4,272 research outputs found

    Motion analysis report

    Get PDF
    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations

    Multi-fingered robotic hand

    Get PDF
    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Grasping With Mechanical Intelligence

    Get PDF
    Many robotic hands have been designed and a number have been built. Because of the difficulty of controlling and using complex hands, which usually have nine or more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the most common robotic end effector. This thesis presents a new category of device: a medium-complexity end effector. With three to five degrees of freedom, such a tool is much easier to control and use, as well as more economical, compact and lightweight than complex hands. In order to increase the versatility, it was necessary to identify grasping primitives and to implement them in the mechanism. In addition, power and enveloping grasps are stressed over fingertip and precision grasps. The design is based upon analysis of object apprehension types, requisite characteristics for active sensing, and a determination of necessary environmental interactions. Contained in this thesis are the general concepts necessary to the design of a medium-complexity end effector, an analysis of typica.1 performance, and a computer simulation of a grasp planning algorithm specific to this type of mechanism. Finally, some details concerning the UPenn Hand - a tool designed for the research laboratory - are presented

    Compliant kagome lattice structures for generating in-plane waveforms

    Get PDF
    This paper details the design, manufacture and testing of an adaptive structure based on the kagome lattice geometry – a pattern with well documented interesting structural characteristics. The structure is used to produce in-plane travelling waves of variable length and speed in a flat surface. The geometry and dimensions, as well as the location and compliance of boundary conditions, were optimized numerically, and a pneumatically-actuated working demonstrator was manufactured. Static and dynamic photogrammetric and force measurements were taken. The structure was found to be capable of producing dynamic planar waveforms of variable wavelength with large strains. The lattice structure was then surfaced with a pre-tensioned membrane skin allowing these waveforms to be produced over a continuous plane
    • …
    corecore