24,376 research outputs found

    Exact formula for currents in strongly pumped diffusive systems

    Full text link
    We analyze a generic model of mesoscopic machines driven by the nonadiabatic variation of external parameters. We derive a formula for the probability current; as a consequence we obtain a no-pumping theorem for cyclic processes satisfying detailed balance and demonstrate that the rectification of current requires broken spatial symmetry.Comment: 10 pages, accepted for publication in the Journal of Statistical Physic

    Efficiency of molecular machines with continuous phase space

    Full text link
    We consider a molecular machine described as a Brownian particle diffusing in a tilted periodic potential. We evaluate the absorbed and released power of the machine as a function of the applied molecular and chemical forces, by using the fact that the times for completing a cycle in the forward and the backward direction have the same distribution, and that the ratio of the corresponding splitting probabilities can be simply expressed as a function of the applied force. We explicitly evaluate the efficiency at maximum power for a simple sawtooth potential. We also obtain the efficiency at maximum power for a broad class of 2-D models of a Brownian machine and find that loosely coupled machines operate with a smaller efficiency at maximum power than their strongly coupled counterparts.Comment: To appear in EP

    Quantum Equivalence and Quantum Signatures in Heat Engines

    Full text link
    Quantum heat engines (QHE) are thermal machines where the working substance is quantum. In the extreme case the working medium can be a single particle or a few level quantum system. The study of QHE has shown a remarkable similarity with the standard thermodynamical models, thus raising the issue what is quantum in quantum thermodynamics. Our main result is thermodynamical equivalence of all engine type in the quantum regime of small action. They have the same power, the same heat, the same efficiency, and they even have the same relaxation rates and relaxation modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature, i.e thermodynamic measurements can confirm the presence of quantum coherence in the device. The coherent work extraction mechanism enables power outputs that greatly exceed the power of stochastic (dephased) engines.Comment: v2 contains style and figures improvements. Subsection III.D was adde

    The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications

    Get PDF
    The principle goal of computational mechanics is to define pattern and structure so that the organization of complex systems can be detected and quantified. Computational mechanics developed from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving weak fluid turbulence via the method of reconstructing attractor geometry from measurement time series and in the mid-1980s to estimate equations of motion directly from complex time series. In providing a mathematical and operational definition of structure it addressed weaknesses of these early approaches to discovering patterns in natural systems. Since then, computational mechanics has led to a range of results from theoretical physics and nonlinear mathematics to diverse applications---from closed-form analysis of Markov and non-Markov stochastic processes that are ergodic or nonergodic and their measures of information and intrinsic computation to complex materials and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical processes and the evolution of computation and language. This brief review clarifies several misunderstandings and addresses concerns recently raised regarding early works in the field (1980s). We show that misguided evaluations of the contributions of computational mechanics are groundless and stem from a lack of familiarity with its basic goals and from a failure to consider its historical context. For all practical purposes, its modern methods and results largely supersede the early works. This not only renders recent criticism moot and shows the solid ground on which computational mechanics stands but, most importantly, shows the significant progress achieved over three decades and points to the many intriguing and outstanding challenges in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft
    • …
    corecore