are not presently accessible in patients. Biomechanical models of the heart offer detailed three-dimensional deformation, stress and strain fields that can supplement conventional clinical data. In this work, we introduce dynamic computational models of the human left ventricle (LV) that are derived from clinical imaging data obtained from a healthy subject and from a patient with a myocardial infarction (MI). Both models incorporate a detailed invariant-based orthotropic description of the passive elasticity of the ventricular myocardium along with a detailed biophysical model of active tension generation in the ventricular muscle. These constitutive models are employed within a dynamic simulation framework that accounts for the inertia of the ventricular muscle and the blood that is based on an immersed boundary (IB) method with a finite element description of the structural mechanics. The geometry of the models is based on data obtained non-invasively by cardiac magnetic resonance (CMR). CMR imaging data are also used to estimate the parameters of the passive and active constitutive models, which are determined so that the simulated end-diastolic and end-systolic volumes agree with the corresponding volumes determined from the CMR imaging studies. Using these models, we simulate LV dynamics from end-diastole to end-systole. The results of our simulations are shown to be in good agreement with subject-specific CMR-derived strain measurements and also with earlier clinical studies on human LV strain distributions

    Evaluation of the differences of myocardial fibers between acute and chronic myocardial infarction: Application of diffusion tensor magnetic resonance imaging in a rhesus monkey model

    Get PDF
    Objective: To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Materials and Methods: Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Results: Comparing with acute MI monkeys (FA: 0.59 +/- 0.02; ADC: 5.0 +/- 0.6 x 10(-4) mm(2)/s; HA: 94.5 +/- 4.4 degrees), chronic MI monkeys showed remarkably decreased FA value (0.26 +/- 0.03), increased ADC value (7.8 +/- 0.8 x 10(-4)mm(2)/s), decreased HA transmural range (49.5 +/- 4.6 degrees) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 +/- 5.0 degrees-11.2 +/- 4.3 degrees) than in acute MI monkeys (-41.4 +/- 5.1 degrees-53.1 +/- 3.7 degrees), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 +/- 2.7 degrees-66.5 +/- 4.9 degrees) than in acute MI monkeys (-59.5 +/- 3.4 degrees-64.9 +/- 4.3 degrees). Conclusion: Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey&apos;s models.National Natural Science Foundation of China [81130027, 81301196]SCI(E)[email protected]
    corecore