14,637 research outputs found

    Modular Verification of Interrupt-Driven Software

    Full text link
    Interrupts have been widely used in safety-critical computer systems to handle outside stimuli and interact with the hardware, but reasoning about interrupt-driven software remains a difficult task. Although a number of static verification techniques have been proposed for interrupt-driven software, they often rely on constructing a monolithic verification model. Furthermore, they do not precisely capture the complete execution semantics of interrupts such as nested invocations of interrupt handlers. To overcome these limitations, we propose an abstract interpretation framework for static verification of interrupt-driven software that first analyzes each interrupt handler in isolation as if it were a sequential program, and then propagates the result to other interrupt handlers. This iterative process continues until results from all interrupt handlers reach a fixed point. Since our method never constructs the global model, it avoids the up-front blowup in model construction that hampers existing, non-modular, verification techniques. We have evaluated our method on 35 interrupt-driven applications with a total of 22,541 lines of code. Our results show the method is able to quickly and more accurately analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape

    A Simple Flood Forecasting Scheme Using Wireless Sensor Networks

    Full text link
    This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.Comment: 16 pages, 4 figures, published in International Journal Of Ad-Hoc, Sensor And Ubiquitous Computing, February 2012; V. seal et al, 'A Simple Flood Forecasting Scheme Using Wireless Sensor Networks', IJASUC, Feb.201

    Thread verification vs. interrupt verification

    Get PDF
    Journal ArticleInterrupts are superficially similar to threads, but there are subtle semantic differences between the two abstractions. This paper compares and contrasts threads and interrupts from the point of view of verifying the absence of race conditions. We identify a small set of extensions that permit thread verification tools to also verify interrupt-driven software, and we present examples of source-to-source transformations that turn interrupt-driven code into semantically equivalent thread-based code that can be checked by a thread verifier

    ChimpCheck: Property-Based Randomized Test Generation for Interactive Apps

    Full text link
    We consider the problem of generating relevant execution traces to test rich interactive applications. Rich interactive applications, such as apps on mobile platforms, are complex stateful and often distributed systems where sufficiently exercising the app with user-interaction (UI) event sequences to expose defects is both hard and time-consuming. In particular, there is a fundamental tension between brute-force random UI exercising tools, which are fully-automated but offer low relevance, and UI test scripts, which are manual but offer high relevance. In this paper, we consider a middle way---enabling a seamless fusion of scripted and randomized UI testing. This fusion is prototyped in a testing tool called ChimpCheck for programming, generating, and executing property-based randomized test cases for Android apps. Our approach realizes this fusion by offering a high-level, embedded domain-specific language for defining custom generators of simulated user-interaction event sequences. What follows is a combinator library built on industrial strength frameworks for property-based testing (ScalaCheck) and Android testing (Android JUnit and Espresso) to implement property-based randomized testing for Android development. Driven by real, reported issues in open source Android apps, we show, through case studies, how ChimpCheck enables expressing effective testing patterns in a compact manner.Comment: 20 pages, 21 figures, Symposium on New ideas, New Paradigms, and Reflections on Programming and Software (Onward!2017

    Random testing of interrupt-driven software

    Get PDF
    ManuscriptInterrupt-driven embedded software is hard to thoroughly test since it usually contains a very large number of executable paths. Developers can test more of these paths using random interrupt testing-firing random interrupt handlers at random times. Unfortunately, na¨ıve application of random testing to interrupt-driven software does not work: some randomly generated interrupt schedules violate system semantics, causing spurious failures. The contribution of this paper is the design, implementation, and experimental evaluation of RID, a restricted interrupt discipline that hardens embedded software with respect to unexpected interrupts, making it possible to perform random interrupt testing and also protecting it from spurious interrupts after deployment. We evaluate RID by implementing it in TinyOS and then using random interrupt testing to find bugs and also to drive applications toward their worst-case stack depths

    Static Race Detection for RTOS Applications

    Get PDF
    We present a static analysis technique for detecting data races in Real-Time Operating System (RTOS) applications. These applications are often employed in safety-critical tasks and the presence of races may lead to erroneous behaviour with serious consequences. Analyzing these applications is challenging due to the variety of non-standard synchronization mechanisms they use. We propose a technique based on the notion of an "occurs-in-between" relation between statements. This notion enables us to capture the interplay of various synchronization mechanisms. We use a pre-analysis and a small set of not-occurs-in-between patterns to detect whether two statements may race with each other. Our experimental evaluation shows that the technique is efficient and effective in identifying races with high precision
    • …
    corecore