14 research outputs found

    Monitoring bias and fairness in machine learning models: A review

    Get PDF
    Introduction: Machine learning algorithms are quickly gaining traction in both the private and public sectors for their ability to automate both simple and complex decision-making processes. The vast majority of economic sectors, including transportation, retail, advertisement, and energy, are being disrupted by widespread data digitization and the emerging technologies that leverage it. Computerized systems are being introduced in government operations to improve accuracy and objectivity, and AI is having an impact on democracy and governance [1]

    Unifying Gradients to Improve Real-world Robustness for Deep Networks

    Full text link
    The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their real-world robustness, i.e., whether a DNN resists black-box adversarial attacks, among which score-based query attacks (SQAs) are most threatening since they can effectively hurt a victim network with the only access to model outputs. Defending against SQAs requires a slight but artful variation of outputs due to the service purpose for users, who share the same output information with SQAs. In this paper, we propose a real-world defense by Unifying Gradients (UniG) of different data so that SQAs could only probe a much weaker attack direction that is similar for different samples. Since such universal attack perturbations have been validated as less aggressive than the input-specific perturbations, UniG protects real-world DNNs by indicating attackers a twisted and less informative attack direction. We implement UniG efficiently by a Hadamard product module which is plug-and-play. According to extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense baselines, UniG significantly improves real-world robustness without hurting clean accuracy on CIFAR10 and ImageNet. For instance, UniG maintains a model of 77.80% accuracy under 2500-query Square attack while the state-of-the-art adversarially-trained model only has 67.34% on CIFAR10. Simultaneously, UniG outperforms all compared baselines in terms of clean accuracy and achieves the smallest modification of the model output. The code is released at https://github.com/snowien/UniG-pytorch

    Determining Sequence of Image Processing Technique (IPT) to Detect Adversarial Attacks

    Full text link
    Developing secure machine learning models from adversarial examples is challenging as various methods are continually being developed to generate adversarial attacks. In this work, we propose an evolutionary approach to automatically determine Image Processing Techniques Sequence (IPTS) for detecting malicious inputs. Accordingly, we first used a diverse set of attack methods including adaptive attack methods (on our defense) to generate adversarial samples from the clean dataset. A detection framework based on a genetic algorithm (GA) is developed to find the optimal IPTS, where the optimality is estimated by different fitness measures such as Euclidean distance, entropy loss, average histogram, local binary pattern and loss functions. The "image difference" between the original and processed images is used to extract the features, which are then fed to a classification scheme in order to determine whether the input sample is adversarial or clean. This paper described our methodology and performed experiments using multiple data-sets tested with several adversarial attacks. For each attack-type and dataset, it generates unique IPTS. A set of IPTS selected dynamically in testing time which works as a filter for the adversarial attack. Our empirical experiments exhibited promising results indicating the approach can efficiently be used as processing for any AI model

    Adversarial Attacks and Defenses in 6G Network-Assisted IoT Systems

    Full text link
    The Internet of Things (IoT) and massive IoT systems are key to sixth-generation (6G) networks due to dense connectivity, ultra-reliability, low latency, and high throughput. Artificial intelligence, including deep learning and machine learning, offers solutions for optimizing and deploying cutting-edge technologies for future radio communications. However, these techniques are vulnerable to adversarial attacks, leading to degraded performance and erroneous predictions, outcomes unacceptable for ubiquitous networks. This survey extensively addresses adversarial attacks and defense methods in 6G network-assisted IoT systems. The theoretical background and up-to-date research on adversarial attacks and defenses are discussed. Furthermore, we provide Monte Carlo simulations to validate the effectiveness of adversarial attacks compared to jamming attacks. Additionally, we examine the vulnerability of 6G IoT systems by demonstrating attack strategies applicable to key technologies, including reconfigurable intelligent surfaces, massive multiple-input multiple-output (MIMO)/cell-free massive MIMO, satellites, the metaverse, and semantic communications. Finally, we outline the challenges and future developments associated with adversarial attacks and defenses in 6G IoT systems.Comment: 17 pages, 5 figures, and 4 tables. Submitted for publication

    Blacklight: Defending Black-Box Adversarial Attacks on Deep Neural Networks

    Full text link
    The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers
    corecore