The wide application of deep neural networks (DNNs) demands an increasing
amount of attention to their real-world robustness, i.e., whether a DNN resists
black-box adversarial attacks, among which score-based query attacks (SQAs) are
most threatening since they can effectively hurt a victim network with the only
access to model outputs. Defending against SQAs requires a slight but artful
variation of outputs due to the service purpose for users, who share the same
output information with SQAs. In this paper, we propose a real-world defense by
Unifying Gradients (UniG) of different data so that SQAs could only probe a
much weaker attack direction that is similar for different samples. Since such
universal attack perturbations have been validated as less aggressive than the
input-specific perturbations, UniG protects real-world DNNs by indicating
attackers a twisted and less informative attack direction. We implement UniG
efficiently by a Hadamard product module which is plug-and-play. According to
extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense baselines,
UniG significantly improves real-world robustness without hurting clean
accuracy on CIFAR10 and ImageNet. For instance, UniG maintains a model of
77.80% accuracy under 2500-query Square attack while the state-of-the-art
adversarially-trained model only has 67.34% on CIFAR10. Simultaneously, UniG
outperforms all compared baselines in terms of clean accuracy and achieves the
smallest modification of the model output. The code is released at
https://github.com/snowien/UniG-pytorch