17,029 research outputs found

    A static data flow simulation study at Ames Research Center

    Get PDF
    Demands in computational power, particularly in the area of computational fluid dynamics (CFD), led NASA Ames Research Center to study advanced computer architectures. One architecture being studied is the static data flow architecture based on research done by Jack B. Dennis at MIT. To improve understanding of this architecture, a static data flow simulator, written in Pascal, has been implemented for use on a Cray X-MP/48. A matrix multiply and a two-dimensional fast Fourier transform (FFT), two algorithms used in CFD work at Ames, have been run on the simulator. Execution times can vary by a factor of more than 2 depending on the partitioning method used to assign instructions to processing elements. Service time for matching tokens has proved to be a major bottleneck. Loop control and array address calculation overhead can double the execution time. The best sustained MFLOPS rates were less than 50% of the maximum capability of the machine

    Rotary balances: A selected, annotated bibliography

    Get PDF
    This bibliography on rotary balances contains 102 entries. It is part of NASA's support of the AGARD Fluid Dynamics Panel Working Group 11 on Rotary Balances. This bibliography includes works that might be useful to anyone interested in building or using rotor balances. Emphasis is on the rotary balance rigs and testing techniques rather than the aerodynamic data. Also included are some publications of historical interest which relate to key events in the development and use of rotary balances. The arrangement is chronological by date of publication in the case of reports and by presentation in the case of papers

    A study of resonant-cavity and fiberglass-filled parallel baffles as duct silencers

    Get PDF
    Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts - resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in the 7- by 10-foot wind tunnel number 1 at Ames Research Center at flow speeds from 0 to 41 m/sec. The baffles were 2.1 m high, 305 to 406 mm thick, and 3.1 to 4.4 m long. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements. With the addition of cavity damping in the form of 25-mm foam linings, the insertion loss above 250 Hz of the resonant-cavity baffles was improved 2 to 7 db compared with the undamped baffles; the loss became equal to or greater than the insertion loss of comparable size fiberglass baffles at frequencies above 250 Hz. Variations of cavity size and shape showed that a series of cavities with triangular cross-sections (i.e., variable depth) were superior to cavities with rectangular cross sections (i.e., constant depth). In wind, the undamped, resonant-cavity baffles generated loud cavity-resonance tones; the tones could be eliminated by cavity damping

    Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds

    Get PDF
    The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code

    Experimental research of the aerodynamics of nozzles and plumes at hypersonic speeds

    Get PDF
    The purpose was to experimentally characterize the flow field created by the interaction of a single expansion ramp nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel of the NASA Ames Research Center. The model design and test planning were performed in close cooperation with members of the National Aero-Space Plane (NASP) computational fluid dynamics (SFD) team, so that the measurements could be used in CFD code validation studies. Presented here is a description of the experiment, the extent of the measurements obtained, and the experimental results

    Adaptive wall wind tunnels: A selected, annotated bibliography

    Get PDF
    This bibliography, with abstracts, consists of 257 citations arranged in chronological order. Selection of the citations was made for their value to researchers working to solve problems associated with reducing wall interference by the design, development, and operation of adaptive wall test sections. Author, source, and subject indexes are included

    Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    Get PDF
    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed

    HiMAT flight program: Test results and program assessment overview

    Get PDF
    The Highly Manueverable Aircraft Technology (HiMAT) program consisted of design, fabrication of two subscale remotely piloted research vehicles (RPRVs), and flight test. This technical memorandum describes the vehicles and test approach. An overview of the flight test results and comparisons with the design predictions are presented. These comparisons are made on a single-discipline basis, so that aerodynamics, structures, flight controls, and propulsion controls are examined one by one. The interactions between the disciplines are then examined, with the conclusions that the integration of the various technologies contributed to total vehicle performance gains. An assessment is made of the subscale RPRV approach from the standpoint of research data quality and quantity, unmanned effects as compared with manned vehicles, complexity, and cost. It is concluded that the RPRV technique, as adopted in this program, resulted in a more complex and costly vehicle than expected but is reasonable when compared with alternate ways of obtaining comparable results

    Analytical and experimental investigations of the oblique detonation wave engine concept

    Get PDF
    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions
    corecore