2,725 research outputs found

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    AdSplit: Separating smartphone advertising from applications

    Full text link
    A wide variety of smartphone applications today rely on third-party advertising services, which provide libraries that are linked into the hosting application. This situation is undesirable for both the application author and the advertiser. Advertising libraries require additional permissions, resulting in additional permission requests to users. Likewise, a malicious application could simulate the behavior of the advertising library, forging the user's interaction and effectively stealing money from the advertiser. This paper describes AdSplit, where we extended Android to allow an application and its advertising to run as separate processes, under separate user-ids, eliminating the need for applications to request permissions on behalf of their advertising libraries. We also leverage mechanisms from Quire to allow the remote server to validate the authenticity of client-side behavior. In this paper, we quantify the degree of permission bloat caused by advertising, with a study of thousands of downloaded apps. AdSplit automatically recompiles apps to extract their ad services, and we measure minimal runtime overhead. We also observe that most ad libraries just embed an HTML widget within and describe how AdSplit can be designed with this in mind to avoid any need for ads to have native code

    Constructing provenance-aware distributed systems with data propagation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 93-96).Is it possible to construct a heterogeneous distributed computing architecture capable of solving interesting complex problems? Can we easily use this architecture to maintain a detailed history or provenance of the data processed by it? Most existing distributed architectures can perform only one operation at a time. While they are capable of tracing possession of data, these architectures do not always track the network of operations used to synthesize new data. This thesis presents a distributed implementation of data propagation, a computational model that provides for concurrent processing that is not constrained to a single distributed operation. This system is capable of distributing computation across a heterogeneous network. It allows for the division of multiple simultaneous operations in a single distributed system. I also identify four constraints that may be placed on general-purpose data propagation to allow for deterministic computation in such a distributed propagation network. This thesis also presents an application of distributed propagation by illustrating how a generic transformation may be applied to existing propagator networks to allow for the maintenance of data provenance. I show that the modular structure of data propagation permits the simple modification of a propagator network design to maintain the histories of data.by Ian Campbell Jacobi.S.M
    • …
    corecore