28,877 research outputs found

    Age-related gait standards for healthy children and young people: the GOS-ICH paediatric gait centiles

    Get PDF
    Objective To develop paediatric gait standards in healthy children and young people. Methods This observational study builds on earlier work to address the lack of population standards for gait measurements in children. Analysing gait in children affected by neurological or musculoskeletal conditions is an important component of paediatric assessment but is often confounded by developmental changes. The standards presented here do not require clinician expertise to interpret and offer an alternative to developmental tables of normalised gait data. Healthy children aged 1-19 years were recruited from community settings in London and Hertfordshire, U.K. The GAITRite ® walkway was used to record measurements for each child for velocity, cadence, step length, base of support, and stance, single and double support (as percentage of gait cycle). We fitted generalized linear additive models for location, scale and shape (gamlss). Results We constructed percentile charts for seven gait variables measured on 624 (321 males) contemporary healthy children using gamlss package in R. A clinical application of gait standards was explored. Conclusion Age-related, gender-specific standards for seven gait variables were developed and are presented here. They have a familiar format and can be used clinically to aid diagnoses, and to monitor change over time for both medical therapy and natural history of the condition. The clinical example demonstrates the potential of the GOS-ICH Paediatric Gait Centiles (GOS-ICH PGC) to enable meaningful interpretation of change in an individual’s performance, and describes characteristic features of gait from a specific population throughout childhood.Peer reviewedFinal Accepted Versio

    A Control Flow based Static Analysis of GRAFCET using Abstract Interpretation

    Full text link
    The graphical modeling language GRAFCET is used as a formal specification language in industrial control design. This paper proposes a static analysis approach based on the control flow of GRAFCET using abstract interpretation to allow verification on specification level. GRAFCET has different elements leading to concurrent behavior, which in general results in a large state space. To get precise results and reduce the state space, we propose an analysis suitable for GRAFCET instances without concurrent behavior. We point out how to check for the absence of concurrency and present a flow-sensitive analysis for these GRAFCET instances. The proposed approach is evaluated on an industrial-sized example.Comment: \c{opyright} 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    MOSS, an evaluation of software engineering techniques

    Get PDF
    An evaluation of the software engineering techniques used for the development of a Modular Operating System (MOSS) was described. MOSS is a general purpose real time operating system which was developed for the Concept Verification Test (CVT) program. Each of the software engineering techniques was described and evaluated based on the experience of the MOSS project. Recommendations for the use of these techniques on future software projects were also given
    corecore