5 research outputs found

    H.264 Video Frame Size Estimation

    Get PDF
    This report describes a method to estimate the video bandwidth for IP cameras using the H.264 standard. The precise determination of bandwidth allows us to model the network access as a scheduling problem and/or estimate the amount of data that would traverse it during different periods. The paper is written to be as didactic as possible and presents a set of experiments, conducted in an industrial testbed, that validate the estimation. We believe that a more precise estimation will lead to savings for network infrastructure and to better network utilizatio

    Response time analysis of memory-bandwidth- regulated multiframe mixed-criticality systems

    Get PDF
    The multiframe mixed-criticality task model eliminates the pessimism in many systems where the worst-case execution times (WCETs) of successive jobs vary greatly by design, in a known pattern. Existing feasibility analysis techniques for multiframe mixed-criticality tasks are shared-resource-oblivious, hence un-safe for commercial-o -the-shelf (COTS) multicore platforms with a memory controller shared among all cores. Conversely, the feasibility analyses that account for the interference on shared resource(s) in COTS platforms do not leverage theWCET variation in multiframe tasks. This paper extends the state-of-the-art by presenting analysis that incorporates the memory access stall in memory-bandwidth-regulated multiframe mixed-criticality multicore systems. An exhaustive enumeration approach is proposed for this analysis to further enhance the schedulability success ratio. The running time of the exhaustive analysis is improved by proposing a pruning mechanism that eliminates the combinations of interfering job sequences that subsume others. Experimental evaluation, using synthetic task sets, demonstrates up to 72% improvement in terms of schedulability success ratio, compared to frame-agnostic analysis.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project PREFECT (POCI01-0145-FEDER-029119); by FCT through the European Social Fund (ESF) and the Regional Operational Programme (ROP) Norte 2020, under grant 2020.08045.BD.info:eu-repo/semantics/publishedVersio

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Scheduling analysis of fixed priority hard real-time systems with multiframe tasks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore