
Thread Verification vs. Interrupt Verification

John Regehr
School of Computing

University of Utah

ABSTRACT
Interrupts are superficially similar to threads, but there are
subtle semantic differences between the two abstractions.
This paper compares and contrasts threads and interrupts
from the point of view of verifying the absence of race con-
ditions. We identify a small set of extensions that permit
thread verification tools to also verify interrupt-driven soft-
ware, and we present examples of source-to-source trans-
formations that turn interrupt-driven code into semanti-
cally equivalent thread-based code that can be checked by a
thread verifier.

1. INTRODUCTION
For programs running on general-purpose operating sys-

tems on PC-class hardware, threads are probably the most
important abstraction supporting concurrent programming.
On the other hand, interrupts are the dominant method for
expressing concurrency in embedded systems, particularly
those based on small microcontroller units (MCUs). All
major MCU architectures support interrupts, and a large
number of these chips are deployed in embedded systems:
according to a Gartner report, 3.5 billion 8-bit MCUs and
a billion 16-bit MCUs were shipped in 2003. The correct-
ness of interrupt-driven software is important: a substantial
number of these 4.5 billion MCUs were deployed in safety-
critical applications such as vehicle control and medical au-
tomation.

Most work on verifying concurrent software has focused
on thread-based and process-based concurrency; interrupts
have received relatively little attention. The thesis of this
position paper is that:

Verifying the absence of race conditions in interrupt-
driven systems is important, but the technology
for this is primitive. We must understand inter-
rupts and their semantics in order to understand
where thread verifiers can, and cannot, be ap-
plied to interrupt-driven systems. In particular,
we want to identify a minimal set of extensions

to verifiers for thread-based programs that per-
mit them to also check interrupt-based programs.
A secondary goal is to exploit the semantics of
interrupts to make checking faster and more pre-
cise.

Of course, threads come in many flavors. In this paper
we’ll assume POSIX-style threads [5]: preemptively sched-
uled blocking threads, scheduled either in the kernel or at
user level.

2. THREADS AND INTERRUPTS
The following are some significant ways in which threads

differ from interrupts.

Blocking. Interrupt cannot block: they run to completion
unless preempted by other interrupts. The inability to block
is very inconvenient, and it is one of the main reasons that
complex logic should not be implemented in interrupt code.
However, non-blocking execution has a few compelling ad-
vantages. First, all interrupts, in addition to the non-interrupt
execution context, can share a single call stack. Threads, of
course, require their own stacks, making them an unsuitable
abstraction for low-end MCUs that typically have at most a
few KB of RAM. Second, since interrupts never block, their
internal states are invisible to non-interrupt code. In other
words, interrupts execute atomically with respect to code
running in the non-interrupt context. Third, non-blocking
execution means that interrupts are not subject to most
forms of deadlock.

Preemption and scheduling.Threads typically have sym-
metrical preemption relations: for any given pair of threads,
either one can preempt the other. In contrast, asymmetrical
preemption relations are the norm for interrupts. First, all
interrupts can preempt non-interrupt code, whereas non-
interrupt code can never preempt any interrupt. Second,
interrupts are often scheduled using fixed priorities, result-
ing in asymmetrical preemption relations among interrupt
handlers.

Some hardware platforms, such as the programmable in-
terrupt controller on a PC, enforce priority scheduling of
interrupts. On other systems, prioritized interrupt schedul-
ing must be implemented in software. For example, the
Atmel ATmega128 [1], a popular MCU that is the basis for
Mica2 sensor network nodes [7], performs priority schedul-
ing only among interrupts that are concurrently pending.
Once an interrupt begins to execute on an ATmega128, it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can be preempted by an interrupt of any priority, if inter-
rupts are enabled. To implement priority-based preemptive
scheduling on this platform, software must manipulate the
individual enable bits associated with various interrupts.

Concurrency control.A thread lock uses blocking to pre-
vent a thread from passing a given program point until the
lock resource becomes available. Since interrupts cannot be
blocked once they begin to execute, concurrency control con-
sists of preventing an interrupt from starting to execute in
the first place. This is accomplished either by disabling all
interrupts, or by selectively disabling only interrupts that
might interfere with a particular computation. The former
is cheaper while the latter avoids incidentally delaying un-
related code.

Since preemption in interrupt-based systems is asymmet-
rical, so must be locking. In other words, while the non-
interrupt context must disable interrupts in order to execute
atomically with respect to interrupts, code running in inter-
rupt mode does not need to take any special action to run
atomically with respect to non-interrupt code.

Reentrance.An interrupt is reentrant if there may be mul-
tiple concurrent invocations of the same handler. Reentrant
interrupts come in two varieties: accidental and deliberate.
Accidental reentrance occurs when a developer misunder-
stands the consequences of enabling interrupts inside an in-
terrupt handler. We mention this type of reentrance because
it usually leads to buggy systems, and because in our expe-
rience it is common in real embedded systems.

Deliberate reentrance is a sophisticated technique that can
be used to reduce interrupt latency. It is useful when code
close the the beginning of a long-running interrupt handler
is subject to time constraints. In this case, by permitting
subsequent invocations of the handler to fire before previous
ones have finished executing, the average latency of the early
part of the handler can be decreased. For example, the timer
interrupt handler in the AvrX system [3] is reentrant in order
to avoid missing ticks.

Reentrance has two unavoidable costs. First, later parts of
the handler will have their average latency increased, rather
than decreased. Second, in practice it is difficult to create
correct reentrant interrupt code.

Invocation style.Some interrupts are spontaneous: they
may fire at any time. For example, interrupts generated by
a network interface are spontaneous. Other interrupts are
requested : they only occur in response to an action taken
by the running program. For example, timer interrupts are
requested, as are analog to digital converter (ADC) comple-
tion interrupts. The causal relation between an interrupt
request and a subsequent interrupt can only be seen by un-
derstanding the semantics of the underlying hardware.

Deferring interrupts.Interrupts are often subject to time
constraints: they need to execute within a bounded time af-
ter they become pending. The best way to ensure that these
constraints are met is to make interrupt handlers short. A
common idiom is for an interrupt to perform minimal com-
putation associated with the interrupt request, such as ac-
knowledging a hardware condition and possibly moving data
associated with the interrupt into a memory buffer. Then,

the interrupt handler initiates a longer-running computa-
tion in a deferred context, such as a bottom-half handler or
thread.

3. VERIFYING INTERRUPTS
Given the existence of good thread verification tools, it

is tempting to simply shoehorn interrupts into the thread
model. In other words, if we can transform an interrupt-
driven program into a semantically equivalent thread-based
program, then an existing thread verifier can be used to find
bugs in the original system. This section uses a running
example to show where this is easy and where it is difficult.

Consider a C program that contains two interrupt han-
dler functions: irq5() and irq7(). We further assume that
interrupts are scheduled using priorities: interrupt 5 can
preempt interrupt 7, but not the other way around. A non-
portable language extension is used to tell the compiler to
generate interrupt prologue and epilogue code for the inter-
rupt functions instead of using the standard calling conven-
tion. Any functions called from an interrupt handler can
use the standard calling convention.

The skeleton of this system’s code is:

__INTERRUPT__ void irq5(void) {

...code...

}

__INTERRUPT__ void irq7(void) {

...code...

}

int main(void) {

...code...

}

Of course this code cannot be checked as-is by a verifica-
tion tool that understands threads; it needs to be rewritten
by a source-to-source translation tool. To treat an interrupt
as a thread, the verification tool must consider the interrupt
as being invoked in an infinite loop:

void irq5_thread(void) {

while (1) irq5();

}

Interrupt 7 looks the same. In addition, the interrupt
threads must be spawned at boot time:

int main(void) {

create_thread(irq5_thread);

create_thread(irq7_thread);

...code...

}

Unfortunately we cannot yet run the transformed code
through a thread checking tool: a number of the semantic
differences that we discussed in Section 2 still need to be
addressed.

Blocking, preemption, and scheduling.In the expected
case, two threads may each preempt each other at any in-
struction boundary where preemption is not suppressed by
locks. Even if one thread has a higher priority, the sched-
uler in a general-purpose OS makes dynamic priority ad-
justments that can temporarily boost the priority of a low-
priority thread. Furthermore, a thread running on a general-
purpose OS can encounter a page fault on any memory ref-
erence, causing it to block involuntarily.



Interrupts, on the other hand, are not subject to dynamic
priority adjustments and must never block on a page fault
or for any other reason. Consequently, the highest-priority
runnable interrupt always executes: priorities are strictly
enforced. Support for “strict priorities” must be added to a
model checker in order to support analysis of interrupt-based
code. The first benefit is that this will eliminate false posi-
tives: race conditions that cannot actually occur. The sec-
ond benefit is that the size of the state space can be greatly
reduced by considering fewer preemption points. This in-
sight was exploited by Hatcliff et al. [11] in the context of
fixed-priority threading, but it is not clear how they dealt
with the problem of priority inversion through page faults
(the issue is not addressed in their paper).

The threads that are used to model interrupts must be
spawned with priorities that the verification tool interprets
as strict:

int main(void) {

create_thread(irq5_thread,

HIGHEST_STRICT_PRIORITY);

create_thread(irq7_thread,

SECOND_HIGHEST_STRICT_PRIORITY);

...code...

}

It is important that priority range assigned to interrupt
handlers does not overlap with the priority range that is
available to threads.

Concurrency control.To emulate interrupt-style concur-
rency control, thread locks must be created to model the
processor’s interrupt-enable bits. Functions for executing
atomically in the original interrupt-based program look like
these:

void begin_critical_section (void)

{

// non-portable code for disabling interrupts

}

void end_critical_section (void)

{

// non-portable code for enabling interrupts

}

In practice these functions are written in such a way that
they operate properly when nested. We ignore the problem
of recursive locks here; they are supported by many thread-
ing systems. To create versions of these functions that a
thread-checking tool can make use of, we translate them as
follows:

void begin_critical_section (void)

{

acquire_mutex (irq5_lock);

acquire_mutex (irq7_lock);

}

void end_critical_section (void)

{

release_mutex (irq5_lock);

release_mutex (irq7_lock);

}

To complete the transformation supporting concurrency
control, we need to turn asymmetrical interrupt-style syn-
chronization into symmetrical thread-style synchronization

by requiring that each “interrupt thread” always runs with
the appropriate lock held:

void irq5_thread(void) {

while (1) {

acquire_mutex (irq5_lock);

irq5();

release_mutex (irq5_lock);

}

}

void irq7_thread(void) {

while (1) {

acquire_mutex (irq7_lock);

irq7();

release_mutex (irq7_lock);

}

}

It is necessary to have a lock for each interrupt handler,
rather than a single global lock, to allow interrupts to pre-
empt each other. If an interrupt-driven program uses the
processor’s individual interrupt enable bits in addition to
the global interrupt bit, then these must be modeled with
additional locks.

Reentrance.A reentrant interrupt is one that can have
multiple invocations on the stack at the same time. Since the
number of concurrent invocations cannot usually be bounded,
only verifiers that can model an unbounded number of threads,
such as Henzinger et al.’s CIRC extensions to Blast [12], are
suitable for reasoning about reentrant interrupts.

Invocation style.The code presented so far models spon-
taneous interrupts that may fire at any moment; it can also
be used to model requested interrupts but this loses infor-
mation about the causal relation between the request and
the subsequent interrupt. We know of no tool for analyzing
interrupts that exploits causality between requests and in-
terrupts, but we believe that this would be useful. To model
interrupt requests, explicit interrupt request calls must be
inserted either manually or automatically. An interrupt re-
quest can be exposed to a thread checking tool using a con-
dition variable:

void request_irq5(void) {

cond_signal (irq5_request);

}

Then, the associated interrupt is only permitted to fire
following a request:

void irq5_thread(void) {

while (1) {

cond_wait (irq5_request);

acquire_mutex (irq5_lock);

irq5();

release_mutex (irq5_lock);

}

}

Deferring interrupts.Like interrupt requests cause inter-
rupts to fire, interrupts cause deferred code to run. Deferred
thread-mode code requires no special support since the in-
terrupt will signal a waiting thread using standard thread



primitives. Bottom-half handlers in the Linux kernel, or
DPCs (deferred procedure calls) in the Windows kernel [20],
must be modeled as run-to-completion code running at a pri-
ority strictly higher than any real thread and strictly lower
than any interrupt.

Summary.We believe that thread verification tools can be
used to check interrupt-driven software under three condi-
tions:

1. A source-to-source transformation tool is used to con-
vert interrupt code into semantically equivalent thread
code.

2. The thread checking tool supports a separate class
of strict priorities that (1) are higher-priority than
any real thread and (2) model the fact that interrupts
run atomically with respect to lower-priority interrupts
and non-interrupt code.

3. If the interrupt-driven code contains any reentrant in-
terrupts, the thread-checking tool must be able to model
multiple outstanding invocations of a single interrupt
handler.

4. OTHER INTERRUPT VERIFICATION
PROBLEMS

Although this paper has focused on race conditions, interrupt-
driven code is subject to a number of other problems that
are not present, or are less serious, in thread-based systems.

Many systems support both threads and interrupts, re-
sulting in error-prone mixed concurrency models where dif-
ferent kinds of locks (e.g., thread mutexes and interrupt
spinlocks) are required to defend against preemption by dif-
ferent kinds of concurrent activities. Heterogeneous concur-
rency is common in embedded systems and also in general-
purpose operating systems such as Linux and Windows. Our
previous work includes TSL [19], a step towards a principled
way to reason about asymmetrical preemption relations in
these kinds of systems.

In constrained embedded systems stack memory overflow
due to nested interrupts is a real possibility, and is a source
of difficult memory corruption errors. Previous work by
us [18], by Brylow et al. [4], and by Chatterjee et al. [6] ad-
dresses the problem of detecting stack overflows in interrupt-
driven programs.

Finally, problems can be caused by the fact that inter-
rupts run at the highest priority: if interrupts arrive too
frequently, non-interrupt work may be starved. Purely of-
fline verification of the absence of overload problems is often
not possible since the rate of arrival of interrupt requests
may depend on, for example, another node on the network.
Rather, online scheduling solutions [17] are required.

5. RELATED WORK
This section presents a brief survey of the literature on

the semantics of interrupts, and on verification of interrupt-
driven programs.

Interrupt semantics.Most attempts to fit interrupts into
a system’s semantics focus on making interrupts look like
threads. For example, Hills [13] provides perhaps the clear-
est existing description of the problems associated with in-

terrupts, and proposes as a solution a model where the in-
terrupt handler is simply an atomic stub that awakens some
threads. These threads perform the processing that would
normally run in interrupt context. Similarly, Leyva-del-Foyo
and Mejia-Alvarez’s work [8], the Nemesis OS [15], TimeSys
Linux [21], and Solaris [14] all take the interrupts-as-threads
approach.

Race checking for interrupt-driven systems.nesC [10],
the programming language for TinyOS applications, checks
for race conditions in interrupt-driven applications by look-
ing for variables that are accessed by interrupt handlers and
that are not protected by atomic execution. Henzinger et
al. [12] refine nesC’s race checking using an analysis that can
show that some non-atomic variable accesses are safe. Mer-
cer and Jones [16] exploit GDB’s state saving and restoring
capabilities to model check interrupt-driven embedded code.
The SLAM [2] model checker and the RacerX [9] race condi-
tion detector are used to find bugs in kernel code, including
interrupt handlers.

6. CONCLUSION
There has been much recent research on tools to find race

conditions in multithreaded code. A natural question to ask
is: Can these tools be leveraged to check interrupt-driven op-
erating system and embedded system code and, if so, how?
We have described a few extensions to thread checking tools
that will enable them to check interrupt-driven systems,
and also presented examples of source-to-source translations
that turn interrupt-driven code into semantically equivalent
thread-driven code.

7. REFERENCES
[1] Atmel, Inc. ATmega128 datasheet, 2002.

http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[2] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir
Levin, Jakob Lichtenberg, Con McGarvey, Bohus
Ondrusek, Sriram K. Rajamani, and Abdullah
Ustuner. Thorough static analysis of device drivers. In
Proc. of the 1st EuroSys Conf., Leuven, Belgium,
April 2006.

[3] Larry Barello. The AvrX real time kernel, 2004.
http://barello.net/avrx.

[4] Dennis Brylow, Niels Damgaard, and Jens Palsberg.
Static checking of interrupt-driven software. In Proc.
of the 23rd Intl. Conf. on Software Engineering
(ICSE), pages 47–56, Toronto, Canada, May 2001.

[5] D. Butenhof. Programming with POSIX Threads.
Addison Wesley, 1997.

[6] Krishendu Chatterjee, Di Ma, Rupak Majumdar, Tian
Zhao, Thomas A. Henzinger, and Jens Palsberg. Stack
size analysis for interrupt-driven programs. In Proc. of
the 10th Static Analysis Symp., pages 109–126, San
Diego, CA, June 2003.

[7] Crossbow Technology, Inc. http://xbow.com.

[8] Luis E. Leyva del Foyo and Pedro Mejia-Alvarez.
Custom interrupt management for real-time and
embedded system kernels. In Proc. of the Workshop
on Embedded and Real-Time Systems Implementation
(ERTSI), Lisbon, Portugal, December 2004.

[9] Dawson Engler and Ken Ashcraft. RacerX: Effective,
static detection of race conditions and deadlocks. In

http: //www.atmel.com/atmel/acrobat/doc2467.pdf
http://barello.net/avrx
http://xbow.com


Proc. of the 19th ACM Symp. on Operating Systems
Principles (SOSP), Bolton Landing, NY, October
2003.

[10] David Gay, Phil Levis, Robert von Behren, Matt
Welsh, Eric Brewer, and David Culler. The nesC
language: A holistic approach to networked embedded
systems. In Proc. of the Conf. on Programming
Language Design and Implementation (PLDI), pages
1–11, San Diego, CA, June 2003.

[11] John Hatcliff, Xinghua Deng, Matthew B. Dwyer,
Georg Jung, and Venkatesh Prasad Ranganath.
Cadena: an integrated development, analysis, and
verification environment for component-based
systems. In Proc. of the 25th Intl. Conf. on Software
Engineering (ICSE), pages 160–173, Portland, OR,
May 2003.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak
Majumdar, and Gregoire Sutre. Software verification
with Blast. In Proc. of the 10th Intl. Workshop on
Model Checking of Software (SPIN), pages 235–239,
Portland, OR, May 2003.

[13] Ted Hills. Structured interrupts. ACM SIGOPS
Operating Systems Review, 27(1):51–68, January 1993.

[14] Steve Kleiman and Joe Eykholt. Interrupts as threads.
ACM SIGOPS Operating Systems Review,
29(2):21–26, April 1995.

[15] Ian Leslie, Derek McAuley, Richard Black, Timothy
Roscoe, Paul Barham, David Evers, Robin Fairbairns,

and Eoin Hyden. The design and implementation of an
operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in
Communications, 14(7):1280–1297, September 1996.

[16] Eric G. Mercer and Michael D. Jones. Model checking
machine code with the GNU debugger. In Proc. of the
SPIN Workshop on Model Checking of Software, San
Francisco, CA, August 2005.

[17] John Regehr and Usit Duongsaa. Preventing interrupt
overload. In Proc. of the 2005 Conf. on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), Chicago, IL, June 2005.

[18] John Regehr, Alastair Reid, and Kirk Webb.
Eliminating stack overflow by abstract interpretation.
In Proc. of the 3rd Intl. Conf. on Embedded Software
(EMSOFT), pages 306–322, Philadelphia, PA,
October 2003.

[19] John Regehr, Alastair Reid, Kirk Webb, Michael
Parker, and Jay Lepreau. Evolving real-time systems
using hierarchical scheduling and concurrency
analysis. In Proc. of the 24th IEEE Real-Time Systems
Symp. (RTSS), Cancun, Mexico, December 2003.

[20] David A. Solomon and Mark E. Russinovich. Inside
Microsoft Windows 2000. Microsoft Press, third
edition, 2000.

[21] TimeSys Corporation. TimeSys Linux.
http://timesys.com/.

http://timesys.com/

	Introduction
	Threads and Interrupts
	Verifying Interrupts
	Other Interrupt VerificationProblems
	Related Work
	Conclusion
	References

