110,316 research outputs found

    Static Analysis of Model Transformations for Effective Test Generation

    Get PDF
    International audienceModel transformations are an integral part of several computing systems that manipulate interconnected graphs of objects called models in an input domain specified by a metamodel and a set of invariants. Test models are used to look for faults in a transformation. A test model contains a specific set of objects, their interconnections and values for their attributes. Can we automatically generate an effective set of test models using knowledge from the transformation? We present a white-box testing approach that uses static analysis to guide the automatic generation of test inputs for transformations. Our static analysis uncovers knowledge about how the input model elements are accessed by transformation operations. This information is called the input metamodel footprint due to the transformation. We transform footprint, input metamodel, its invariants, and transformation pre-conditions to a constraint satisfaction problem in Alloy. We solve the problem to generate sets of test models containing traces of the footprint. Are these test models effective? With the help of a case study transformation we evaluate the effectiveness of these test inputs. We use mutation analysis to show that the test models generated from footprints are more effective (97.62% avg. mutation score) in detecting faults than previously developed approaches based on input domain coverage criteria (89.9% avg.) and unguided generation (70.1% avg.)

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache
    • …
    corecore