47 research outputs found

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    Proactive detection of DDOS attacks in Publish-Subscribe networks

    Get PDF
    Information centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) or Publish-Subscribe Internet Technology (PURSUIT) has been proposed as an important candidate for the Internet of the future. ICN is an emerging research area that proposes a transformation of the current host centric Internet architecture into an architecture where information items are of primary importance. This change allows network functions such as routing and locating to be optimized based on the information items themselves. The Bloom filter based content delivery is a source routing scheme that is used in the PSIRP/PURSUIT architectures. Although this mechanism solves many issues of today’s Internet such as the growth of the routing table and the scalability problems, it is vulnerable to distributed denial-of-service (DDoS) attacks. In this paper, we present a new content delivery scheme that has the advantages of Bloom filter based approach while at the same time being able to prevent DDoS attacks on the forwarding mechanism. Our security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DDoS with very high probabilit

    Path Protection Switching in Information Centric Networks (ICN)

    Get PDF
    Since its formation, the Internet has experienced tremendous growth, constantly increasing traffic and new applications, including voice and video. However, it still keeps its original architecture drafted almost 40 years ago built on the end-to-end principle; this has proven to be problematic when there are failures as routing convergence is slow for unicast networks and even slower for multicast which has to rely upon slow multicast routing as no protection switching exists for multicast. This thesis investigates protection in an alternative approach for network communication, namely information centric networking (ICN) using the architecture proposed by the PSIRP/PURSUIT projects. This uses Bloom Filters to allow both unicast and multicast forwarding. However, the PSIRP/PURSUIT ICN approach did not investigate protection switching and this problem forms the main aim of this thesis. The work builds on the research by Grover and Stamatelakis who introduced the concept of pre-configured protection p-cycles in 2000 for optical networks and, with modification, applicable to unicast IP or packet networks. This thesis shows how the p-cycle concept can be directly applied to packet networks that use PSIRP/PURSUIT ICN and extends the approach to encompass both unicast and multicast protection switching. Furthermore, it shows how the chosen p-cycles can be optimised to reduce the redundancy overhead introduced by the protection mechanism. The work evaluates the approach from two aspects, the first is how the proposed approach compares to existing switching state and traffic in an MPLS multicast architecture. The second considers the redundancy overhead in three known network topologies for synthetic traffic matrices. The thesis is the first work to demonstrate the efficiency of Bloom filter based switching for multicast (and unicast) protection switching

    Review of name resolution and data routing for information centric networking

    Get PDF
    Information Centric Networking (ICN) a future Internet, presents a new paradigm by shifting the current network to the modern network protocols. Its goal, to improve the traditional network operations by enabling ICN packet routing and forwarding based on names.This shift will bring advantages, but at the same time, it is leading to a big challenge on routing approaches to implement ICN nodes. Routing approaches must use special techniques to publish messages to all the network nodes.Flooding approach is an easy and stateless, however, results in control overhead, depending on the network size.Moreover, designing, implementing, and evaluating routing approaches with higher capacity is really a key challenge in the overall ICN research area, because the state of ICN brings a significant cost; both in packet processing and router storage.Many approaches were proposed in the literatures over these years for the efficient control of forwarding on the network.This paper provides a classification and review of the routing mechanisms that are proposed on six ICN architectures.A summary in tabular form and a comparative study of these six architectures is also given in the paper as well as few open research challenges are highlighted

    SCANDEX: Service centric networking for challenged decentralised networks

    Get PDF
    Do-It-Yourself (DIY) networks are decentralised networks built by an (often) amateur community. As DIY networks do not rely on the need for backhaul Internet connectivity, these networks are mostly a mix of both offine and online networks. Although DIY networks have their own home- grown services, the current Internet-based cloud services are often useful, and access to some services could be beneficial to the community. Considering that most DIY networks have challenged Internet connectivity, migrating current ser- vice virtualisation instances could face great challenges. Ser- vice Centric Networking (SCN) has been recently proposed as a potential solution to managing services more efficiently using Information Centric Networking (ICN) principles. In this position paper, we present our arguments for the need for a resilient SCN architecture, propose a strawman SCN architecture that combines multiple transmission technolo- gies for providing resilient SCN in challenged DIY networks and, finally, identify key challenges that need to be explored further to realise the full potential of our architecture.The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 645124.This is the accepted manuscript of a paper published in the Proceedings of the 2015 Workshop on Do-it-yourself Networking (Sathiaseelan A, Wang L, Aucinas A, Tyson G, Crowcroft J, Proceedings of the 2015 Workshop on Do-it-yourself Networking: an Interdisciplinary Approach, 2015, 15-20, doi:10.1145/2753488.2753490). The final version is available at http://dx.doi.org/10.1145/2753488.275349

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance
    corecore