13 research outputs found

    Finding Organized Structures in 3-D Ladar Data

    Get PDF
    In this paper, we address the problem of finding organized thin structures in three-dimensional (3-D) data. Linear and planar structures segmentation received much attention but thin structures organized in complex patterns remain a challenge for segmentation algorithms. We are interested especially in the problems posed by repetitive and symmetric structures acquired with a laser range finder. The method relies on 3-D data projections along specific directions and 2-D histograms comparison. The sensitivity of the classification algorithm to the parameter settings is evaluated and a segmentation method proposed. We illustrate our approach with data from a concertina wire in terrain with vegetation

    Noise Estimation in Magnitude MR Datasets

    Get PDF
    Estimating the noise parameter in magnitude magnetic resonance (MR) images is important in a wide range of applications. We propose an automatic noise estimation method that does not rely on a substantial proportion of voxels being from the background. Specifically, we model the magnitude of the observed signal as a mixture of Rice distributions with common noise parameter. The Expectation-Maximization (EM) algorithm is used to estimate the parameters, including the common noise parameter. The algorithm needs initializing values for which we provide some strategies that work well. The number of components in the mixture model also need to be estimated en route to noise estimation and we provide a novel approach to doing so. Our methodology performs very well on a range of simulation experiments and physical phantom data. Finally, the methodology is demonstrated on four clinical datasets

    Analyzing attributes of vessel populations

    Get PDF
    Almost all diseases affect blood vessel attributes (vessel number, radius, tortuosity, and branching pattern). Quantitative measurement of vessel attributes over relevant vessel populations could thus provide an important means of diagnosing and staging disease. Unfortunately, little is known about the statistical properties of vessel attributes. In particular, it is unclear whether vessel attributes fit a Gaussian distribution, how dependent these values are upon anatomical location, and how best to represent the attribute values of the multiple vessels comprising a population of interest in a single patient

    A novel MRA-based framework for the detection of changes in cerebrovascular blood pressure.

    Get PDF
    Background: High blood pressure (HBP) affects 75 million adults and is the primary or contributing cause of mortality in 410,000 adults each year in the United States. Chronic HBP leads to cerebrovascular changes and is a significant contributor for strokes, dementia, and cognitive impairment. Non-invasive measurement of changes in cerebral vasculature and blood pressure (BP) may enable physicians to optimally treat HBP patients. This manuscript describes a method to non-invasively quantify changes in cerebral vasculature and BP using Magnetic Resonance Angiography (MRA) imaging. Methods: MRA images and BP measurements were obtained from patients (n=15, M=8, F=7, Age= 49.2 ± 7.3 years) over a span of 700 days. A novel segmentation algorithm was developed to identify brain vasculature from surrounding tissue. The data was processed to calculate the vascular probability distribution function (PDF); a measure of the vascular diameters in the brain. The initial (day 0) PDF and final (day 700) PDF were used to correlate the changes in cerebral vasculature and BP. Correlation was determined by a mixed effects linear model analysis. Results: The segmentation algorithm had a 99.9% specificity and 99.7% sensitivity in identifying and delineating cerebral vasculature. The PDFs had a statistically significant correlation to BP changes below the circle of Willis (p-value = 0.0007), but not significant (p-value = 0.53) above the circle of Willis, due to smaller blood vessels. Conclusion: Changes in cerebral vasculature and pressure can be non-invasively obtained through MRA image analysis, which may be a useful tool for clinicians to optimize medical management of HBP

    Some theoretical contributions to the evaluation and assessment of finite mixture models with applications

    Get PDF
    This dissertation develops theory and methodology for the evaluation and assessment of finite mixture models. New methods for simulating finite mixture models satisfying a pre-specified level of complexity defined through the notion of pairwise overlap, are developed. Corresponding software is publicly available at CRAN. This dissertation also develops methodology for assessing significance in finite mixture models with applications to model-based unsupervised and semi-supervised clustering frameworks. The dissertation concludes with an application of finite mixture models to two-dimensional gel electrophoresis
    corecore