1,218 research outputs found

    Design Considerations for Low Power Internet Protocols

    Full text link
    Over the past 10 years, low-power wireless networks have transitioned to supporting IPv6 connectivity through 6LoWPAN, a set of standards which specify how to aggressively compress IPv6 packets over low-power wireless links such as 802.15.4. We find that different low-power IPv6 stacks are unable to communicate using 6LoWPAN, and therefore IP, due to design tradeoffs between code size and energy efficiency. We argue that applying traditional protocol design principles to low-power networks is responsible for these failures, in part because receivers must accommodate a wide range of senders. Based on these findings, we propose three design principles for Internet protocols on low-power networks. These principles are based around the importance of providing flexible tradeoffs between code size and energy efficiency. We apply these principles to 6LoWPAN and show that the resulting design of the protocol provides developers a wide range of tradeoff points while allowing implementations with different choices to seamlessly communicate

    Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols

    Get PDF
    Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Implementation and Evaluation of the Enhanced Header Compression (IPHC) according to 6LoWPAN Network

    Get PDF
    6LoWPAN defines how to carry Ipv6 packet over IEEE 802.15.4 low power wireless or sensor networks. Limited bandwidth, memory and energy resources require a careful application of Ipv6 in a LoWPAN network. The aim is to develop personal networks, mainly sensor based, that can be integrated to the existing wellknow network infrastructure by reusing mature and wideused technologies. IPv6 has been chosen as network protocol because its characteristics fit to the problematic that characterize LoWPAN environment such as the large number of nodes to address and stateless address autoconfiguration. However, an IPv6 header compression algorithm is necessary in order to reduce the overhead and save space in data payload. In fact, the IEEE 802.15.4 standard defines an MTU of 128 bytes that decrease to 102 bytes considering the frame overhead, a further reduction is due to the network and transport protocols frame overhead that, in case of Ipv6 and UDP, allow to carry only 33 bytes for application data. The aim of this work is to describe and compares the proposed Ipv6 header compression mechanisms for 6LoWPAN environments

    ICNLoWPAN -- Named-Data Networking for Low Power IoT Networks

    Full text link
    Information Centric Networking is considered a promising communication technology for the constrained IoT, but NDN was designed only for standard network infrastructure. In this paper, we design and evaluate an NDN convergence layer for low power lossy links that (1) augments the NDN stateful forwarding with a highly efficient name eliding, (2) devises stateless compression schemes for standard NDN use cases, (3) adapts NDN packets to the small MTU size of IEEE 802.15.4, and (4) generates compatibility with 6LoWPAN so that IPv6 and NDN can coexist on the same LoWPAN links. Our findings indicate that stateful compression can reduce the size of NDN data packets by more than 70% in realistic examples. Our experiments show that for common use cases ICNLoWPAN saves 33% of transmission resources over NDN, and about 20% over 6LoWPAN
    • …
    corecore